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The role of core spin polarization

Krisztián Szász,1,2 Tamás Hornos,1 Martijn Marsman,3 and Adam Gali1,4,*

1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences,
P.O. Box 49, H-1525 Budapest, Hungary
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We implemented the calculation of hyperfine tensors into such plane wave supercell code working with the
projector augmentation wave method that incorporates hybrid density functional theory and the contribution
of the spin polarization of the core states. We show that the combination of HSE06 hybrid density functional
together with the contribution of the core spin polarization provides accurate results on prominent point
defects in various semiconductors, where the latter effect may be enormously large, in contrast to previous
expectations. We briefly discuss the relevance of our results in the light of realization of solid-state quantum bits
by paramagnetic point defects.
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I. INTRODUCTION

Hyperfine coupling is an interaction between the electronic
and nuclear spin. This interaction, for instance, makes it
possible to detect the presence of hydrogen molecules across
the universe, by means of the famous 21 cm−1 line in
the electron paramagnetic resonance (EPR) spectrum.1,2 The
hyperfine tensor (A(J )

ij ) between the electron spin density σ (r)
of electron spin S, and the nuclei (J ) with nonzero nuclear
spin (I ) may be written as

A
(J )
ij = 1

2S
γJ γeh̄

2

[
8π

3

∫
δ(r − RJ )σ (r)dr + Wij (RJ )

]
,

(1)

where the first term within the square brackets is the so-called
(isotropic) Fermi-contact term, and

Wij (R) =
∫ (

3(r − R)i(r − R)j
|r − R|5 − δij

|r − R|3
)

σ (r)dr (2)

represents the (anisotropic) dipole-dipole contribution to the
hyperfine tensor. γJ is the nuclear Bohr magneton of nucleus J

and γe the electron Bohr magneton. The Fermi-contact term is
proportional to the magnitude of the electron spin density at the
center of the nucleus which is equal to the trace of 1

3A(J ). The
principal values of the A(J ) tensor are the hyperfine constants
that are often labeled as Axx , Ayy , and Azz.

By close inspection of Eqs. (1) and (2) one can realize
that the chemical composition via γJ and the spin density
distribution of the investigated system may be determined
by EPR and EPR-related spectroscopies. The spin density
distribution is dominantly associated with the wave functions
of the unpaired electrons. This makes the EPR-related spec-
troscopies a very powerful method to identify point defects
in host semiconductors. Electrically or optically active point
defects in semiconductors have often such charge states
where their stable or long-living metastable spin state is
paramagnetic (S > 0). In addition, either the impurity or the
host semiconductor may contain I > 0 nuclei. Thus, hyperfine

interaction between the electron spin and the nuclei spins may
unravel the atom types constituting the defect. In addition,
largest hyperfine coupling on these systems can identify
to which atoms the spin density, and so the defect wave
functions, are mostly localized. This makes it possible to set
up microscopic models on EPR centers where comparison
between experimental data and ab initio values on hyperfine
tensors can significantly contribute to identification of point
defects in semiconductors.3–10

Besides the identification of point defects, the hyperfine
interaction has another great importance in defect physics.
The hyperfine coupling in paramagnetic point defects in
semiconductors is responsible for the entanglement between
the electronic and nuclear spins. This interaction serves as a
base to realize solid-state quantum bits from point defects.11–16

A prominent example is the nitrogen-vacancy defect (NV)
in diamond that operates at room temperature11 and shows
that hyperfine coupling between electron and nuclei spins
can be very robust. Hyperfine coupling can be also used to
map the electron spin into nuclear spin17–20 with relatively
long coherence time. Intricate details about the magnitude and
direction of the hyperfine field created by these paramagnetic
point defects should be known21 in order to apply them for
quantum computing22,23 or remote sensing.24–27 A reliable
and relatively accurate method for calculating the hyperfine
couplings is an immediate need in this hot topic.

To this end, we implemented the evaluation of hyperfine
tensors into the plane wave, all-electron projector augmen-
tation (PAW) code VASP28,29 where we take the contribution
of the core spin polarization to the Fermi-contact term into
account with valence-frozen spin density approximation. Our
new implementation allows us to calculate the hyperfine
tensors of point defects in large supercells, convergent basis
sets, and accurate HSE0630,31 valence spin densities. We
found on well-selected point defects in various group-IV
semiconductors that only the combination of HSE06 func-
tional and the contribution of the core spin polarization
can consequently account for the experimental signals. We
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show on the NV defect that in stark contrast to previous
findings, the core spin polarization has a significant ef-
fect. We present evidence that the core contribution in the
hyperfine coupling is giant in a promising candidate for
realizing solid-state quantum bits,16,32–34 the silicon vacancy
in 4H SiC.

In order to present our achievements and results, we orga-
nized our paper as follows. We describe the implementation
of hyperfine calculation in Sec. II. Then, we give the defect
systems and the parameters applied to model the chosen point
defects in Sec. III. The results are given and discussed in detail
in Sec. IV. Finally, we conclude our paper in Sec. V.

II. IMPLEMENTATION OF THE HYPERFINE
CALCULATION

Our implementation of the computation of hyperfine tensors
closely follows the work of Blöchl.35 Within the PAW
framework,29,36 the spin density σ can be written as

σ = σ̃ + σ 1 − σ̃ 1, (3)

where σ̃ is the pseudo-spin-density, and σ 1 and σ̃ 1 are
one-center expansions of the true- and pseudo-spin-densities,
respectively. In VASP, σ̃ is expanded in plane waves, whereas
the one-center terms are represented on radial logarithmic
grids.

The plane wave contribution to the Fermi contact term
is conveniently calculated from the pseudo-spin-density in
reciprocal space, as

σ̃ (R) =
∑

G

σ̃ (G)eiG·R. (4)

The one-center contributions are a bit more involved. These
contributions can be written as a sum of the products of atom-
centered radial functions and real spherical harmonics YL:

σ 1(r) =
∑

R

∑
L

σ 1
LR(|r − R|)YL( ̂r − R). (5)

The true spin density at atomic site R is then obtained from
the s-like contribution in this expansion, through∫

δT (r)σ 1
sR(r)dr, (6)

where the delta function of Eq. (1) has been replaced by a
more extended function δT to account for relativistic effects.
For details on δT and the way the integral of Eq. (6) is evaluated
see Eqs. (A1) and (A6) in the Appendix of Ref. 35. The
contributions of the pseudo one-center spin density σ̃ 1 to the
Fermi contact terms is evaluated analogously.

From Eqs. (2) and (3) we have that the anisotropic
contributions to the hyperfine tensors may be written as

Wij (R) = W̃ij (R) + W 1
ij (R) − W̃ 1

ij (R), (7)

where the contribution W̃ij (R), coming from the pseudo-spin-
density σ̃ , may again be conveniently evaluated in reciprocal
space:

W̃ij (R) = −4π
∑

G

(
GiGj

G2
− δij

3

)
σ̃ (G)eiG·R. (8)

The one-center contributions to Wij (R) stem from d-like
terms in the expansion of Eq. (5), and can written as

W 1
xx(R) =

√
12π

5

(
− 1√

3
D1

3z2−r2,R + D1
x2−y2,R

)
,

W 1
yy(R) =

√
12π

5

(
− 1√

3
D1

3z2−r2,R − D1
x2−y2,R

)
,

W 1
zz(R) =

√
12π

5

√
4

3
D1

3z2−r2,R, W 1
xy(R) =

√
12π

5
D1

xy,R,

W 1
xz(R) =

√
12π

5
D1

xz,R, W 1
yz(R) =

√
12π

5
D1

yz,R, (9)

where

D1
L,R =

∫ rc

0+

σ 1
LR(r)

r3
dr (10)

and rc is the cutoff radius of the one-center expansions. Sim-
ilarly, the pseudo-one-center contributions to the anisotropic
part of the hyperfine tensor, W̃ 1

ij (R), are found from the d-like
terms in the real spherical harmonics expansion of σ̃ 1.

In VASP, as in most other implementations of the PAW
method, the expansion of Eq. (3) involves the valence
electronic spin density only. To estimate the contribution of the
core electrons to the Fermi contact term we follow the approach
of Yazyev et al.37 and compute the spin polarization of the core
electrons within the frozen valence approximation. In short,
we solve the scalar-relativistic radial Schrödinger equation
self-consistently for the core electronic states, keeping the
spin-polarized valence density fixed. For these calculations,
exchange and correlation were treated using the Perdew-
Burke-Ernzerhof (PBE) functional.38

In order to verify that our implementation of the core
contribution to the hyperfine tensor follows that of Yazyev
et al., we compare their results with ours on some organic
molecules and radicals. We could not make a complete
direct comparison since they utilized pseudopotential plane-
wave density functional theory, and such general gradient
approach for the exchange-correlation functional39,40 that
is not implemented in our code. The conclusion of their
work is that the core spin polarization correction recovers
the largest part of the error when compared to all-electron
calculations and experimental results. They put the molecules
in a 12 × 12 × 12 Å3 cubic box. The plane wave cutoff
was 100 Ry (∼1360 eV). Our calculations were performed
in 20 × 20 × 20 Å3 isolated cubic box at the � point. This
size of the box was large enough to avoid the overlap of the
wave functions in the periodic images. The kinetic energy
cutoff was 500 eV, which was sufficient to obtain convergent
hyperfine constants (or spin densities) within the PAW method.
We optimized the geometry only with the PBE functional in
this case. Concerning the hyperfine constants calculated by
the HSE06 functional, the PBE-optimized geometries were
applied.

The results are summarized in Table I. The values of the
valence spin densities are similar which shows us that the
use of the PBE functional is appropriate for comparison.
The core polarization has similar order of magnitude in both
calculations. For HCO and FCO molecules we get slightly
different results. This is due to the large charge transfer among
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TABLE I. The calculated Fermi-contact terms in MHz unit. The values of the PP PW column correspond to the pseudopotential plane
wave approach, and the PP PW + CSPC column corresponds to the same method corrected for core spin polarization (from Ref. 37). PBE
and HSE columns represent our obtained results with PBE and HSE06 functionals with or without the contribution of the core states (A1c). In
the parentheses the relative magnitude of the core contributions (CSPC and A1c) are showed compared to the values without core corrections
(PP PW and PBE without A1c), respectively.

system isotope PP PWa PP PW + CSPCa PBE without A1c
b PBE with A1c

b HSE without A1c
b HSE with A1c

b experimentc

CH3
1H −65.3 −64.2 −72.0 −64.6
13C 186.1 74.3(60.1) 182.5 86.1(52.8) 198.1 101.9 107.4

C2H3
1H 43.7 44.1 35.7 35.9
1H 181.9 182.7 177.8 184.7
1H 113.9 114.7 111.5 111.0
13C −23.3 −11.5(50.6) −20.1 −10.9(45.9) −34.8 −21.5 −24.1
13C 395.1 297.1(24.8) 377.4 292.6(22.5) 407.3 318.5 301.5

H2CN 1H 238.8 240.0 230.4 233.2
13C −75.4 −61.9(17.8) −70.6 −59.3(16.0) −90.6 −74.6 −81.0
14N 59.1 11.8(80.1) 58.7 15.0(74.5) 70.4 24.1 26.1

HCO 1H 375.0 369.2 373.5 379.5
13C 454.0 411.1(9.4) 414.8 376.5(9.2) 429.0 389.0 375.3
17O −64.5 −26.6(58.7) −60.2 −18.9(68.5) −73.8 −32.3 −42.3

FCO 19F 1136.4 972.2(14.5) 1040.1 844.4(18.8) 1027.0 824.8 905.8
13C 851.7 822.8(3.4) 800.2 773.4(3.3) 828.4 799.1 803.2
17O −71.5 −46.5(34.9) −65.1 −36.7(43.7) −70.3 −42.7

NO2
14N 174.0 160.6(7.7) 163.0 149.1(8.5) 164.3 148.4 153.6
17O −91.9 −51.8(43.6) −84.9 −42.2(50.4) −87.5 −43.4 −45.7 to -56.9

aFrom Ref. 37.
bPresent work.
cFrom Ref. 41–50.

the atoms, which can depend on the choice of the functional.
All in all, we could fairly reproduce Yazyev et al.’s results
related to the core correction. We mention that for these
molecules the core contribution can be large (even ∼50%)
concerning the carbon isotope. Furthermore, the HSE06
functional provides surprisingly good results on hyperfine
couplings when compared to the experimental values.

Having this new tool in our hand, we use this implemen-
tation on defects with deep levels where these defects induce
molecular-like states embedded in a crystalline matrix.

III. DEFECT SYSTEMS AND MODELING

We first study the prominent negatively charged nitrogen-
vacancy defect (NV center) in diamond. Next, we investigate
the negatively charged silicon vacancy (VSi) in 4H SiC. VSi

is a basic defect and a leading candidate to realize solid-state
quantum bits in 4H SiC.16,32–34 Nevertheless, the hyperfine
interactions in VSi are far from being understood. We briefly
mention that two inequivalent substitutional sites exist in 4H

SiC that we label by h and k sites. Correspondingly, VSi(h) and
VSi(k) are studied in detail. Finally, we study such deep-level
defects in Si that were first found by EPR techniques:51 A
center52,53 and E center.54 These centers have well-established
microscopic origin: strongly reconstructed substitutional oxy-
gen (also called VO center) and phosphorus-vacancy complex
(PV), respectively. These defects are excellent test beds for
our methodology.

We use 512-atom simple cubic supercells for Si and
diamond and a 576-atom supercell for 4H SiC. Sampling of

the first Brillouin zone is often limited to the � point, which
generally suffices for these large supercells. However, 2×2×2
Monkhorst-Pack sets of k points55 are also applied when the
calculated defect levels are close to the band edges of the host
semiconductor. The plane wave basis set cuts off at a kinetic
energy of 420 eV, which is sufficiently convergent for the hy-
perfine constants in the considered systems.56 Both semilocal
PBE and the hybrid HSE06 functionals are applied to calculate
the hyperfine tensors of the defect. First, we optimized the lat-
tice constants for each functional, and we carried out geometry
optimization (criteria of forces: 0.01 eV/Å). The calculated
band gaps of Si, diamond, and 4H SiC are 1.12 (0.52), 5.4
(4.2), and 3.16 (2.20) eV by HSE06 (PBE), respectively (com-
pared to the experimental values of 1.17, 5.45, and 3.23 eV,
respectively). We note that the conduction band minimum of
these systems folds onto the � point of the supercells. Previous
HSE06 results imply that not just the electronic structure of
the host semiconductor is improved by HSE06 functional57

but also the defect states are well described in them,58 so it is
expected that the spin density is also well described that it is
the important quantity to obtain accurate hyperfine interaction.

IV. RESULTS AND DISCUSSION

We wish to focus our attention on the role of the core
contribution thus we discuss the results from this point of
view. Also, we deal with the band gap problem where it is
needed. The key results are summarized in Table II. Next, we
discuss each defect system in detail.
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TABLE II. Relative percentage errors of the calculated hyperfine constants compared to the experimental values. For the sake of simplicity,
in each system we consider only those I > 0 isotopes which have the largest hyperfine constants. These atoms are labeled in the isotope column,
and in the figures of each systems (Figs. 1–4), as well. In order to compare the calculated with the experimental hyperfine values readily, the
average of the principal values of the hyperfine tensor [(Axx + Ayy + Azz)/3] is taken for both the calculated and the experimental results. [The
individual principal values can be found in the Supplemental Material (Ref. 56): NV: Tables XXI and XXII, VSi: Tables XXIII–XXVI, VO:
Tables XVII and XVIII, PV: Tables XIX and XX.] The absolute errors are also shown in the parentheses in MHz unit. PBE and HSE columns
represent the obtained results with PBE and HSE06 functionals with or without the contribution of the core states (A1c). MAE is mean average
error, and MSE is square root of mean-squared error of the shown data. In the case of VO and PV defects 2×2×2 Monkhorst-Pack k-point
scheme was used with PBE functional otherwise � point was applied (see text for details).

system isotope PBE without A1c PBE with A1c HSE without A1c HSE with A1c

NVa 13C1−3 0.32(0.41) 21.04(29.11) 18.27(25.83) 3.77(4.70)
VSi(k)b 13C2−4 20.87(8.87) 22.72(9.12) 47.69(20.38) 2.03(1.49)
VSi(h)b 13C2−4 21.34(9.54) 23.37(9.18) 46.75(20.64) 5.11(2.73)
VOc 29Si1,2 15.23(62.22) 14.68(59.99) 1.62 (6.42) 0.93(3.62)
PVd 29Si1 15.63(53.01) 16.07(54.48) 10.84(34.09) 11.46(36.14)
MAE 14.67 19.58 25.03 4.66
MSE 18.57 22.58 35.10 7.09

aExperimental data are taken from Ref. 59.
bExperimental data are taken from Ref. 60.
cExperimental data are taken from Ref. 52 and 53.
dExperimental data are taken from Ref. 54.

A. NV center in diamond

The negatively charged NV defect is a prominent color
center in diamond which has become a leading solid-state
quantum-measurement tool. In the NV defect the nitrogen
substitutes one carbon atom adjacent a nearby vacancy. The
symmetry is C3v where a double-degenerate e defect state
in the gap is occupied by two electrons with parallel spins
(S = 1).59,61–63 The spin density is mostly localized on the
nearest-neighbor 13C atoms of the vacancy (see Fig. 1)
where the corresponding hyperfine couplings were already
investigated in great detail by (semi)local functionals.21,63,64

Our PBE results are in good agreement with earlier work,21,64

obtained with a different plane wave PAW code.65 These results

FIG. 1. (Color online) The isosurface of the calculated spin
density for NV center (isovalue: 0.0560 1/Å3) shown from (111)
plane. The carbon (nitrogen) atoms are yellow (blue) balls. We obtain
considerable spin density on the labeled carbon atoms, so these 13C
isotopes have significant hyperfine couplings.

are in a surprisingly good agreement with experiment when the
spin density is calculated solely from the valence states (see
Table II and Table XXI in the Supplemental Material56). Thus,
previous findings implied that this solid-state quantum bit
is fully understood. Our HSE06 calculations combined with
core spin polarization unravel that PBE valence spin densities
are too delocalized. Due to the presence of the nonlocal Fock-
exchange in the HSE06 functional, HSE06 tends to localize the
defect states. As a consequence, the largest hyperfine constants
on the nearest-neighbor 13C atoms become larger than the
experimental value when only valence states are considered.
However, we found that the spin polarization of the core state
on 13C atoms is very significant and accounts for about 20%
of the Fermi-contact interaction. The spin polarization of the
1s orbitals compensates the spin polarization from the valence
electrons; thus the absolute value of the hyperfine constants
reduces. As a consequence, the HSE06 value together with the
contribution of the core spin polarization is very close to the
experimental data. Our study reveals that the calculated PBE
hyperfine constants only from valence states just fortuitously
agree well with the experimental data: The underestimation of
the localization of the defect wave functions and the neglect
of the spin polarization of the core electrons compensate each
other.

We mention that we calculated the hyperfine tensor for
PBE-optimized geometry with HSE functional and vice versa,
in order to separate the effect of the geometry produced by the
different functionals after geometry optimization and the spin
density distributions at a given geometry produced by different
functionals. The difference among the hyperfine values was
within 2–3 % when different geometry but the same functional
were applied. The core polarization has significantly larger
contribution to the change in the hyperfine tensor elements
(∼20%) than what the change in the geometry due to different
functionals would imply. We conclude that the localization of
the spin density has the major role in the calculated hyperfine
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tensors when different functionals are applied, and not the
slight change in the geometry induced by these functionals.
Our finding highlights the significance of core contribution to
the Fermi-contact hyperfine coupling that we demonstrate in
our next example.

B. VSi(h,k) in 4H SiC

For the negatively charged VSi in 4H SiC, it is of high im-
portance to explore the hyperfine couplings of these centers in
great detail;16,32–34 however, the experimental and theoretical
data on this center are scarce. The two possible configurations
[Fig. 2(a) and Fig. 2(b)] have not been unambiguously assigned
to the detected EPR centers associated with VSi in 4H SiC.
The spin density is mostly localized on the four C dangling
bonds [Fig. 2(a) and Fig. 2(b)] that creates an e and a1 level in
the gap with C3v symmetry. These levels are occupied by three
electrons with parallel spins (S = 3/2).32 We find that both
PBE and HSE06 calculations predict larger hyperfine constants
for the nearest-neighbor 13C atoms at h site than those at k site.
By that way we can conclusively identify Si-vacancy (I) and
Si-vacancy (II) EPR signals60 with k and h sites which goes
opposite to the interpretation by Mizuochi and co-workers.60

We note that the effect of the spin density of core states can be
severe as found for the NV center in diamond. Interestingly,
the PBE without core contribution yields too high (∼20%)
while that with core contribution too low (∼20%) hyperfine
constants compared to experimental data. This shows that PBE
spin density cannot yield accurate hyperfine interaction for this
basic defect in 4H SiC.

FIG. 2. (Color online) The isosurface of the calculated spin den-
sity (isovalue: 0.0600 1/Å3) for VSi defects at h (a) and k (b) site. Top
panel: side view, bottom panel: top view. The silicon (carbon) atoms
are blue (yellow) balls, while the missing silicon atom is depicted by
a small black ball. 13C isotopes with largest hyperfine couplings are
labeled. The arrow with c shows the [0001] direction (c axis) of the
hexagonal SiC lattice. The hexagonal (h) and quasicubic (k) sequence
of Si-C bilayers are indicated by thick lines in the top panel.

HSE06 again localizes the defect states. This localization
of the valence states and the corresponding spin density,
however, would bring the hyperfine constants about 47% off
from the experimental data. Including the spin polarization
of the core states together with HSE06 functional can only
reproduce the experimental data within a good accuracy
because of the large contribution of the core spin polarization.
This is an important finding with showing the physics of the
system: (i) The HSE06 functional should be indeed an accurate
functional to describe the valence electrons of VSi in 4H SiC,
and (ii) the hyperfine tensor of VSi can be well reproduced by
the HSE06 functional when the contribution of the core spin
polarization to the Fermi-contact term is taken into account.
This contribution is giant and reaches ∼40%.

In addition, we found that the spin density decays very
fast from the center of silicon vacancies. Thus, the coherence
time of the VSi qubits may not be limited very much due
to the presence of proximate 29Si or 13C nuclei. We found
proximate 12 29Si and 20 13C atoms at h site while 8 29Si and
21 13C atoms at k site with hyperfine constants larger than 1
MHz where their I = 1/2 spin can be entangled to S = 3/2
spin by hyperfine interaction.56 Further experimental studies
motivated by our findings may support our identification of
VSi at inequivalent sites.

C. VO center in silicon

We now study the hyperfine signals of known microscopic
origin where the spin density is not localized on light isotopes
such as 13C. The first deep-level defects discovered by EPR
techniques in Si are such test bed examples. The VO center
is a common defect in Si.52 Substitutional oxygen strongly
reconstructs along the [100] axis and binds to two nearest-
neighbor oxygen atoms, leaving two Si dangling bonds behind.
Its symmetry is C2v . The A center52 is a negatively charged
VO defect (S = 1/2) where the unpaired electron occupies
the antibonding b1 orbital in the gap, that is strongly localized
on the Si dangling bonds. The �-only PBE calculations
underestimate the hyperfine constants on the Si1,2 atoms
in Fig. 3 by roughly 50% compared to experimental data
(see Tables I and IV in the Supplemental Material56). This
artificial delocalization is due to the band gap error of the
PBE functional. The b1 level lies very close to the conduction

FIG. 3. (Color online) The isosurface of the calculated spin
density of A center in silicon. The chosen isosurface value is 0.02.
The substitutional oxygen atom is clouded by the lobes of spin density
which is dominantly localized on two Si atoms labeled as Si1 and Si2.
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band minimum (CBM) and hybridizes strongly with these
band states. Using MP 2×2×2 k-point sampling the CBM
is not sampled in the supercell calculation, thus reducing this
hybridization. As a consequence, the PBE 2×2×2 results show
a great improvement compared to those of PBE � but the
discrepancy is still ≈15% (Table II). The HSE06 � calculations
are in almost perfect agreement with experiment, for 29Si1,2

isotopes (Table II). The occupied b1 level lies 0.36 eV below
the CBM in this case. We also note that hyperfine couplings
with other approximate 29Si isotopes were detected that can
be also well-reproduced by HSE06.56

D. PV center in silicon

The PV defect is common in P-doped electron-irradiated
Si.54 The neutral PV defect has S = 1/2 and yields the E

center in the EPR spetrum. The PV defect consists of a P atom
substituting one Si atom in the lattice near a vacancy. The
defect has an axial C3v symmetry along the [111] direction
and creates one fully occupied a1 level and a singly occupied
e level in the gap. The e state is localized on the Si-dangling
bonds of the vacancy while the a1 state is partially localized
on the P atom. This system is Jahn-Teller unstable due to the
partial occupation of the orbitally degenerate state; thus the
system should reconstruct to C1h symmetry. The C3v → C1h

distortion splits the e state, e → a′ ⊕ a′′, and a1 → a′. This
allows a mixing between a′ orbitals in C1h symmetry; thus the
unpaired electron can “borrow” the character of the original
a1. Consequently, a small hyperfine coupling on the 31P
isotope is expected. Two configurations of C1h distortion is
feasible (Fig. 4): conf1 with a short-base triangle [Fig. 4(a)]
and conf2 with a long-base triangle [Fig. 4(b)] of Si atoms
around the vacancy. The spin density is localized on one
(two) Si dangling bonds in conf1 (conf2) configurations. In
the low-temperature EPR measurements conf1 was measured
as large hyperfine signal was detected on a single 29Si,54

and it should be the stable configuration. However, PBE
� calculation predicts conf2 configuration as stable which
contradicts the experimental finding. Again, this error is due
to the band gap problem of the PBE functional. The highest
occupied a′ defect level lies close to CBM and mixes with it
resulting in false geometry and spin density distribution. PBE
2×2×2 calculation predicts the appropriate geometry, and the

FIG. 4. (Color online) Two two possible C1h distortions of PV
defect in Si. P atom is shown as black ball. The isosurface of
calculated spin densities and distances are depicted as obtained by
HSE06 method. (a) conf1, (b) conf2 configuration. conf1 is more
stable than conf2.

spin density distribution qualitatively follows the experiment.
However, the absolute value of the largest hyperfine constant
on 29Si is still about 16% smaller than the experimental one
because the defect state is too delocalized (see Ref. 56). The
HSE06 functional correctly provided the conf1 geometry as
the most stable configuration, and it localizes the defect state
due to the non-local Fock exchange. As a consequence, HSE06
� calculation yields relatively good agreement for the largest
hyperfine coupling. All in all, HSE06 can significantly improve
the results compared to those obtained by PBE.

V. CONCLUSION

In summary, we implemented the calculation of hyperfine
tensors within a plane wave supercell PAW framework where
the HSE06 valence spin density can be combined with the
contribution of the core spin polarization. By applying our
method on prominent point defects in semiconductors we
found that, principally, only the combination of the two
describes the physics of the system. The contribution of the
core spin polarization may be giant as demonstrated in silicon
vacancies in 4H SiC.
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