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We present a numerical method based on real-space renormalization that outputs the exact ground space of
“frustration-free” Hamiltonians. The complexity of our method is polynomial in the degeneracy of the ground
spaces of the Hamiltonians involved in the renormalization steps. We apply the method to obtain the full ground
spaces of two spin systems. The first system is a spin-1/2 Heisenberg model with four-spin cyclic-exchange
interactions defined on a square lattice. In this case, we study finite lattices of up to 160 spins and find a triplet
ground state that differs from the singlet ground states obtained by Batista and Trugman, [Phys. Rev. Lett. 93,
217202 (2004)]. We characterize such a triplet state as consisting of a triplon that propagates in a background of
fluctuating singlet dimers. The second system is a family of spin-1/2 Heisenberg chains with uniaxial exchange
anisotropy and next-nearest-neighbor interactions. In this case, the method finds a ground-space degeneracy
that scales quadratically with the system size and outputs the full ground space efficiently. Our method can
substantially outperform methods based on exact diagonalization and is more efficient than other renormalization
methods when the ground-space degeneracy is large.
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I. INTRODUCTION

Renormalization methods are powerful tools for studying
the long-wavelength properties of physical systems by a
systematic elimination of high-energy degrees of freedom.
The first numerical renormalization group (NRG) method
was developed by Wilson1,2 to solve the Kondo problem,
an important problem in physics that involves the interaction
of a magnetic impurity with a conduction band.3 The more
recent density-matrix renormalization group (DMRG) method
was successfully applied to a large class of one-dimensional
(D = 1) quantum systems4 and a few D = 2 systems.5–8

Recent advances in quantum information theory also led to
renormalization and variational methods, including PEPS,9,10

MERA,11,12 and tensor renormalization.13–16 The problem
with known renormalization methods is that they suffer
from important limitations when studying systems in space
dimension D � 2 or with a large number of ground states.
Our goal is to construct a renormalization method that can
be applied to such systems when the Hamiltonians under
consideration satisfy a “frustration-free” (FF) property.

The term frustration-free was first coined by the quantum-
information community17–19 to denote a class of Hamiltonians
H = ∑p

k=1 πvk
whose ground states are also ground states

of each local term πvk
. vk refers to a finite set of degrees

of freedom, e.g., a unit or a finite subsystem, and the terms
πvk

are given. While describing such Hamiltonians as FF is
adequate from a viewpoint that we discuss below, the term FF
can be confusing if we adopt a more traditional convention
of identifying frustration with competing interactions. For
example, the triangular lattice Ising model with antiferromag-
netic (AFM) exchange (J > 0) is the paradigmatic example
of a frustrated Hamiltonian. However, this model is FF
according to the previous definition if the subsystems vk

are triangular plaquettes. That is, we let vk be the three
spins σ k

j = {−1,1} in the kth triangle, j = {1,2,3}, and define
πvk

= (J/2)[(
∑

j σ k
j )2 − 1]. The Hamiltonian is FF because

any ground state |ψ〉 of H satisfies πvk
|ψ〉 = 0, i.e., |ψ〉 is

also a ground state of each πvk
. Nevertheless, |ψ〉 does not

minimize each of the bond Hamiltonians Jσ k
j σ k

j ′ , the reason
why the model is considered to be frustrated according to
traditional convention.

The previous discussion implies that the concept of frus-
tration is relative to a particular decomposition of H . The
traditional interpretation of frustration assumes a decomposi-
tion of H dictated by the physical nature of the interactions.
However, while H may be frustrated with respect to one
decomposition, it may still be FF because the competition
between interactions on different units disappears when we
consider a different, given decomposition (e.g., triangles
instead of bonds in the Ising example). Remarkably, FF
Hamiltonians are ubiquitous in condensed matter and quantum
information theory. They include Ising models, the AKLT
model,20 parent Hamiltonians of PEPS,9 and Hamiltonians
that can simulate quantum circuits.21 Several other frustrated
magnets also correspond to FF Hamiltonians.22 Ground states
of FF Hamiltonians contain all the characteristics of highly
frustrated physical systems: large ground-state degeneracy,23

coexistence of different phases, and exotic orderings.
In this paper we introduce an exact real-space renormaliza-

tion method (ERM) that obtains the full ground space of FF
Hamiltonians. The output of the ERM is a sequence of tensors
whose contraction allows us to compute expectation values of
observables and amplitudes of the ground states (Sec. II). The
computational cost of our method (i.e., the cost of the tensor
contraction) is polynomial in the ground-space degeneracy of
the FF Hamiltonians involved in the renormalization steps.
If such a degeneracy increases polynomially with the system
size, the ERM is efficient. Otherwise, for exponentially large
degeneracies, the ERM is inefficient but can substantially
outperform other numerical techniques for this problem.

To illustrate the potential of our method, we apply it to
two FF spin systems that have largely degenerate ground
states. The first system is a spin-1/2 Heisenberg model with
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four-spin cyclic-exchange interactions that is defined on a
square lattice (Sec. III). The ground-state degeneracy is
exponential in the linear size L of the lattice. Such a degeneracy
is much smaller than the Hilbert space dimension 2L2

, so the
ERM outperforms exact diagonalization in this case. Besides
the singlet ground states that were in identified in Ref. 24,
we find a triplet ground state that consists of a triplon that
propagates in a background of fluctuating singlet dimers. The
propagation of this triplon leads to an incipient long-range
AFM ordering, which indicates that the triplet ground state
describes an AFM quantum critical point. Such a triplet ground
state also exists in rectangular spin lattices of size Lx × Ly ,
Lx � Ly , with periodic boundary conditions. In particular,
Lajkó, Sindzingre, and Penc gave an analytical expression of
this state for the case of three-leg tubes (Lx = 3).25

The second system consists of the family of spin-1/2
Heisenberg chains with uniaxial exchange anisotropy and
nearest- and next-nearest-neighbor exchange interactions
(Sec. IV). The Hamiltonians in this family are also FF. An an-
alytical and closed form representation for the ground states of
this family, in terms of anyonic operators, was given in Ref. 22.
However, such a representation is not useful for computing
some expectation values of spin-spin correlations efficiently.
Those expectation values can be efficiently computed with the
ERM. Other examples where the ERM performs efficiently
include those FF spin-1/2 Hamiltonians with nearest-neighbor
interactions, in arbitrary lattices.26 Bilinear-biquadratic spin
models (S > 1/2) are also FF for certain ratios between the
bilinear and biquadratic coupling constants.27,28

We note that quantum Monte Carlo methods, that are
not based on renormalization, cannot be applied to most FF
Hamiltonians because of the infamous sign problem.

II. THE RENORMALIZATION METHOD

We start by providing a brief description of the ERM
(technical details are provided in the Appendix). For simplicity
we consider a Hamiltonian H acting on a system of L spins
located on the vertices V of a lattice.29 The Hilbert space of
the system is HV and its dimension is dV . The magnitude of
the spins and space dimensionality of the lattice are arbitrary;
we refer to the spin system of Fig. 1 for illustration purposes.
We let vk be a subset of spins of V , Hk is the associated Hilbert
space, and dvk

is its dimension. Here k = 1,2, . . . ,p and the
subsets vk are known. For l = 1,2, . . . ,p we also define the
sets of spins wl = vl \ zl−1, with zl = ∪l

k=1vk = ∪l
k=1wk and

z0 = {∅}. A \ B is the relative complement of A in B so that
wl are those spins that belong to vl but do not belong to any
other vk with 1 � k � l − 1. We assume wl �= {∅} and note
that v1 = w1 = z1.

For a set x of spins in V , we use ix for the spin variable in
some standard basis.31 Also, dx denotes the dimension of Hx ,
the Hilbert space associated with x. It follows that {|ix〉}1�ix�dx

is an orthonormal basis for the spins in x; hereafter referred
to as the computational basis and |ix〉 is a basis state. In some
cases, we do not distinguish between basis states or (column)
vectors: |ix〉 can also denote a vector with component equal to 1
in position ix and zeros elsewhere. The number of components
of |ix〉 is the number of values that ix can take (�dx), which
is given in each case.

FIG. 1. (Color online) Spin system. Black dots denote spins
located at the vertices V of the lattice. Each term πvk

in the
Hamiltonian acts nontrivially in vk only. The sets wl and zl are defined
in the text.

The Hamiltonian is given as

H =
p∑

k=1

πvk
, (1)

where each πvk
is a Hermitian operator acting nontrivially on

spins in vk only. We assume πvk
� 0. If any ground state |ψ〉

of H satisfies

H |ψ〉 = πv1 |ψ〉 = · · · = πvp
|ψ〉 = 0, (2)

then H is said to be FF. The standard definition of FF also
assumes that each πvk

is local. Here we can relax such an
assumption without incurring large computational overheads
as long as πvk

is a bounded sum of product operators (see
the Appendix). When H is FF in the given decomposition
[Eq. (1)], our renormalization method is exact and outputs the
ground states of H as∣∣ψp

iV

〉 = T
†

1 • · · · • T †
p |iV〉. (3)

T
†

1 ,T
†

2 , . . . ,T
†
p are isometries, 1 � iV � g, and g is the ground-

space dimension. The symbol • refers to a tensor contraction
that involves a sum over repeated indices. Such a contraction
regards a tree-tensor network (see Fig. 2); tree-tensor networks
are ubiquitous in renormalization methods.11,32 Whether H is
FF or not is also an output of the ERM.

The ERM performs p steps. Each step can be defined
recursively as follows. For 1 � l � p, we let gl � 0 be
the ground-space degeneracy of Hl = ∑l

k=1 πvk
(g0 = 1).

The ground states of Hl are |ψl
izl 〉, 1 � izl � gl . Hp = H .

In the first step, the ERM diagonalizes γ1, the dw1 × dw1 matrix
representation of πv1 in the computational basis. It obtains g1

and {|ψ1
iz1 〉}1�iz1 �g1 , and continues only if g1 > 0. In the lth

step, l � 2, the ERM computes γl . This is a hl × hl matrix
representation of πvl

in the basis {|ψl−1
izl−1 ,i

wl 〉}, with 1 � izl−1 �
gl−1, 1 � iwl � dwl

, and hl = gl−1dwl
. Then ERM applies

exact diagonalization to γl , obtains a basis {|φl
izl 〉}1�izl �gl

for
the zero eigenvalue, and computes the multiplicity gl of the
new ground space. The ERM continues if gl > 0 and stops
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FIG. 2. (Color online) Representation of the tree-tensor network
contraction for a system with p spins (blue circles). In this example,
the sets vl refer to pairs of nearest-neighbor spins and each wl is a
single spin. The tensors Tl live in the vertices of the tree and the
contraction indices are in the edges. An arrow means a sum over
the corresponding index. The contraction Tp • · · · • T1 maps ground
states of H into states |izp 〉. T †

1 • · · · • T †
p is the inverse transformation

that gives all the ground states of H from |izp 〉.

otherwise. The isometries in Eq. (3) are

T
†
l =

gl∑
izl =1

∣∣φl
izl

〉〈izl |. (4)

In the Appendix we show that if NT is the number of
elementary operations to output the isometries T

†
1 , . . . ,T

†
p ,

then

NT ∝
p∑

k=1

EV (hk) + (p − k)(hkgk)2. (5)

EV (d) is the cost of the exact diagonalization of a d × d

matrix and g0 = 1. Also, if MT is the memory cost associated
with the number of variables kept during the implementation
of the ERM,

MT ∝
p∑

k=1

hkgk. (6)

Thus, the efficiency of the ERM strongly depends on gk and
the method becomes efficient when gk ∈ O[poly(p)]. The cost
of evaluating expectation values of observables in any ground
state of H is also important and can be easily derived from the
analysis given in the Appendix.

A related method for solving some spin-1/2 systems, which
is based on the techniques developed in Ref. 33, can be
found in Ref. 26. Also, an exact renormalization method for
quantum spin chains was proposed in Ref. 34. Our main
contribution with respect to that of Refs. 26 and 34 is that
we consider Hamiltonians with arbitrary interactions, in any
space dimension, and provide a real-space renormalization
algorithm that is exact if the ground space satisfies some
properties that can be verified by the ERM. In addition, the
way that the ERM contracts tensors is different from the usual
contraction of a binary-tree-like tensor network. The main
reason behind this difference is the minimization of MT when
gl grows monotonically with l.

III. APPLICATION TO A D = 2 MAGNET

A. Model Hamiltonian

We apply the ERM to a spin-1/2 model that satisfies
the frustration-free property as defined in Sec. II. The FF
Hamiltonian is defined on a square lattice and reads24

H = 3

2

∑
α

Pα. (7)

Each operator Pα corresponds to a πvk
in Eq. (1) and projects

the total spin state of a square plaquette α onto the subspace
with spin 2 [see Fig. 3(a)]. This model has a number
of exact valence-bond ordered ground states that increases
exponentially in the linear dimension of the square lattice.24

The model of Eq. (7) corresponds to a particular regime of
parameters of a more general model with frustration and ring
exchange:

H ′ = J1

∑
〈r,r′〉

sr · sr′ + J2

∑
〈〈r,r′〉〉

sr · sr′

+K
∑

α

(
P α

ij P
α
kl + P α

jkP
α
il + P α

ikP
α
j l

)
. (8)

Here 〈r,r′〉 and 〈〈r,r′〉〉 denote nearest neighbors and next-
nearest neighbors, respectively, and i, j , k, and l label the four
spins of a plaquette in cyclic order. sr = (sx

r ,s
y
r ,sz

r ) is the spin
operator of the spin at the rth position. Equation (8) reduces to
Eq. (7), up to an irrelevant constant, if J1 = 1, J2 = 1/2, and
K = 1/8.

B. Algorithm

The implementation of the ERM is related to Wilson’s
NRG1,2 and to the warmup stage of the conventional DMRG.4

Thus, it is simple to adapt an existing NRG or DMRG
code for this case by making minor modifications. At each
renormalization step, the ERM grows the system by adding
one plaquette. Then, the ERM diagonalizes the renormalized
Hamiltonian and only keeps the ground states (if the lowest
eigenvalue is zero). In a DMRG “language,” this corresponds
to working with two blocks instead of four.

)b()a(
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FIG. 3. (Color online) (a) Square lattice and the projectors Pα

acting on the square plaquettes (dashed lines). Each Pα projects the
spin states of the plaquette onto the subspace with spin 2. (b) “Snake”
path followed by the ERM, similar to the DMRG warmup scheme.
At each step one adds the spins necessary to complete a projector on
a new plaquette. This growing process requires adding one or two
spins (thick bold lines) per step.
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The order in which the plaquettes are added can be
arbitrary. However, the ground-space degeneracy gl depends
dramatically on the path followed to grow the lattice. The
“snake” path shown in Fig. 3(b) is the approach that turned
out to be more efficient. The number of spins increases by
one or two at each step [see for instance steps 5 and 6 in
Fig. 3(b)]. It is important to introduce Hamiltonian terms
corresponding to a plaquette at a time (the projectors Pα) and
to avoid including terms belonging to neighboring plaquettes.
For instance, a nearest-neighbor exchange term in Eq. (8) is
shared by two neighboring plaquettes. Such a term should be
split accordingly to assure that only one projector is added per
step. We sketch the ERM in Table I. p is the total number of
plaquette terms to be added.

We applied the ERM to rectangular lattices of sizes Lx ×
Ly , Lx � Ly , and periodic boundary conditions. The ground
space degeneracy g is proportional to 2Lx in this case, i.e.,
exponential in the linear dimension. If we follow a path like
the snake in Fig. 3(b), gl increases as we increase Lx but it does
not change substantially when we increase Ly . This property
allows us to study remarkably large system sizes by keeping
Lx constant and by increasing the number of plaquettes in
the y direction to relatively large values of Ly . Every time
we close a boundary along the y direction, the degeneracy gl

drops substantially.
Unlike DMRG, the ERM needs to fully diagonalize the

renormalized Hamiltonian at each step. This implies diag-
onalizing a hl × hl matrix in the lth step, with hl = 2gl−1

or hl = 4gl−1, depending on the number of spins added at
that step (one or two, respectively). The maximum value
of hl depends on the linear dimensions of the system, and
could reach several thousand for lattices of hundreds of spins.
To be able to study relatively large systems, we can use
symmetries—U (1)/abelian quantum numbers in our case—to
store the Hamiltonians and other operators in block form.
However, to ensure that we keep all the ground states, we
do not restrict the values of these quantum numbers.

In Fig. 4 we plot the ground-space degeneracy gl and order
of the renormalized Hamiltonian hl for a 6 × 6 lattice (Lx =
Ly = 6). The maximum of gl is achieved for l = 21 because
of the way that we grow the lattice. For each step l > 21, the
added terms of the Hamiltonian close a boundary condition
along the vertical axis for one column (Fig. 3), so that the

TABLE I. Implementation of the ERM for the D = 2 magnet.

1. Define the block l = 1 as the first plaquette and project
the operators needed to connect this block with the
next plaquettes into the ground space S1 of P1.

2. Build the Hamiltonian of the block l + 1 by connecting
the block l and the next plaquette(s) a la DMRG
or NRG (i.e., in the subspace Sl).a

3. Diagonalize the new Hamiltonian and
retain only the ground space Sl+1.

4. Project the operators needed to connect the new block
with the next plaquettes into the subspace Sl+1.
Assign l ← l + 1.

5. If l < p go to 2.

aNote that two plaquettes are added every time we close a boundary
condition [see Fig. 3(b)].

5 10 15 20 25
step l

0

2000

4000

6000

8000

10000 gl
hl
hl
max

6x6

FIG. 4. (Color online) Ground-space degeneracy (gl), order of
the renormalized Hamiltonian (hl), and order of the largest block
in the renormalized Hamiltonian (hmax

l ) per step of the ERM, when
symmetries are considered.

cylinder is transformed sequentially into a torus. We also plot
the order of the largest block of the renormalized Hamiltonian
when symmetries are considered hmax

l , which determines the
dominating cost of the method. The oscillation in gl has a
periodicity corresponding to the linear dimension of the lattice,
showing the reduction in the ground-space degeneracy every
time a lattice boundary is closed.

Because we are interested in the computation of correlation
functions of arbitrary ground states, at each step we need
to store all the matrices of the operators involved in such
correlations. We note that correlators of the form 〈AB〉 cannot
be computed by storing the operators A and B independently.
In general, it is necessary to store the matrices for the product
AB because the product of two projected operators is not equal
to the projection of the product.

The ground states of H can be obtained for 8 × 8 and larger
lattices by implementing the ERM on more powerful existing
computers. The requirement of storing all the operators
associated with the correlations described in the next section
and those needed for computing the Hamiltonian terms, is the
main limiting factor for increasing the lattice size.

C. Results

In addition to the large set of exact S = 0 ground states
exhibiting valence bond ordering,24 the results output by the
ERM show a triplet ground state, with S = 1, Sz = ±1,0. (S
is the total spin of the lattice and Sz is the zth component
of the total spin.) Such a state was also identified by exact
diagonalization of small square clusters and by an analytical
solution of the model on 3 × Ly tubes.25,35 That the S = 1
state exists in larger systems was unexpected and illustrates
the importance of methods that obtain the full ground space.
The lack of any other ground state in the output of the ERM
guarantees that S > 1 eigenstates are gapped for the finite size
clusters that we are considering.

The existence of a triplet ground state is compatible with
a critical scenario in which H has a gapless spectrum of
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FIG. 5. Two-point correlators 〈sz
0s

z
r 〉 and 〈s+

0 s−
r 〉 as a function of

distance along the y direction. Here 0 is a spin of reference and
r = (0,y). The figure shows the correlations for (a) 4 × 40 and (b)
6 × Ly lattices. Insets: Scaling of the structure factor S±(k) evaluated
at the AFM wave vector k = (π,π ) for lattices of size (a) 4 × Ly and
(b) 6 × Ly .

S = 1 spin excitations, implying that S > 1 excitations should
become gapless in the thermodynamic limit. In this case, an
external magnetic field B > 0 would induce AFM ordering
of the spin components that are orthogonal to the field’s
direction if the system is two dimensional. This scenario is
confirmed by the spin-spin correlators obtained with our ERM
for the S = Sz = 1 ground state on 4 × Ly and 6 × Ly finite
lattices. Figure 5 shows the two-point correlators 〈sz

0s
z
r 〉 and

〈s+
0 s−

r 〉 as a function of the distance along the y direction.
0 = (0,0) denotes a reference spin (the origin), r = (0,y), and
s±

r = sx
r ± is

y
r . While there is a clear long-range AFM tail for

〈s+
0 s−

r 〉, the 〈sz
0s

z
r 〉 correlator decays exponentially in r . It is

important to note that the magnitude of the local staggered
xy magnetization is of order 1/

√
LxLy , which is the expected

behavior for the condensation of a single triplon. This property
is revealed by the scaling behavior of the structure factor

S±(k) = 1

LxLy

∑
r,r′

eik·(r−r′)〈s+
r s−

r′ 〉, (9)

evaluated at the AFM wave vector k = (π,π ) (inset of Fig. 5).
S±(π,π ) tends to a value of order one for Lx,Ly → ∞,
indicating that the order parameter 1

LxLy

∑
r eik·rsν

r , ν = {x,y},
is proportional to 1/

√
LxLy .

This incipient AFM ordering occurs at the same point where
an exponentially large number of different valence orderings
become degenerate (S = 0 ground-state sector). However, the
presence of a triplon that propagates across the lattice could

(a) 

B B

FIG. 6. (Color online) Illustration of one of the possible scenarios
in the presence of a finite magnetic field B. The ovals indicate
that the corresponding bonds have a predominant singlet character.
The staggered bond ordering (broken Z4 symmetry) shown in the
figure should produce a sharp maximum in the bond structure factor
SB (k,ν) at k = (π,π ). The arrows indicate the AFM ordering in
the plane perpendicular to the applied magnetic field induced by
the condensation of triplons. The staggered magnetization can point
along any direction obtained by a global spin rotation along the field
direction [broken U (1) symmetry].

lead to two different scenarios for the bond correlations. It can
either select one particular valence bond ordering via an order
by disorder mechanism, or simply destroy any long-range
bond ordering. In the former scenario, the application of
a small magnetic field B that couples to the spins via the
Zeeman term −B

∑
r Sz

r , should stabilize a particular bond
ordering out of the exponentially large number of degenerate
bond ordered ground states that exist at B = 0. The selection
mechanism would be provided by the kinetic energy of the field
induced triplons, which should be minimized for a particular
bond ordered background. In this scenario, the selected bond
ordering coexists with the AFM xy ordering induced by
the condensation of triplons at the single particle state with
momentum k = (π,π ). Figure 6 illustrates this situation for
the bond ordering that has the highest susceptibility, according
to the results that we discuss below. In the second scenario,
the bond fluctuations induced by the triplon propagation
are strong enough to produce a valence bond liquid with
short-range bond-bond correlations. The only order parameter
that survives is the AFM ordering which arises from the triplon
condensation.

To further explore both scenarios, it is necessary to compute
bond-bond correlation functions for the S = Sz = 1 ground
state. We introduce the bond structure factor SB(k,ν) for the
local bond operator Brν = sr · sr+eν

. k = (kx,ky) is the wave
vector, ν = {x,y}, and eν is the relative vector connecting
nearest-neighbor spins along the ν direction. Then,

SB(k,ν) = 1

LxLy

∑
r,r′

eik·(r−r′)〈BrνBr′ν〉. (10)

The staggered bond ordering (SBO) shown in Fig. 6 should
produce a sharp maximum in SB(k,ν) at k = (π,π ). In
contrast, the bond structure factors obtained for 4 × 4, 6 × 6
lattices have very broad maxima at k = (π,π ), indicating that
the second scenario with short-ranged bond correlations is
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FIG. 7. (Color online) Bond structure factors SB (k,x) as a
function of k = (kx,ky), computed with the ERM for different lattice
sizes. (a) Lx = Ly = 4. (b) Lx = Ly = 6. (c) Lx = 4, Ly = 40.

more appropriate for the (S = 1,Sz = 1) ground state [see
Figs. 7(a) and 7(b)]. The same scenario holds for the 4 × 40
lattice [Fig. 7(c)]. In this case, SB(k,y) has an approximately
degenerate line of maxima for kx = π/2, indicating that bond
correlations between adjacent vertical lines are very weak.

IV. APPLICATION TO A D = 1 ANISOTROPIC
HEISENBERG MODEL WITH NNN INTERACTIONS

The one-dimensional family of spin-1/2 Hamiltonians
introduced in Refs. 22 and 36 is

HQ =
∑

j ;ν=1,2

Jν

[
�ν

(
sz
j+νs

z
j − 1

4

)
+ sx

j+νs
x
j + s

y

j+νs
y

j

]
.

The Hamiltonian coefficients are parametrized by the single
variable Q: �ν = cos(νQ) and J1 = −4J2 cos Q, with 0 �
Q < π . HQ satisfies the FF property for all Q if we choose
appropriate boundary conditions. In particular, for Q = π/2,
the model reduces to two decoupled ferromagnetic Heisenberg
chains whose exact solutions are known.37 In this case,
the ground-space dimension is g = (L/2 + 1)2 or g = (L +
3)(L + 1)/4 for even or odd L, respectively. L is the number of
spins in the chain. The analytical solutions for the ground states
presented in Ref. 22 show that the ground space for Q = π/2 is
continuously connected with the ground space for arbitrary Q.
These solutions can be characterized as anyonic condensates.
While, in principle, the ground-space degeneracy for arbitrary
Q could be larger than that for Q = π/2, the ERM shows
that such a degeneracy remains constant. Therefore, the ERM
allows for an efficient computation of spin-spin correlations
in any ground state of HQ. We emphasize that this is a new
conclusion for the Hamiltonian family HQ because it is unclear
whether spin-spin correlators can be efficiently computed for
all the exact analytical solutions (ground states) provided in
Ref. 22. The D = 1 example also shows that ground states
of FF Hamiltonians can describe nontrivial states of matter,
like anyonic condensates, and such states can be efficiently
characterized by implementing the ERM.

V. CONCLUSIONS

We introduced an exact renormalization method that obtains
the full ground space of Hamiltonians satisfying a frustration-
free property. The method outputs a sequence of tensors
whose contraction allows for the computation of correlation
functions in any ground state. Such correlations can be used to
characterize zero-temperature states of matter. The cost of the
method depends on the ground-state degeneracy in each renor-
malization step, in contrast with other numerical methods,
whose cost depends on properties of the excitation spectrum
such as the gap. Our method computes the degeneracy and
verifies the frustration-free property.

We applied the method to two spin systems. First, we
considered a FF Hamiltonian in D = 2 whose ground-space
dimension increases exponentially in the linear size of a square
lattice. We applied the ERM successfully and characterized
the physical properties of the only ground state with total
spin S = 1 and projection Sz = 1. Such a ground state differs
qualitatively from the (bond ordered) singlet ground states
identified in Ref. 24. In particular, it describes a quantum
critical point associated with the onset of AFM ordering.
According to our results, the application of an arbitrary
small magnetic field B > 0 induces AFM order of the spin
components that are orthogonal to the field’s direction. Our
results also indicate that the finite magnetic field destroys any
of the long-range bond orderings that compete at B = 0.24

We also applied the ERM to the one-dimensional family of
FF spin-1/2 Hamiltonians described in Eq. (11). We verified
that the ground-space dimension is g = (L/2 + 1)2 [g = (L +
3)(L + 1)/4] for even (odd) L, as conjectured in Ref. 22. The
ERM is efficient in this case.

Both applications illustrate the power of the ERM for ob-
taining exact ground-state properties of frustration-free Hamil-
tonians. Nevertheless, our renormalization method can also be
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used in more general contexts. For example, since stochastic
matrices can be sometimes related to FF Hamiltonians,38 the
ERM can be used to compute properties of (classical) systems
in and out of equilibrium.39 Similarly, the ERM can be used
to solve combinatorial optimization problems.40
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APPENDIX: EXACTNESS AND COST OF THE ERM

We provide more details about the ERM, showing the
exactness of the method and estimating the computational
requirements. With no loss of generality πvk

is

πvk
=

Ak∑
α=1

O
wk(1)

k,α ⊗ · · · ⊗ O
wk(r)

k,α , (A1)

where ⊗ is the tensor product. The sets wk(j ) satisfy wk(j ) ∩
vk �= {∅}. Any state |ivk 〉 corresponds to a particular state
|iwk(1) , . . . ,iwk(r)〉 for the sets wk(j ) in vk . We assume then a
specification of H via access to 
H (·) that, on input (vk,i,i

′),
it outputs all the matrix elements

〈i ′wk(i) |Owk(j )

k,α |iwk(i)〉, (A2)

for 1 � j � r and 1 � α � Ak . 
H also outputs all the
sets wk(j ) involved in each term of the decomposition of
πvk

. In other words, 
H gives all the information about
the action of each term of πvk

in the states |ivk 〉. Such a
Hamiltonian specification is common in applications, e.g.,
a spin-1/2 system specified in terms of Pauli operators.
The actual computational cost of the ERM should consider
the number of times that 
H is used, which is typically
linear in p.

Our renormalization method takes the ordered set
{v1, . . . vp} as input and uses 
H . It outputs a bit b denoting
whether H is frustration-free (b = 0) or not (b = 1).

If b = 0, the ERM also outputs the ground states specified
by a sequence of tensors Tl or T

†
l [see Eq. (3)]. Because Eq. (3)

involves a summation over repeated indexes, we use Einstein
notation in the following. For l = 1, . . . ,p, Tl is determined
by its (complex) entries:

Tl :=
{

(t1)i
z1

iw1 if l = 1,

(tl)i
zl

izl−1 ,iwl
if l > 1,

(A3)

with 1 � iwl � dwl
, 1 � izl � gl , and gl determined by the

ERM (see below). For each izl � gl , the vectors |ψl
izl 〉 = T

†
1 •

· · · • T
†
l |izl 〉 are in Hzl

and thus have dzl
components in the

computational basis. We recall that zl = ∪l
k=1wk . Then, each

such component is determined by iw1 , . . . ,iwl corresponding to
the sets w1, . . . ,wl , respectively. That is, {|iw1 , . . . ,iwl 〉}, with
1 � iwk � dwk

, also defines a computational basis for Hzl
. The

components of |ψl
izl 〉 in such a basis are

(u1)i
w1

iz1 (u2)i
z1 ,iw2

iz2 · · · (ul)
izl−1 ,iwl

izl , (A4)

with

(u1)i
w1

iz1 = (
(t1)i

z1

iw1

)∗,

(uk)i
zk−1 ,iwk

izk = (
(tk)i

zk

izk−1 ,iwk

)∗, 2 � k � p. (A5)

In particular, when l = p, we have zp = V and Eq. (A4)
defines the contraction in Eq. (3). This contraction is associated
with a treelike tensor network (see Fig. 2 for an example).

For l = 1, we denote by γ1 the dv1 -dimensional matrix
representation of πv1 in Hv1 = Hw1 , in the computational
basis. The ERM constructs γ1 using 
H once. Then, the ERM
performs exact diagonalization to obtain g1 and an orthonormal
vector basis {|φ1

iz1 〉}1�iz1 �g1 for the zero-eigenvalue eigenvec-
tors of γ1. T1 is the tensor that maps such eigenvectors to
vectors or states in the computational basis:

T1 =
g1∑

iz1 =1

|iz1〉〈φ1
iz1

∣∣. (A6)

The entries of T1 are

(t1)i
z1

iw1 = 〈
φ1

iz1

∣∣iw1
〉
, (A7)

with 1 � iw1 � dw1 and 1 � z1 � g1.
In the lth step, l � 2, the ERM uses 
H to construct the

hl × hl matrix γl , hl = gl−1dwl
, with entries

γl → 〈
φl−1

i ′zl−1 , i
′wl

∣∣πvl

∣∣φl−1
izl−1 ,i

wl
〉
. (A8)

Here izl−1 ,i ′zl−1 = 1, . . . ,gl−1 and i ′wl ,iwl = 1, . . . ,dwl
. The

ERM performs exact diagonalization of γl and continues
only if the lowest eigenvalue is 0 (b = 0). It computes the
multiplicity of the zero eigenvalue, assigns it to gl , and
computes a complete orthonormal basis of hl-dimensional
eigenvectors {|φl

1〉, . . . ,|φl
gl
〉} for the zero eigenvalue. The

ERM assigns the tensor Tl to the transformation that maps
such eigenvectors to vectors in the computational basis of Hzl

:

Tl =
gl∑

izl =1

|izl 〉〈φl
izl

∣∣. (A9)

The entries of Tl are

(tl)
izl

izl−1 ,iwl = 〈
φl

izl

∣∣izl−1 ,iwl
〉
. (A10)

To show that the ERM is exact, we first remark that the
eigenvectors |φl

izl 〉 represent the states |ψl
izl 〉, as determined by

Eq. (A4). Then, we will show that the states∣∣ψl
izl

〉 = T
†

1 • · · · • T
†
l

∣∣ilz〉, (A11)

given according to Eq. (A4), are ground states of Hl =∑l
k=1 πvk

for all l ∈ {1,2, . . . ,p}, when Hl are frustration-free.
The proof is inductive. For l = 1, |φ1

iz1 〉 = |ψ1
iz1 〉 is a ground

state of γ1 or πv1 = H1 by definition. That is, |ψ1
iz1 〉, as

determined from Eq. (A4), is a ground state of H1 for each
iz1 = 1, . . . ,g1. We assume now that{∣∣ψl−1

izl−1

〉 = T
†

1 • · · · • T
†
l−1

∣∣il−1
z

〉}
1�izl−1 �gl−1

is an orthogonal basis for the ground subspace of Hl−1. Then,
if |φ〉 is a ground state of Hl ,

|φ〉 =
gl−1∑

izl−1 =1

dwl∑
iwl =1

cizl−1 ,iwl

∣∣ψl−1
izl−1 ,i

wl
〉
, (A12)
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with cizl−1 ,iwl complex amplitudes. Otherwise, |φ〉 would not
belong to the intersection between the ground subspaces of
Hl−1 and Hl , a requirement for frustration-free Hamiltonians.
It suffices to obtain γl , a projection of πvl

into the subspace
spanned by {|ψl−1

izl−1 ,i
wl 〉}1�izl−1 �gl−1,1�iwl �dwl

. Without loss of
generality, we can choose a value of izl such that

|φ〉 = ∣∣φl
izl

〉
. (A13)

Thus,

cizl−1 ,iwl = (ul)
izl

izl−1 ,iwl , (A14)

where (ul)
izl−1 ,iwl

izl are the entries of T
†
l . That is,

|φ〉 = (ul)
izl−1 ,iwl

izl

∣∣ψl−1
izl−1 ,i

wl
〉

= (u1)i
w1

iz1 (u2)i
z1 ,iw2

iz2 · · · (ul)
izl−1 ,iwl

izl |iw1 , . . . ,iwl 〉. (A15)

The contraction in Eq. (A15) coincides with that of Eq. (A4).
It follows that

|φ〉 = ∣∣ψl
izl

〉 = T
†

1 • · · · • T
†
l |izl 〉 (A16)

is a ground state of Hl for all 1 � izl � gl . In particular, |ψp

izp 〉,
with 1 � izp � gp = g, are all the ground states of H .

1. Computational requirements

We let NT be the total cost, i.e., the total number of
elementary operations to obtain all entries of T1, . . . ,Tp. For
simplicity we do not consider in the cost the number of queries
to 
H , which is typically linear in p. We also let MT be the
memory requirements, i.e., the number of coefficients that need
to be kept in memory during the implementation of the ERM.

We first write

NT =
p∑

l=1

Nl
T , MT =

p∑
l=1

Ml
T . (A17)

To obtain T1, the ERM performs exact diagonalization of γ1.
Because γ1 is of dimension dw1 , the cost of obtaining its eigen-
vectors and eigenvalues is N1

T � EV (dw1 ) ∈ O[poly(dw1 )].
EV (d) is the cost of exact diagonalization of a d × d matrix,
which is almost quadratic in d in actual implementations. Only
the g1 eigenvectors with zero eigenvalue need to be kept in
memory for the following step and thus M1

T ∝ g1dw1 .
The cost of obtaining all zero-eigenvalue eigenvectors of γl

is bounded by EV (hl). To obtain Nl
T we need to add the cost

of computing γl . Each matrix element of γl in Eq. (A8) is

〈i ′zl−1 |〈i ′wl |Tl−1 • · · · • T1 • πvl
• T

†
1 • · · · • T

†
l−1|izl−1〉|iwl 〉.

(A18)

We consider the decomposition in Eq. (A1) and we are
interested in obtaining the cost of computing a particular term

〈i ′zl−1 |〈i ′wl |Tl−1 • · · · • T1 • (
O

wk(1)

k,α ⊗ · · · ⊗ O
wk(r)

k,α

)
•T

†
1 • · · · • T

†
l−1|izl−1〉|iwl 〉. (A19)

We can interleave trivial operators 1w = ∑dw

iw=1 |iw〉〈iw| in
Eq. (A19) for those w �= wk(j ) without affecting the output of
the contraction. That is, we extend the definition of O

wk(j )

k,α so
that O

wk(j )

k,α = 1wk(j ) for r < j � l. Then we write

(oj )i
wk(j )

i
′wk(j ) = 〈i ′wk(j ) |Owk(j )

k,α |iwk(j )〉 (A20)

FIG. 8. (Color online) Representation of the network contraction
for each matrix element of γl in Eq. (A21) for the same system
of Fig. 2. Blue circles are spins. πvl

is a sum of Ak terms of
the form O

w1
k,α ⊗ · · · ⊗ O

wl

k,α , and some O
wj

k,α may act trivially in

wj , i.e., O
wj

k,α = ∑dwj

i
wj =1

|iwj 〉〈iwj |. Arrows denote a sum of the
index in the corresponding edge. Open circles denote a fixed index,
referring to a particular matrix element of γl , the projection of πvl

in the ground subspace of Hl−1 = ∑l−1
k=1 πvk

. 1 � iwl ,i ′wl � dwl
and

1 � izl−1 ,i ′zl−1 � gl−1.

for all 1 � j � l. Equation (A19) is

(t1)i
′z1

i ′w1 · · · (tl−1)i
′zl−1

i ′zl−2 ,i ′wl−1

[
(o1)i

w1

i ′w1 · · · (ol)
iwl

i ′wl

]
× (u1)i

w1

iz1 · · · (ul−1)i
zl−2 ,iwl−1

izl−1 , (A21)

where we used Eq. (A4). As before, Eq. (A21) refers to a
contraction of a treelike tensor network; see Fig. 8 for an
example.

The cost of evaluating Eq. (A21) depends on the support
of vl , that is, the number and position of spins that belong to
vl . This is so because Eq. (A21) can be sometimes simplified
considering that

TkT
†
k =

gk∑
izk =1

|izk 〉〈izk | (A22)

and then

(tk)i
′zk

izk−1 ,iwk (uk)i
zk−1 ,iwk

izk = δi ′zk ,izk , (A23)

which are useful if O
wk(j )

k,α = 1wk(j ) . Nevertheless, to analyze
the cost of computing Eq. (A21) we consider the worst case
scenario in which O

wk(j )

k,α �= 1wk(j ) for all 1 � j � l. We can
rearrange the sum and compute Eq. (A21) in l sequential steps
as follows. First, we compute the

(t1)i
′z1

i ′w1 (o1)i
w1

i ′w1 (u1)i
w1

iz1

for all 1 � iz1 ,i ′z1 � g1. Because 1 � iw1 ,i ′w1 � dw1 , this step
has cost ∝(dw1g1)2. We keep the computed values in memory.
Next we compute the

(t1)i
′z1

i ′w1 (o1)i
w1

i ′w1 (u1)i
w1

iz1 (t2)i
′z2

i ′z1 ,i ′w2 (o2)i
w2

i ′w2 (u2)i
z1 ,iw2

iz2
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for all 1 � iz2 ,i ′z2 � g2. This step has an additional cost
∝(g1dw2g2)2, where the first g1 comes from the sum in iz1

and i ′z1 . We keep implementing the procedure sequentially
until we compute

(t1)i
′z1

i ′w1 (o1)i
w1

i ′w1 (u1)i
w1

iz1 · · ·
· · · (tl−1)i

′zl−1

i ′zl−2 ,i ′wl−1 (ol−1)i
wl−1

i ′wl−1 (ul−1)i
zl−2 ,iwl−1

izl−1 , (A24)

which has an additional cost ∝(hl−1gl−1)2 with respect to the
previous computations. That is, the sequential method has
an overall cost ∝∑l−1

k=1(hkgk)2, with g0 = 1. The sequential
method can be understood from the example in Fig. 8, in
which the sequential steps regard the contraction of tensors
from left to right.

The last step is to compute

(ol)
iwl

i ′wl (A25)

for all 1 � iwl ,i ′wl � dwl
. This step is implemented using 
H

and has no cost under our assumption. Then, the computation
of Eq. (A21) for all 1 � iwl ,i ′wl � dwl

and 1 � izl−1 ,i ′zl−1 �
gl−1 can be implemented with

∝
l−1∑
k=1

(
gk−1dwk

gk

)2
(A26)

elementary operations. To compute γl , we need to add a
multiplicative factor Al that regards the number of terms in
the decomposition of πvl

. Then,

Nl
T = EV

(
gl−1dwl

) + cAl

l−1∑
k=1

(hkgk)2, (A27)

with c > 1 a constant. A memory of Ml
T ∝ hlgl is needed for

the ground states of γl .
Typically, Al is bounded by some constant A. In this case,

NT ∝
p∑

k=1

EV (hk) + (p − 1)
(
dw1g1

)2

+ (p − 2)(h2g2)2 + · · · + (hp−1gp−1)2. (A28)

In addition,

MT ∝
p∑

k=1

hkgk. (A29)

If gk ∈ O[poly(p)] and dwk
∈ O[poly(p)], then NT ∈

O[poly(p)] and the ERM is efficient.

2. Optimal cost

The total cost of the ERM in Eq. (A28) depends on dwl

and gl . In many applications, dwl
is constant and NT and MT

are functions of g1, . . . ,gp. The cost can then be minimized
by considering all possible orderings of w1, . . . ,wp such
that NT and/or MT are minimum. This procedure rules out
some possible orderings that yield exponential complexity in
systems in which the ERM could be implemented efficiently.
For example, consider a square spin lattice and assume that the
terms πvk

in the Hamiltonians involve two nearest-neighbor
spins in either direction. The ERM could be implemented
to obtain the ground states of each chain along a particular
direction and then add the Hamiltonian terms in the other
direction. However, this construction results in exponential
complexity if the ground space of each chain is degenerate
because the number of ground states that have to be kept in
memory is exponentially large in the length of the chains. A
more efficient choice considers “growing” the system using
the snake path depicted in Fig. 3(b).

In a different example we consider a binary tree of depth
q and assume p = 2q . Each node in the basis of the tree
corresponds to a single spin in a lattice. A standard real-space
renormalization method for such a binary tree will have
l = 1, . . . ,q steps, each involving a diagonalization of 2q−l

matrices of dimension g2l each. The memory requirement for
such method is dominated by the last step, which requires
dealing with a subspace of dimension gp/2 × gp/2, spanned
by all the ground states obtained in the previous step. In
addition, each such ground state has (gp/4)2 components in
a computational basis. If gk ∝ kβ , the memory requirement
to implement the last step is M ′

T ∈ O[p4β]. Nevertheless, our
ERM implies MT ∈ O(p2β) in this case. Clearly, M ′

T � MT

when β > 0, p � 1. The standard renormalization method
may outperform the ERM only if β = 0.
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