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Large Seebeck effect in electron-doped FeAs2 driven by a quasi-one-dimensional
pudding-mold-type band
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We investigate the thermoelectric properties of the electron-doped FeAs2 both experimentally and theoretically.
Electrons are doped by partially substituting Se for As, which leads to a metallic behavior in the resistivity. A
Seebeck coefficient of about −200 μV/K is reached at 300 K for 1% doping, and about −120 μV/K even at 5%
doping. The origin of this large Seebeck coefficient, despite the metallic conductivity, is analyzed from a band
structure point of view. The first-principles band calculation reveals the presence of a pudding-mold-type band
just above the band gap, somewhat similar to NaxCoO2, but with a quasi-one-dimensional nature. We calculate
the Seebeck coefficient using a tight-binding model that correctly reproduces this band structure, and this gives
results roughly in agreement with the experiments. Moreover, a consideration of electron correlations beyond the
generalized gradient approximation by the fluctuation exchange method gives even better agreement. The origin
of this peculiar band shape is also discussed. Combined with previous studies, we now have good thermoelectric
materials with quasi-one-, two-, and three-dimensional band structures that have partially flat portions. The
present study reinforces the general efficiency of this peculiar band shape in thermoelectric materials.
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I. INTRODUCTION

Searching materials with good thermoelectric properties
has been an issue of great interest both from the viewpoint
of fundamental physics and application purposes. The effi-
ciency of a thermoelectric material is often evaluated by the
dimensionless figure of merit ZT = S2T/(ρκ), where S is the
Seebeck coefficient, ρ the electrical resistivity, κ the thermal
conductivity, and T the temperature.1 S2/ρ in the ZT formula
is called the power factor, and in order for this quantity to be
large, both a large Seebeck coefficient and small resistivity are
required. However, it is usually difficult to have a large Seebeck
effect in metallic materials because holes and electrons usually
have nearly the same group velocity when the Fermi level lies
in the middle of a band.

The discovery of the large Seebeck effect in NaxCoO2

(Ref. 2) has provided a new avenue for searching good
thermoelectric properties in materials with metallic resistivity
with a significant amount of carriers. The power factor S2/ρ is
comparable to that of Bi2Te3(about 40 μW/cm K2).3 In fact,
such a coexistence of metallic resistivity and large Seebeck
coefficient have also been observed in, e.g., CuRhO2,4,5

LiRh2O4,6 LaRhO3,7 SrTiO3,8,9 and quite recently, in PtSb2.10

Theoretical studies on the origin of the large Seebeck effect
in these materials have also been extensively performed.11–19

In particular, Kuroki and Arita pointed out in Ref. 19 that a
peculiar band shape referred to as the “pudding-mold” type,
which consists of a dispersive portion and a flat portion, can
in general be favorable for the coexistence of large Seebeck
coefficient and small resistivity. The quasi-two-dimensional
pudding-mold band has been proposed as an origin of the large
power factor observed in NaxCoO2 and other materials. On the
other hand, Mori et al. have recently studied the origin of the
large Seebeck effect in PtSb2, and found a three-dimensional

“corrugated” flatband that gives rise to many Fermi surface
pockets through the entire Brillouin zone when holes are
doped.12 This also gives rise to a coexisting large Seebeck
coefficient and metallic resistivity in general.

In the present study, we focus on FeAs2 in an attempt to
look for yet another material that exhibits a large Seebeck
effect despite the metallic resistivity. FeAs2 crystallizes in
an orthorhombic Marcasite structure with Pnnm space group
(no. 58). The structure is characterized by the edge-sharing
FeAs6 octahedra, which are connected along the crystallo-
graphic c axis (z axis) to form linear chains. The nondoped
semiconductor FeAs2 has been investigated previously in
Ref. 20 in comparison with FeSb2, which exhibits a colossal
thermoelectric effect.21 A theoretical analysis has shown
that the Seebeck coefficient of the nondoped FeAs2 can be
understood quantitatively using the band structure obtained
from the first-principles calculation.22 In the present study,
we investigate the thermoelectric properties of the electron-
doped FeAs2 both experimentally and theoretically. By doping
electrons by partially substituting Se for As, the resistivity
exhibits a metallic behavior, but nonetheless, we observe a
fairly large Seebeck coefficient at 300 K of about −200 μV/K
at 1% doping and −120 μV/K even at 5% doping. We
also analyze the origin of this experimental observation
theoretically. It is found that the quasi-one-dimensional (q1D)
version of the pudding-mold-type band is present right above
the band gap and for this peculiar band shape, and this gives
Seebeck coefficient values which are roughly in agreement
with the experiments. Moreover, a consideration of electron
correlations beyond the generalized gradient approximation
(GGA) by the fluctuation exchange method gives even better
agreement. We also discuss the origin of this peculiar band
shape using a simplified model. With the present study, we
now have examples of materials that possess one- (FeAs2),

075140-11098-0121/2013/88(7)/075140(6) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.075140


USUI, SUZUKI, KUROKI, NAKANO, KUDO, AND NOHARA PHYSICAL REVIEW B 88, 075140 (2013)

two- (NaxCoO2, etc.), or three-dimensional (PtSb2) flatbands
that give rise to the large Seebeck coefficients with the metallic
resistivity. This reinforces the general efficiency of peculiar
band shapes with partially flat dispersions.

II. EXPERIMENT

A. Synthesis

Polycrystalline samples of Fe(As1−xSex)2 with nominal Se
contents of x = 0.0, 0.01, 0.025, and 0.05 were synthesized
by a solid-state reaction in two steps. First, stoichiometric
amounts of starting materials Fe (99.9%), As (99.9999%), and
Se (99.9%) were mixed and ground. They were heated in an
evacuated quartz tube at 500◦C for 40 h and then at 700◦C
for 40 h. Second, the product was powdered, pressed into
pellets, and sintered at 800◦C for 12 h. The obtained samples
were characterized by powder x-ray diffraction (XRD) and
confirmed to be a single phase of Fe(As1−xSex)2. The lattice
parameters were changed linearly with selenium content
x, suggesting the formation of solid solutions. Electrical
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FIG. 1. (Color online) Temperature dependence of (a) electrical
resistivity ρ(T ), (b) Seebeck coefficient S(T ), and (c) Hall coefficient
RH(T ) of polycrystalline Fe(As1−xSex)2 with x = 0.00, 0.01, 0.025,
and 0.05. The inset shows the Seebeck coefficient of nondoped FeAs2.

resistivity ρ, Seebeck coefficient S, and Hall coefficient RH

were measured using a physical property measurement system
(PPMS, Quantum Design) in the temperature range from 2 to
300 K.

B. Thermoelectric properties

As shown in Fig. 1(a), nondoped FeAs2 exhibits a
semiconducting behavior, consistent with the previous
reports.20 The Seebeck coefficient S of the nondoped
FeAs2 exhibits a large maximum value of −0.65 mV/K at
approximately 60 K, as shown in the inset of Fig. 1(b), which
is similar to the literature data.20 Then both the magnitude
and temperature dependence of resistivity ρ changed abruptly
by substituting Se for As from semiconducting to metallic.
The ρ values on the order of 1 m� cm and the positive
temperature slope of ρ suggest that a metallic state is
realized for Fe(As1−xSex)2 (x = 0.01, 0.025, and 0.05). The
temperature dependence of S is also changed abruptly by Se
doping. But even in the metallic state, the Seebeck coefficient
reaches a fairly large value of about −200 μV/K at 300 K
for the x = 0.01 sample, as shown in Fig. 1(b). In this way,
metallic ρ is compatible with a large S for Fe(As1−xSex)2.
This combination of the resistivity and the Seebeck coefficient
gives a maximum power factor of 14 μW/cm K2 at
approximately 200 K for the x = 0.01 sample.

Figure 1(c) shows the Hall coefficient RH for the x = 0.01
sample as a function of temperature T . RH is almost T indepen-
dent, characteristic of metals. We estimate a carrier concentra-
tion of n = 3.9 × 1020 cm−3 at 300 K for x = 0.01. This value
is almost comparable with a nominal value of 2 × 1020 cm−3

for x = 0.01, suggesting that Se donates one electron.

III. THEORETICAL ANALYSIS

A. Band structure

We now turn to the theoretical analysis. We perform a
first-principles band structure calculation using the WIEN2K

package.23 The structural parameters adopted are given in
Ref. 24, in which the lattice constants are a = 5.268 4,

b = 5.963 1, and c = 2.900 7 Å, the space group is Pnnm, and
the atomic positions are (0,0,0) for Fe and (0.176 0,0.362 5,0)
for As. In the present study, we construct tight-binding models
in order to calculate the Seebeck coefficient. To obtain a model
that correctly reproduces the first-principles band structure, we
construct maximally localized Wannier functions (MLWFs)
from the first-principles calculation result.25 We focus on the
electron-doped case up to about the room temperature, so that
we only have to consider the band structure above the band
gap. The tight-binding Hamiltonian is written as

H =
∑
ijσ

∑
μν

t
μν

ij c
†
iμσ cjνσ , (1)

where i,j denote the sites, and μ,ν the orbitals, t
μν

ij is the
hopping parameter obtained from MLWFs, and c†,c are the
creation-annihilation operators. Here we first consider six
orbitals (three orbitals per Fe) to reproduce the bands up to
about 5 eV above the Fermi energy. These orbitals have mainly
3d character, although they are hybridized with As 4p.
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FIG. 2. (Color online) (a) The band structure and the density of
states of FeAs2. The solid black lines are the original first-principles
band structure, while the red dashed lines are the bands of the
tight-binding model constructed from MLWFs. The dash-dotted line
depicts the Fermi energy for x = 0.05. (b) The Brillouin zone is
shown. (c) A schematic image of the q1D pudding-mold-type band
of FeAs2.

The first-principles band structure is shown in Fig. 2(a)
with the tight-binding bands superposed. The band structure
just above the band gap has a nearly flat dispersion along
U -R-T -Z [see (b) for the symmetrical points in the Brillouin
zone], namely, within the kz = π plane. In fact, the Wannier
orbitals that are the origin of these bands are found to
be elongated in the z direction (see Fig. 6). We will call
these orbitals the “dz2 orbitals” for simplicity (the maximally
localized Wannier orbitals are obtained by projecting onto
the dz2 orbital), although they are actually more complicated
due to the hybridization with the As 4p orbitals. The quasi-
one-dimensionality of the bands within the kz = π plane is
partially because of the anisotropy of these dz2 orbitals, but
to be more precise, there is another factor that restricts this
quasi-one-dimensionality to near the kz = π plane, which will
be discussed later. Furthermore, these bands are somewhat flat
also along Z-� (i.e., the kz direction) up to some intermediate
point, and then bend sharply into dispersive portions. In
Fig. 2(c), we show a schematic figure of this band structure. It

has a flat portion at the bottom with a q1D nature, so it is a q1D
version of the pudding-mold-type band introduced in Ref. 19
as the band structure of NaxCoO2. This type of band structure is
favorable for producing good thermoelectric properties when
carriers are doped. The reason is because (i) even when a large
amount of carriers are doped, the Fermi level sticks close to the
band bottom due to the large density of states; (ii) for such a
position of the Fermi level, there is a large difference between
electron and hole group velocity [see the schematic figure in
Fig. 2(c)], resulting in a large Seebeck coefficient; and (iii)
small resistivity can be achieved owing to the large amount
of doped carriers and the dispersive portion of the band near
the Fermi level. The conductivity of the pudding-mold-type
band is generally not so good as in “usual” metallic systems
in which the Fermi level sits in the middle of a band and both
the electrons and holes have large group velocity. The point of
the theory, however, is that the conductivity is larger compared
to systems with parabolic band shapes with the same position
of the Fermi level (measured from the band edge), because in
a parabolic band shape, the group velocity of both holes and
electrons is small when the Fermi level sits close to the band
edge, resulting in a large Seebeck coefficient. The origin of
such a peculiar band structure in FeAs2 will be discussed later.

B. Seebeck coefficient

Let us now move on to the Seebeck coefficient calculation.
We first briefly introduce the method to calculate the Seebeck
coefficient and the power factor.1,14 The Seebeck coefficient S

and the resistivity ρ are calculated with Boltzmann’s equation
using the tight-binding Hamiltonian. They are given as

S = 1

eT

K1

K0
, (2)

ρ = e−2K−1
0 , (3)

where e is the elementary electrical charge (e < 0), and T is
the temperature. K0 and K1 are given as

Kn =
∑
kσν

τ (k)vν
kvν

k

(
− ∂f (ε)

∂ε
(k)

)(
εν

k − μ
)n

, (4)

where k is the wave vector, τ is quasiparticle lifetime, εν
k is the

νth energy eigenvalue at k, vν
k = (1/h̄)(dεν

k/dk) is the group
velocity tensor, f is the Fermi distribution function, and μ is
the chemical potential at T . We simply denote (Kn)zz = Kn,
Szz = S = (1/eT )(K0/K1), and ρzz = ρ = e−2K−1

0 . We will
approximate the quasiparticle lifetime as an (undetermined)
constant in the present study, so that it cancels out in the
Seebeck coefficient calculation, while not in the resistivity.
Thus the absolute value of the power factor S2/ρ is not
determined and will be normalized by a certain value.

The calculated Seebeck coefficient as a function of the
temperature is shown in Fig. 3. The results at T = 300 K
give −100 μV/K at x = 0.025, and −77 μV/K at x = 0.05.
The theoretical results are qualitatively in agreement with the
experimental results, but quantitatively are about 20% smaller
at x = 0.025 and T = 300 K.

In Fig. 4, we show the doping level dependence of
the Seebeck coefficient and the normalized power factor
(normalized by the maximum value) at T = 300 K. This
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FIG. 3. (Color online) The calculated Seebeck coefficient for
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and renormalized band structure (the dashed lines) compared with
the experimental result (green squares and red circles).

result shows that the Seebeck coefficient keeps relatively large
values of about −50 μV/K even at a (hypothetically) large
doping rate x � 0.5, so that (assuming a constant quasiparticle
lifetime) the power factor is roughly constant. This peculiar
doping level dependence of the power factor is a consequence
of the pudding-mold-type band.

Let us now focus more quantitatively on the discrepancy
between the calculated results and the experiment. There
may be several possibilities for the origin of this discrep-
ancy: the constant lifetime approximation, or the bandwidth
renormalization due to the electron correlation effects beyond
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FIG. 4. (Color online) (a) The calculated Seebeck coefficient and
(b) the normalized power factor at 300 K against the doping level x.

GGA in the first-principles band calculation. As for the latter
possibility, it has been known from the comparison between the
band calculation and the angle-resolved photoemission studies
that the bandwidth of the 3d electron materials can be reduced
by as much as 60%, and taking this effect into account in the
Seebeck coefficient calculation reproduces quantitatively the
experimental results of NaxCoO2.19,26 The Seebeck coefficient
is underestimated also in other cases of 3d electron systems
such as SrTiO3,18 due to the bandwidth renormalization effect,
or the momentum/energy dependence of the quasiparticle
lifetime.

In order to see the effect of the bandwidth renormalization in
the present material, we consider electron correlation effects by
applying the fluctuation exchange (FLEX) approximation,27

which takes into account the effect of spin and charge fluctu-
ations. In FLEX, bubble-and-ladder-type diagrams consisting
of renormalized Green’s functions are summed up to obtain
the susceptibilities, which are used to calculate the self-energy
self-consistently. The renormalized Green’s functions are then
determined self-consistently from the Dyson’s equation. In
the low-energy regime near the Fermi level, the quasiparticle
dispersion ωk can be given by

Det
∣∣(zl

kωk − μ
)
δlm − Hlm

k − Re�R(k,ω = 0)
∣∣ = 0, (5)

where l and m are orbital indices, z is the mass enhance-
ment factor, �R is the retarded self-energy, and H is the
tight-binding Hamiltonian, respectively. We approximate the
retarded self-energy �R(k,ω = 0) as the self-energy at lowest
Matsubara frequency �(k,iπkBT ). The mass enhancement
factor is obtained as

zk = 1 − ∂�R(k,ω)

∂ω

∣∣∣∣
ω→0

� 1 − Im�(k,iπkBT )

πkBT
, (6)

where � is the self-energy at lowest Matsubara frequency. We
take 32 × 16 × 32 k-point meshes, 4096 Matsubara frequency,
T = 0.01 eV, and an on-site interaction of U = 2.5 eV. The
renormalized band structure at x = 0.025 and 0.05 is shown
in Fig. 5. It can be seen that the bandwidth is monotonically
reduced as the electrons are doped. The Seebeck coefficient
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FIG. 5. (Color online) (a) The renormalized band structure at
x = 0.025 (dashed lines) and x = 0.05 (dashed-dotted lines), and the
bare band structure (solid line).
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calculated by using the renormalized band structure is shown
in Fig. 3 (dashed lines), which is now in very good agreement
with the experimental results. The enhancement of the Seebeck
coefficient from those obtained for the bare (unrenormalized)
band is of course dependent on the value of the on-site
repulsion U , but it is important to note that the agreement with
the experimental results is obtained for a typical and realistic U

value for a 3d orbital, which has been investigated theoretically
in detail for the cuprate or iron-based superconductors.
Although we have not studied other possibilities for the origin
of the discrepancy between experiment and theory, the present
analysis suggests that the bandwidth renormalization plays an
important role as in other 3d thermoelectric materials such as
NaxCoO2.

C. Origin of the pudding-mold-type band

As seen from our theoretical analysis, the large Seebeck
coefficient in the electron-doped FeAs2 is a consequence of
the q1D pudding-mold-type band. In this section, we focus
on the origin of this peculiar band structure. For simplicity,
we first consider a unit cell that contains only one Fe site
per unit cell. This corresponds to expanding (unfolding)
the Brillouin zone. By taking this unit cell, we consider a
simplified tight-binding model, where only the hoppings t1z

and t2z along z direction, and txyz to the (1/2,1/2,1/2) position,
are considered [Fig. 6(a), see Fig. 6(b) for the correspondence
with the actual lattice structure]. The hoppings in the x and y

directions can be neglected for the band originating from the
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dz2 orbital. In this model, the energy is given as

E(k) = − 2t1zcos(kz) − 2t2zcos(2kz)

− 8txyzcos(kx/2)cos(ky/2)cos(kz/2). (7)

When kz � π , the third term in the right-hand side vanishes
due to cos(π/2) = 0 and the band dispersion loses kx and
ky dependence. This is the explanation of the q1D nature of
the band structure in the kz = π plane. We now focus on
the band structure along the kz direction. When we consider
only t1z, the band shape is free-electron-like at the bottom of
the band [Fig. 6(c)]. Adding the distant hopping t2z = −0.4,
the shape of the band becomes flat near the band edge
around kz = π (corresponding to the Z point), so that the q1D
pudding-mold-type band is formed [Fig. 6(d)]. Furthermore,
considering txyz = −0.1, the band becomes asymmetric with
respect to kz = π [Fig. 6(e)].

To compare this simple band structure to a more realistic
one, we construct, again exploiting the MLWFs, a two-orbital
model that considers only the dz2 orbital in the original unit cell
that contains two Fe. Although this model does not perfectly
reproduce the original band structure as in the six-orbital model
presented above, it still captures the essential features. In this
model, t1z = −0.62 eV, t2z/t1z = 0.26, txyz/t1z = 0.28, and
the distant hoppings are also contained. The band structure
of the two-orbital model is shown in Fig. 7(a) compared
with the band structure of Fig. 6(c) refolded into the original
Brillouin zone [Fig. 7(b)]. The band structure of the simplified
model is roughly similar to that of the two-orbital model,
especially near the band bottom, so that the essence of the
origin of this peculiar band structure can be understood by
the simplified model. To be precise, the magnitude of t2z and
txyz is different between the two models because the simplified
model considers only three hoppings, while the more realistic
two-orbital model takes into account the distant hoppings
as well. The bottom line here is that the origin of the q1D
pudding-mold-type band is the overlapping feature of the dz2

orbitals, where a relatively large second-neighbor hopping is
present.

IV. CONCLUSION

In the present work, we have studied the thermoelectric
properties of the electron-doped FeAs2. A large Seebeck
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coefficient is observed despite the metallic behavior of the re-
sistivity. First-principles band calculation reveals the presence
of a q1D pudding-mold-type band just above the band gap,
which mainly originates from the Fe 3dz2 orbital. Using a tight-
binding model that correctly reproduces this band structure, we
have calculated the Seebeck coefficient. The results are close
to the experimental observation, but quantitatively about 20%
percent smaller. We also find that this discrepancy is greatly
overcome when the bandwidth renormalization due to electron
correlation effects beyond GGA is considered.

The q1D nature of the pudding-mold-type band comes from
the combination of the dz2 orbital and the lattice structure.
Given the present study, we now have examples of materials
that possess one-, two-, or three-dimensional flatbands that
give rise to the large Seebeck coefficient in a metallic system.
Therefore the present findings in the electron-doped FeAs2

reinforce the general efficiency of peculiar band shapes with
partially flat dispersion.

Another significant meaning for studying bands having
quasi-1D nature is that we can clearly understand the origin of
the pudding-mold shape. In the present case, the flat portion of
the band originates from a destructive interference between
t1z cos(kz) and t2z cos(2kz) terms (addition at wave vectors
that give the opposite sign between the two terms), while
the dispersive portion comes from a constructive interference
between the two. Multiple electron hopping paths from one
site to another can in general result in such destructive or
constructive interferences depending on the wave number,
and thus can result in a pudding-mold shape of the band.
In this sense, geometrically frustrated lattice structures, as in
NaxCoO2, are in general favorable, provided that the orbitals
are not localized too much.
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