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Quantum phase transitions in multileg spin ladders with ring exchange
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Four-spin exchange interaction has been raising intriguing questions regarding the exotic phase transitions it
induces in two-dimensional quantum spin systems. In this context, we investigate the effects of a cyclic four-spin
exchange in the quasi-1D limit by considering a general N -leg spin ladder. We show by means of a low-energy
approach that depending on its sign, this ring exchange interaction can engender either a staggered or a uniform
dimerization from the conventional phases of spin ladders. The resulting quantum phase transition is found to be
described by the SU(2)N conformal field theory. This result, as well as the fractional value of the central charge at
the transition, is further confirmed by a large-scale numerical study performed by means of exact diagonalization
and density matrix renormalization group approaches for N � 4.
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I. INTRODUCTION

The destruction of Néel magnetic ordering at zero
temperature by quantum fluctuations has attracted much
interest in the past two decades.1 On top of the possible
formation of spin-liquid phases, strong quantum fluctuations
in spin-1/2 systems might lead to unconventional emerging
quantum criticality. In this respect, it has been proposed that
there is, in two dimensions, a direct continuous quantum phase
transition between the Néel antiferromagnetic phase and a
valence bond solid (VBS) phase, which breaks spontaneously
the translation symmetry.2,3 Such transition is beyond the
conventional Ginzburg-Landau-Wilson paradigm since direct
transitions between phases whom order parameters enjoy
different symmetries are generically first order. The exotic
quantum critical point is described in terms of fractionalized
quantities that are confined in the Néel and VBS phases and
become deconfined at the transition. The resulting exotic
quantum phase point has thus been dubbed deconfined quan-
tum criticality.2,3 The existence of this new class of quantum
critical points has been extensively investigated numerically in
several quantum spin models in two dimensions.4–16 Most of
these models contain four-spin interactions on top of the usual
spin-exchange interaction. For instance, the most studied
model is the so-called J − Q model with a special four-spin
exchange interaction, which is free from the sign problem.4,5

Quantum Monte Carlo computations in this case support the
existence of a deconfined quantum critical point between
the Néel and VBS phases.4,5 However, the situation is still
controversial since other studies suggest a weak first-order
phase transition, which occurs for larger system sizes.7,8

To get more insight into this problem, in this paper, we
investigate the nature of quantum phase transitions driven by
four-spin exchange interactions in the quasi-1D limit where
powerful techniques can be used. In this respect, we consider
an N -leg spin ladder with a ring-exchange interaction with
Hamiltonian

H = J‖
N∑

a=1

∑
n

Sa,n · Sa,n+1 + J⊥
N−1∑
a=1

∑
n

Sa,n · Sa+1,n

+ K
∑

plaquettes

(
P4 + P −1

4

)
, (1)

where Sa,n is a spin-1/2 operator at the nth site of the ladder
with leg index a = 1, . . . ,N . The parameters J‖ > 0 and J⊥
are, respectively, the intrachain and the interchain exchange
couplings. The ring exchange operator P4 is defined on
each plaquette [Sa,n,Sa,n+1,Sa+1,n+1,Sa+1,n] between two
consecutive chains and it cyclically permutes the states of the
four spins on the plaquette [see Fig. 1 and Eq. (A1)].

This interaction appears in higher-order corrections in
the strong-coupling expansion of the half-filled Hubbard
model17,18 and is known to play a significant role in 3He
adsorbed on graphite.19,20 The relevance of the four-spin cyclic
exchange has also been reported21–29 in the frame of inelastic
neutron-scattering experiments for cuprates such as La2CuO4,
La6Ca8Cu24O41, La4Ca10Cu24O41, CaCu2O3, and SrCu2O3.

The model (1) in the N = 2 case has been studied
extensively over the years by means of different analytical
and numerical approaches.30–45 The zero-temperature phase
diagram is rich and several exotic phases have been identified
such as a scalar chirality phase which spontaneously breaks the
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n n + 1
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K

FIG. 1. (Color online) N -leg spin ladder with leg coupling J‖,
rung coupling J⊥, and a ring-exchange interaction K .
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time-reversal symmetry.31 When J⊥ > 0, the ring exchange
destabilizes the well-known rung-singlet (RS) phase of the
standard two-leg spin ladder and a staggered dimerization
(SD) phase emerges. The resulting quantum phase transition
was predicted to be continuous and to belong to the SU(2)2

universality class with central charge c = 3/2.37,46 The latter
result was confirmed numerically by means of exact diag-
onalization (ED) and density matrix renormalization group
(DMRG) techniques.35,36

In the general N case, we are not aware, to the best of
our knowledge, of any investigation of the phase diagram of
model (1). In the absence of the ring-exchange, it is well known
that the physics of the N -leg spin ladder strongly depends
on the parity of N .47,48 When N is odd, a gapless phase
with central charge c = 1 is stabilized for all signs of J⊥,
while an RS phase and a nondegenerate gapful phase, which
is equivalent to the Haldane phase of the Heisenberg chain
with spin S = N/2, appear in the N even case respectively
for J⊥ > 0 and J⊥ < 0.47,48 As it will be shown in this work,
the main effect of a weak four-spin exchange interaction is
to introduce dimerized phases (staggered or uniform dimer-
ization depending on the sign of K) on top of these phases.
A central question is then the nature of the quantum phase
transition driven by the ring-exchange interaction for N > 2.
Can an exotic transition, like in the N = 2 case, be stabilized?
The N odd case is intriguing since, on general grounds,
one expects a Berezinski-Kosterlitz-Thouless (BKT) quantum
phase transition between a standard c = 1 gapless phase to a
dimerized one as in the J1 − J2 spin-1/2 Heisenberg chain.49

In this respect, is it possible to stabilize a more exotic transition
with extended quantum criticality stemming from the special
character of the four-spin exchange interaction? Finally, in
relation with the deconfined quantum criticality paradigm,
one may pose the question of the nature of the quantum phase
transition when N → ∞ to reach the two-dimensional regime.

In this paper, we investigate these questions by means of
a low-energy approach when the chains are weakly coupled
and ED and DMRG computations for moderate couplings. We
reveal the emergence of an exotic quantum phase transition
in the SU(2)N universality class with fractional central charge
c = 3N/(N + 2) for N � 4. On the other hand, we expect,
from the low-energy approach, a weak first-order transition
for higher N . The SU(2)N universality class has already been
found in multicritical points of Heisenberg spin chains with
polynomial interactions50 and, more recently, in a spin chain
with the three-site interaction.51 Similar quantum criticality
appears also in the context of quantum Bose gases with
long-range interactions.52,53 The SU(2)N criticality has also
been shown to describe Haldane-Shastry type spin chains with
longer range interactions.54,55

The rest of the paper is organized as follows. The low-
energy approach of model (1) in the general N case is presented
in Sec. II. The emergence of the SU(2)N universality class
is obtained through two different methods: a semiclassical
analysis and a more quantum approach based on the bosoniza-
tion technique.47,48 In Sec. III, we investigate numerically the
quantum phase transition for N = 2,3,4 by means of ED and
DMRG56–58 computations. Finally, our concluding remarks are
given in Sec. IV and some technical details on the continuum
limit are presented in Appendix.

II. LOW-ENERGY APPROACH

In this section, we describe the low-energy approach of
model (1) in the weak-coupling limit for general N . We assume
that the in-chain exchange interaction J‖ is antiferromagnetic
J‖ > 0 and the chains are weakly coupled: |J⊥,K| � J‖.

A. Continuum limit

In the absence of the interchain coupling (J⊥ = 0) and
ring-exchange interaction (K = 0), the model boils down to
N decoupled spin-1/2 SU(2) Heisenberg chains. As it is well
known, the latter model displays a quantum critical behavior
in the SU(2)1 universality class with central charge c = 1 or
equivalently with one bosonic gapless mode.47 Using the non-
Abelian bosonization approach, one can have a continuum
description of the lattice spin-1/2 operators in terms of their
uniform and staggered parts:47

a−1
0

�Sa,n � �Ja + (−1)x/a0 �na, (2)

where x = na0 (a0 being the lattice spacing). The uniform part,
�Ja = �JaL + �JaR , expresses in terms of the left and right SU(2)1

currents �JaL,R , which generate the underlying conformal
symmetry of the spin-1/2 SU(2) Heisenberg chains.47,50,59 In
Eq. (2), the staggered magnetization density of the ath chain
takes the form

�na = − iλ

πa0

√
2

Tr (ga �σ ) , (3)

where λ is a nonuniversal real constant, whose value has
been obtained in Refs. 60–62, and �σ stands for the Pauli
matrices. In Eq. (3), ga (a = 1, . . . ,N) is the SU(2)1 Wess-
Zumino-Novikov-Witten (WZNW) primary field. This field
transforms under the spin-1/2 representation of SU(2) and
has scaling dimension � = 1/2.47,63,64 It is useful to recall
that Tr (ga �σ ) is anti-Hermitian since ga is an SU(2) matrix,
which explains the i factor in Eq. (3). In this continuum
description, the noninteracting Heisenberg Hamiltonian of
each chain expresses in terms of the currents:

H0 = 2πv

3

N∑
a=1

∫
dx

(
J2

aL + J2
aR

)

− a0γ

N∑
a=1

∫
dx JaL · JaR, (4)

where v = πJ‖a0/2 is the spin velocity and γ > 0. The
current-current interaction is thus a marginally irrelevant
contribution which gives rise to the well-known logarith-
mic corrections of the SU(2)1 quantum criticality of the
antiferromagnetic spin-1/2 Heisenberg chain.65,66 The last
important operator in the continuum limit of model (1) is the
spin-dimerization field of the ath chain:

(−1)nSa,n · Sa,n+1 ∼ εa = λ

πa0

√
2

Tr (ga) , (5)

which has the same scaling dimension � = 1/2 as the
staggered magnetization field. It is useful to observe, from
this representation, that the one-step translation symmetry
Ta0 corresponds to a Z2 symmetry for the WZNW field:
ga → −ga .
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With these results in hand, we can derive the continuum
limit of the N -leg spin ladder with ring-exchange interaction.
The technical details are described in Appendix for an N -leg
spin ladder with general four-spin exchange interactions.
The interacting Hamiltonian separates into two different
parts:

Hint = H�=1 + Hcc, (6)

whereH�=1 is the leading contribution with scaling dimension
� = 1, which involves the staggered magnetization and
dimerization fields:

H�=1 =
N−1∑
a=1

∫
dx (λ1na · na+1 + λ2 εaεa+1) , (7)

with λ1 = a0J⊥ and λ2 = 36a0K/π2 in the case of a ring-
exchange interaction (see Appendix). The second part of
Eq. (6) is marginal and expresses in terms of the currents:

Hcc = λ3

N∑
a=1

∫
dx JaL · JaR

+ λ4

N−1∑
a=1

∫
dx (JaL · Ja+1R + JaR · Ja+1L) , (8)

where we have neglected all chiral interactions and thus veloc-
ity renormalization terms. The identification of the coupling
constants is detailed in Appendix and we find λ3 = a0[−γ +
2K(1 − λ2) + 4λ2K(3λ2 − 1)/π2] and λ4 = a0[J⊥ + 4K −
4K(1 + 4λ4)/π2]. It is important to observe that an N -leg spin
ladder with more general four-spin exchange interaction will
have the same continuum description in the weak-coupling
limit. The actual form of the four-spin exchange interaction is
encoded in the expression of the coupling constants λ1,2,3,4 (see
Appendix). This means that our conclusion on the quantum
phase transition for the spin ladder (1) still holds for a more
general interaction. In particular, the effective Hamiltonian (7)
is the most relevant perturbation for general translation-
invariant spin-1/2 ladders with SU(2) symmetry. As we will
see, the competition between the two terms in Eq. (7) is
responsible for the emergence of an exotic quantum phase
transition.

To this end, the strategy is to (i) analyze the effects of
H�=1, which is a strongly relevant perturbation, (ii) determine
the different phases of the model in the weak-coupling
regime, and (iii) discuss the nature of the quantum phase
transition. The next step is then to investigate the stability
of these results with respect to the marginal current-current
interactions (8).

B. Semiclassical approach

We will first consider a naive semiclassical approach of
model (7), which gives some hints about the possible phases
and transitions of the problem. A more quantum approach will
be described in the next section to further justify the results
obtained within the semiclassical approach.

Let us denote W (g) the action of the SU(2)1 WZNW model,
which describes the SU(2)1 criticality of the spin-1/2 SU(2)

Heisenberg chain. This action reads as follows:63,64,67

W (g) = 1

8π

∫
d2x Tr(∂μg†∂μg) + 	(g),

(9)
	(g) = −i

12π

∫
B

d3y εαβγ Tr(g†∂αgg†∂βgg†∂γ g),

where 	(g) is the famous WZNW topological term. The
effective action of model (7) can be obtained using the
definitions (3) and (5). In this respect, it is convenient to write
the product of staggered magnetization operators as follows:

�na · �na+1 = − λ2

2π2a2
0

Tr (ga �σ ) Tr (ga+1 �σ )

= λ2

2π2a2
0

Tr (ga �σ ) Tr(g†
a+1 �σ ), (10)

where we used the fact that Tr (ga+1 �σ ) is anti-Hermitian for
an SU(2) matrix. Using the completeness relation σ i

αβσ i
γ δ =

2(δαδδβγ − δαβδγ δ/2), the action of model (7) then takes the
form

S =
N∑

a=1

W (ga) +
∫

d2x (V1 + V2), (11)

with

V1 = λ1λ
2

π2a2
0

N−1∑
a=1

Tr(gag
†
a+1),

(12)

V2 = (−λ1 + λ2)
λ2

2π2a2
0

N−1∑
a=1

Tr(ga)Tr(ga+1).

The two contributions of Eq. (12) are of different nature.
In particular, V1 is invariant under an SU(2)L × SU(2)R
symmetry: ga → UgaV , U and V being independent SU(2)
matrices. In contrast, V2 is only SU(2) invariant: ga → UgaU

†.
We will now apply a semiclassical approach to investigate

the nature of the zero-temperature phases of model (11). V1 is
a strongly relevant perturbation with scaling dimension � = 1
and a gap will open for some degrees of freedom. The main
hypothesis of the semiclassical approach is to assume that
V1 operator gives the largest gap �1 of the problem. This
hypothesis is expected to be valid in some parts of the phase
diagram of the lattice model (1). The numerical simulations of
Sec. III will shed light on the correctness of this semiclassical
approach. Once this assumption has been made, the next step
is then to write down an effective action which captures the
low-energy properties of the model when E � �1. The nature
of the effective action turns out to depend on the sign of λ1 =
a0J⊥. Next, we discuss the two cases J⊥ > 0 and J⊥ < 0.

1. J⊥ > 0

Since λ1 > 0, the configuration ga+1 = −ga (a =
1, . . . ,N − 1) minimizes the potential V1 (12) over SU(2)
matrices. Averaging out the g2,...,N fields, we obtain an
effective action on the g1 field:

Seff = NW (g1) − N (−λ1 + λ2)
λ2

2π2a2
0

∫
d2x (Tr(g1))2,

(13)
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where we used W (−g) = W (g). The latter model is the
SU(2)N WZNW model perturbed by (Tr(g1))2 ≡ Tr(
(1)), 
(1)

being the spin-1 WZNW primary field with scaling dimension
4/(N + 2). This model corresponds to the effective action
for the spin-N/2 Heisenberg model obtained by Affleck and
Haldane.50 The IR property of model (13) depends on the sign
of λ1 − λ2 and the parity of N . If λ1 − λ2 > 0, i.e., for a weak
four-spin exchange interaction, the minimum condition on the
potential of the action (13) corresponds to an SU(2) matrix
with the constraint: Tr(g1) = 0. Since for an SU(2) matrix, we
have the decomposition: g1 = n0I + i �σ · �n with n2

0 + �n2 = 1,
the constraint Tr(g1) = 0 gives g1 = i �σ · �n, �n being an unit
vector. Plugging this expression into Eq. (9), one obtains the
nonlinear σ model with a topological term θ = Nπ .50 When
N is even, we have a massive nondegenerate phase which
corresponds to the well-known RS phase of the N -leg spin
ladder for J⊥ > 0. When N is odd, the nonlinear σ model with
topological term θ = π is known to be gapless in the SU(2)1

universality class.68,69 One recovers the standard gapless phase
of the spin ladder with an odd number of legs.

When λ1 − λ2 < 0, i.e., K > π2J⊥/36, the minimum con-
dition on the potential of the action (13) is g1 = ±I for all N .
One enters a dimerized phase 〈Tr(ga)〉 �= 0, which is twofold
degenerate and breaks spontaneously the one-step translation
symmetry Ta0 (ga → −ga). The dimerization pattern in a
given chain is out-of-phase with the one in the neighbor-
ing chains: 〈Tr(g1)〉 = −〈Tr(g2)〉 = · · · = (−1)N−1〈Tr(gN )〉
so that 〈(−1)nS1,n · S1,n+1〉 = −〈(−1)nS2,n · S2,n+1〉 = · · · =
(−1)N−1〈(−1)nSN,n · SN,n+1〉 �= 0. This phase corresponds to
the SD phase, which exists for all N .

The location of the quantum phase transition between the
RS phase when N is even (or the gapless phase when N is odd),
and the SD phase does not depend on N . It is located at λ1 =
λ2, i.e., J⊥ = 36K/π2. The action that controls the transition
is Seff = NW (g1) and takes then the form of the SU(2)N
WZNW model. We thus expect a quantum phase transition
that belongs to the SU(2)N universality class with fractional
central charge c = 3N/(N + 2). The leading asymptotics of
the spin-spin correlation functions at the quantum critical point
can be estimated since g1 is the spin-1/2 SU(2)N primary
field with scaling dimension 3/2(N + 2).64 The equal-time
spin-spin correlation reads then as follows:

〈Sa,nSa,n+m〉 ∼ (−1)m(ln m)1/2

m3/(N+2)
, (14)

where the logarithmic corrections are the same as for spin-
1/2.65 Similarly, the dimer-dimer correlation function is also
algebraic with the same power-law behavior but different
logarithmic corrections:

〈εa(x)εa(0)〉 ∼ (ln x)−3/2

x3/(N+2)
. (15)

When N is odd, the quantum critical point has additional
gapless modes with respect to the standard gapless Heisenberg
chain criticality with central charge c = 1. The power-law
decay of the spin-spin correlation function at the SU(2)N
critical point (14) is then different from the standard 1/x

scaling of the spin-1/2 Heisenberg chain.
For N = 2, the semiclassical approach reproduces the

SU(2)2 transition, first predicted in Ref. 46 using an exact

solution of the perturbation (7) based on the Majorana fermions
formalism. The location of the transition, obtained within our
approach, is K/J⊥ = π2/36 � 0.27415. Surprisingly enough,
this estimate is in good agreement with a previous DMRG
analysis that found a closure of the spin gap for K/J⊥ � 0.3
with J⊥ = 1.32,33 A second DMRG study locates the transition
in the window 0.2 < K/J⊥ < 0.26.31 We will come back to
this question in our numerical investigation in Sec. III.

2. J⊥ < 0

When J⊥ < 0, i.e., λ1 < 0, the minimum condition for
V1 is now ga+1 = ga (a = 1, . . . ,N − 1). Averaging out the
g2,...,N fields, we obtain an effective action on the g1 field
which describes the low-energy properties of the model when
E � �1:

Seff = NW (g1) + N (−λ1 + λ2)
λ2

2π2a2
0

∫
d2x(Tr(g1))2.

(16)

When −λ1 + λ2 > 0, in the semiclassical approach, g1 sat-
isfies the constraint Tr(g1) = 0. The effective action (16) be-
comes equivalent to the nonlinear σ model with a topological
term θ = Nπ . When N is even, it describes the Haldane
phase of the Heisenberg spin chain S = N/2 obtained when
J⊥ → −∞. In contrast, when N is odd, the phase is gapless
as in the J⊥ > 0 case.

For sufficiently large negative K, one enters in a new phase
when −λ1 + λ2 < 0, which is described by g1 = ±I for all
N . This phase corresponds to a uniform dimerization (UD)
phase where 〈Tr(g1)〉 = 〈Tr(g2)〉 = · · · = 〈Tr(gN )〉. This time,
the dimerization in a given chain is in-phase with the one
in the neighboring chains: 〈(−1)nS1,n · S1,n+1〉 = 〈(−1)nS2,n ·
S2,n+1〉 = · · · = 〈(−1)nSN,n · SN,n+1〉 �= 0. There is thus a
quantum phase transition between the Haldane phase (and
respectively the gapless phase) and the UD phase when N is
even (respectively odd). The nature of the transition at λ1 = λ2

for model (1) is the same as in the J⊥ > 0 case and belongs
to the SU(2)N universality class. The leading asymptotics of
the correlation functions at the transition are also given by
Eqs. (14) and (15).

C. Abelian bosonization approach

Using a simple semiclassical approach, we have seen that
an exotic quantum phase transition in the SU(2)N universality
class might emerge in model (1) for all N . Here, we present
an alternative approach, based on the Abelian bosonization,
which confirms the semiclassical prediction.

In the Abelian bosonization approach, the SU(2)1 criticality
of the decoupled spin-1/2 Heisenberg chain is described by
a bosonic field.47 Introducing N bosonic field 
a , the low-
energy Hamiltonian in the absence of interactions is

H0 = v

2

N∑
a=1

∫
dx[(∂x
a)2 + (∂x
a)2], (17)

where �a (�a = 
aL − 
aR) are dual fields, 
aL,R being the
chiral components of the Bose fields 
a = 
aL + 
aR . The
staggered magnetization (3) and the dimerization operator (5)

075132-4



QUANTUM PHASE TRANSITIONS IN MULTILEG SPIN . . . PHYSICAL REVIEW B 88, 075132 (2013)

can be expressed in terms of these bosons:47,70

na = λ

πa0
(cos(

√
2π �a), sin(

√
2π �a), − sin(

√
2π 
a)),

εa = λ

πa0
cos(

√
2π 
a). (18)

Using these results, the leading contribution (7) can be
bosonized:

H = v

2

N∑
a=1

∫
dx[(∂x
a)2 + (∂x�a)2]

+
∫

dx

N−1∑
a=1

{g⊥ cos[
√

2π (�a+1 − �a)]

+ g⊥ sin(
√

2π
a+1) sin(
√

2π
a)

+ g4 cos(
√

2π
a+1) cos(
√

2π
a)}, (19)

where g⊥ = J⊥λ2/a0π
2 and g4 = 36Kλ2/a0π

4. This model
has an interesting symmetry content which is explicit within
the bosonization formalism. Indeed, one can observe that
model (19) is invariant under the Gaussian duality symmetry

a ↔ �a by fine-tuning the interaction g⊥ = g4:

HSD = v

2

N∑
a=1

∫
dx[(∂x
a)2 + (∂x�a)2]

+ g⊥
∫

dx

N−1∑
a=1

{cos[
√

2π (�a+1 − �a)]

+ cos[
√

2π (
a+1 − 
a)]}. (20)

The fine tuning g⊥ = g4, i.e., K/J⊥ = π2/36, corresponds to
the location of the quantum phase transition for all signs of J⊥
obtained within the semiclassical approach. The low-energy
effective theory (20), which enjoys a self-dual symmetry, has
been found in totally different contexts. On the one hand, the
deconfining phase transition of the 2 + 1-dimensional SU(N )
Georgi-Glashow model is controlled by model (20).71 On the
other hand, as shown recently, it describes the quantum phase
transition in dipolar quantum Bose gas.52,53 The model is also
relevant to the competition between superconductivity and
charge density wave or between superfluidity and solid, or
supersolids in quasidimensional systems.72–74

Though the interaction in model (20) is strongly relevant
with scaling dimension � = 1, a quantum critical behavior,
stemming from the special form of the interaction, is expected.
Indeed, model (20) is invariant under two independent global
U(1) transformations:


a → 
a + α, �a → �a + β, (21)

α,β being real numbers. The transformation (21) gives a U(1)L
× U(1)R global continuous symmetry of model (20). One thus
expects the model to be gapless with at least one bosonic field
protected by the symmetry (21). In fact, it has been shown
that model (20) displays an extended SU(2)N quantum critical
behavior.52,71 One way to establish this result is to use the
following conformal embedding:

SU(2)1 × SU(2)1 × · · · × SU(2)1 → SU(2)N × GN, (22)

where GN is a discrete conformal field theory (CFT) with cen-
tral charge cGN

= N − 3N/(N + 2) = N (N − 1)/(N + 2). It
has been shown in Refs. 52 and 71 that the self-dual
perturbation of model (20) corresponds to a special primary
field of the GN CFT. A spectral gap opens for the discrete GN

degrees of freedom, leaving the SU(2)N ones intact. We thus
conclude that model (20) displays critical properties in the
SU(2)N universality class. The sign of the coupling constant
g⊥ does not play a crucial role for the emergence of this
quantum criticality since one can freely change the sign of
the perturbation (20) by the transformation:


2n → 
2n +
√

π

2
, 
2n+1 → 
2n+1,

(23)

�2n → �2n +
√

π

2
, �2n+1 → �2n+1.

We thus confirm the conclusion of the semiclassical
analysis: interaction (7) exhibits an exotic quantum phase
transition in the SU(2)N universality class for all signs of J⊥.
The connection between the two approaches stems from the
bosonization of the WZNW field ga , which follows from the
identification (18):

ga = 1√
2

(
e−i

√
2π
a ie−i

√
2π�a

iei
√

2π�a ei
√

2π
a

)
. (24)

The self-dual sine Gordon perturbation of Eq. (20) is then
easily shown to be equal to V1 (12) which governs the quantum
phase transition in the semiclassical approach. The main in-
terest of the approach based on the conformal embedding (22)
is to show nonperturbatively that V1 gives a mass gap for
the discrete degrees of freedom that is independent from the
SU(2)N ones.

Though we have shown that the critical properties of
model (7) are governed by an SU(2)N CFT, we are not guaran-
teed that the quantum phase transition of the initial model (1)
belongs to the SU(2)N universality class. Indeed, in general,
such fixed points with extended criticality are fragile since
they can be destabilized by several relevant primary operators.
In addition, the marginal current-current interaction (8), that
we have neglected so far, might destroy the criticality of the
transition into a first-order phase transition. The spectrum of
the SU(2)N CFT is well-known.64 The primary operators of
SU(2)N CFT are labeled by their spins j = 1/2,1, . . . ,N/2
and have scaling dimension 2j (j + 1)/(N + 2). As the con-
sequence of the SU(2) symmetry of the lattice model (1), they
take the form (Tr(G))m,m = 2j , G being the SU(2)N WZNW
field. Furthermore, the translational invariance restricts m to
be even since G → −G under Ta0 . The most relevant operator
is thus the spin-1 operator, i.e., (Tr(G))2, which, according
to the semiclassical approach, leads to the different phases of
the problem. This operator is canceled by the fine tuning of
the four-spin exchange interaction. The next relevant operator
is the spin-2 primary field (m = 4) with scaling dimension
12/(N + 2) which is a strongly relevant perturbation when
N > 4. This operator is not forbidden by any symmetry of the
original lattice. Though it requires a proof, it is thus likely that
the phase transition is first order for N > 4. In this respect,
the quantum Monte-Carlo approach of Ref. 53 points out a
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first-order phase transition in the N identical tubes model with
polar molecules when N > 4. For N � 4, the only possible
source of a mass gap is a marginal perturbation. In this respect,
since the SU(2)N fixed point has been obtained for all signs
of J⊥, this criticality is then expected to be stable under the
current-current interaction at least when J⊥ < 0. In the J⊥ > 0
case, one may expect that this quantum criticality still appears
at least in the weak-coupling regime due to the dominance of
the in-chain marginal irrelevant current-current interaction. Let
us also notice that as it is a marginal interaction that may drive
the transition to first order, the first-order jump is expected to
be very weak and the properties of the SU(2)N critical point
might be seen in the vicinity of the transition. We thus conclude
that the quantum phase transition in the SU(2)N universality
class occurs for N = 2,3,4 with, respectively, central charge
c = 3/2,9/5,2. Large-scale numerical simulations are clearly
call for to reveal the emergence of this exotic quantum-critical
behavior.

III. NUMERICAL SIMULATIONS

In this section, we present extensive numerical simulations
of the N -leg spin-1/2 ladder with cyclic exchange model (1).
We take the antiferromagnetic leg coupling J‖ = 1 as the unit
of energy. Most data are obtained with DMRG simulations
with open boundary conditions (OBC). Note that since a
SD phase can occur when J⊥ > 0, we have added two extra
sites to some of the chains in order to prevent a ground-state
degeneracy.31 Typically, we have used 16 sweeps and kept
up to 1600 states which is sufficient for convergence, i.e.,
having a discarded weight of at most 10−6. When K = 0,
the physics of these spin-1/2 ladders is well known75 and
depends on the parity of N ; for odd N (respectively, even),
the system is gapless (respectively, gapped), for both signs
of J⊥. When the ratio K/J⊥ increases, our numerical simu-
lations confirm the existence of a quantum phase transition
towards a dimerized state that breaks translation symmetry
and corresponds to a uniform (respectively, staggered) pat-
tern between chains for J⊥ and K negative (respectively,
positive).

Let us mention that exact diagonalization (ED) using
Lanczos technique can also be used to locate the phase
transition, as there is a clear change of quantum numbers of the
first excited state across it. This so-called level spectroscopy
technique has often been used in similar context.65,76–78 There
is also the possibility to investigate the level crossing using
twisted boundary conditions (TBC), as was done for instance
in Ref. 79 with a similar model. It turns out that when
available, the latter technique tends to reduce the finite-size
effects in the location of the critical point. Indeed, while
periodic boundary conditions (PBC) engender discrete mo-
menta, which can spoil the measure of momentum-dependent
operators, adding a twist in the boundary conditions allows
a continuous definition of the momenta and overcomes this
problem.80

Next, we present our numerical results obtained for the
values of N for which the low-energy study Sec. II predicts
a phase transition in the SU(2)N universality class when N =
2,3,4. Both ferromagnetic and antiferromagnetic J⊥ couplings
will be considered.

0 0.01 0.02 0.031/L2
0.2

0.3

0.4

0.5

K
PBC
TBC

FIG. 2. (Color online) N = 2 and J⊥ = 1: crossing point with
PBC (circles) and TBC (squares) vs system size (see text for
definitions). The most precise extrapolations are obtained using TBC
data and lead to a critical point at K = 0.26 (dashed line).

A. Two-leg ladders (N = 2)

1. N = 2 antiferromagnetic rung coupling case: J⊥ = 1.0

First, we use ED simulations with TBC in order to locate the
critical point. Using quantum numbers to label, respectively,
(i) the reflection perpendicular to the rungs, (ii) the reflection
perpendicular to the legs (i.e., that cuts the bonds across the
boundary conditions), and (iii) the spin reversal symmetry, a
simple analysis shows that RS and SD phases are identified
in sectors (+1,+1,+1) (+1,−1,−1), respectively.81 The
results for this level crossing are shown for different system
sizes in Fig. 2, which leads to an estimate of the critical value
at K/J⊥ = 0.26. Note that for comparison, we also plot the
level crossing found by comparing the lowest triplet and singlet
states at momentum π using PBC. Using this criterion, we find
a critical value K/J⊥ = 0.33. However, since it has stronger
finite-size effects, we expect this result to be less accurate.
Our finding is slightly above the estimated K = 0.19 found
numerically in Refs. 35 and 36, but in better agreement with
K = 0.23 ± 0.03 found in Ref. 31. Surprisingly enough, the
estimate found in the weak-coupling approach (K � 0.27)
is very close to the numerical result obtained for moderate
coupling.

In principle, ED simulations can also give insight into the
nature of this phase transition.35 Indeed, the central charge c

can be extracted from the finite-size corrections of the ground-
state energy per rung e0(L) = E0/L:82,83

e0(L) � e∞ − πvc

6L2
, (25)

where v is the velocity, which can be extrapolated from84

v(L) = L

2π

[
E

(
q = 2π

L

)
− E(q = 0)

]
. (26)

Numerical data, computed at the critical point K = 0.26, are
shown in Figs. 3(a) and 3(b) and confirm that 1/L2 corrections
to the ground-state energy per site. We extracted the value of
the central charge c = 1.52, which is in excellent agreement
with the expected value c = 3/2 of the SU(2)2 WZNW model.

However, as detailed below in the DMRG part, while we are
measuring the correlation exponent, logarithmic corrections,
coming from marginal operators, seem to be present and spoil
the accuracy of some of the computations. In such case, it can
be simpler to compute the scaling dimension x of the lowest
excitation of the expected SU(2)2 WZNW model by removing
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FIG. 3. (Color online) N = 2 and J⊥ = 1. Finite-size scaling of
various quantities at the critical point K = 0.26: (a) ground-state
energy per rung e0, (b) velocity v, and (c) scaling dimension x of
the SU(2)2 WNZW primary field (see text for details). Data are
compatible with CFT behavior and extrapolations obtain x = 0.375
and the central charge c = 1.52.

explicitly these logarithmic corrections65,79,85

x(L) = L

8πv(L)
[3�E0(S = 1) + �E0(S = 0)], (27)

where �E0(S = 0,1) are respectively the singlet and triplet
gaps. Data are shown in Fig. 3(c) and while finite-size effects
are nonmonotonic, they are relatively weak for large clusters
and our numbers are compatible with the expected value x =
3/8.

We now turn to DMRG simulations to confirm our findings.
In order to detect the occurrence of a dimerization pattern,
we measure the local dimerization at the center in the first
chain, i.e., d(L/2) = 〈S1,L/2 · S1,L/2+1〉, and study its scaling
versus length L. Indeed, according to the low-energy analysis
of Sec. II, we expect this order parameter to decay as a power
law at the transition, while it should converge exponentially to
zero or to a constant below or above the transition. In Fig. 4,
we plot this order parameter versus system size on a log-log
plot and it leads to an accurate determination of the critical
point at K/J⊥ = 0.255, which is in excellent agreement with
our ED result.

In order to characterize this critical point, we compute the
entanglement entropy for such parameters. Indeed it is well
known86 that for a critical point described by a CFT with
central charge c, the von Neumann entropy behaves as

SvN (�) = c

6
ln d(�|L), (28)

where d(�|L) = (L/π ) sin(π�/L) is the conformal distance
and OBC are used. Figure 5 shows that our data can be fitted
with c = 1.50, which is in perfect agreement with the expected
value c = 3/2 for an SU(2)2 WZNW CFT.

1.010.0 1/L

0.01

0.1

d(
 L

 / 
2 

) L-0.52

K=0.22
K=0.23
K=0.24
K=0.25
K=0.255
K=0.26
K=0.27
K=0.28
K=0.29
K=0.3

FIG. 4. (Color online) N = 2 and J⊥ = 1: dimerization at the
center for N = 2 for various values of K . The critical point
corresponds to a power-law decay (see fit, dashed line) for K = 0.255
(black).

2. N = 2 ferromagnetic rung coupling case: J⊥ = −1.0

In the case of a ferromagnetic rung coupling J⊥ = −J‖,
we need to consider K < 0 in order to induce a transition
from the Haldane phase to the UD phase. Again, this phase
transition is detected using ED by comparing the first singlet
and triplet excited states and plotting this crossing value versus
system size, as shown in Fig. 6. However, since finite-size
effects are quite strong with PBC, we prefer again to use TBC
and compare eigenstates with quantum numbers (+1,+1,−1)
(+1,−1,+1) (see definitions in Sec. III A1). Results for this
level crossing are shown in Fig. 6 and TBC allow a more
precise determination for the critical value at K = −0.28.

Similarly to what we have done in the previous section for
J⊥ > 0, we fix this critical value and compute the ground-state
energies, velocities and gaps in order to determine the CFT
quantities. Data shown in Fig. 7 allow to determine the central
charge c = 1.55 and the primary field dimension x = 0.376,
which are in excellent agreement with our prediction of a
SU(2)2 WZNW universality class.
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c=1.50

FIG. 5. (Color online) N = 2 and J⊥ = 1: von Neumann entropy
vs conformal distance d(x|L) at the critical point for K = 0.255.
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0 0.01 0.02 0.03
1/L2

-0.5

-0.4

-0.3

K

FIG. 6. (Color online) N = 2 and J⊥ = −1: crossing point with
PBC (circles) and TBC (squares) vs system size (see text for
definitions). The most precise extrapolations are obtained using TBC
data and lead to a critical point at K = −0.28 (dashed line).

We now turn to DMRG simulations in order to confirm
our findings on larger scales. By computing the dimerization
at the center (see Fig. 8), we can locate the transition for
K/J‖ � −0.275, which is in excellent agreement with our
ED estimate. At the critical point, the dimerization decays as
a power law L−α with α = 0.52, which does not agree with
the expected 3/8 exponent [see Eq. (15)]. We believe that this
disagreement is due to the existence of logarithmic corrections
since a reasonable fit using Eq. (15) can be achieved with
x = 3/8, as also found using ED where we had removed these
logarithmic corrections.

Next, we would like to characterize further this critical
point using the scaling of the von Neumann entropy. However,
while the use of OBC improves convergence for DMRG, it can
give rise to so-called Friedel oscillations (see Fig. 9), which
complicate the analysis. Nevertheless, these oscillations are
known to originate from the bond modulations,87,88 so we

0 0.01 0.02 0.03-1.1

-1.05

e0

fit -1.053-0.884/L2

0 0.01 0.02 0.031

1.05

1.1

v fit 1.086-3.26/L2

0 0.01 0.02 0.031/L2
0.35

0.375

0.4

0.425

0.45

x

FIG. 7. (Color online) N = 2 and J⊥ = −1. Finite-size scaling
of various quantities at the critical point K = −0.28: (a) ground-
state energy per rung e0, (b) velocity v, and (c) scaling dimension x

of the SU(2)2 WNZW primary field (see text for details). Data are
compatible with CFT behavior and extrapolations obtain x = 0.376
and the central charge c = 1.55.

1.010.0
1/L

0.1

d(
L/

2)

K=-0.25
K=-0.26
K=-0.27
K=-0.275
K=-0.28
K=-0.29
K=-0.3
1/L0.52

1/L3/8|ln L|3/4

FIG. 8. (Color online) N = 2 and J⊥ = −1: dimerization at the
center for various K . Critical point is found at K/J‖ = −0.275
with a power-law behavior, possibly with logarithmic corrections
(see text).

propose to use the following fitting form:89

SvN (i) = A + c

6
ln d(i|L) + B〈Si · Si+1〉, (29)

where 〈Si · Si+1〉 = ∑
a〈Sa,i · Sa,i+1〉 is the sum of the bond

contributions. At the critical point, we have found B = −1 as
the best parameter, as it completely removes the oscillations
(see Fig. 10), allowing for a precise determination of c = 1.53
in excellent agreement with the c = 3/2 analytic prediction.
Note that we prefer this fitting procedure instead of using
PBC, which also remove oscillations but require much larger
numerical effort. Indeed, the number of kept states should be
much larger for a similar accuracy, typically m2 where m is the
number of kept states with OBC. Let us also mention that other
proposals have been made to avoid fitting the oscillations,90

but they only use part of the available data.

00101
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c=1.31
c=1.83

FIG. 9. (Color online) N = 2 and J⊥ = −1: von Neumann en-
tropy vs conformal distance d(x|L) at the critical point K = −0.275.
Oscillations prevent from a reliable fit of the central charge.
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FIG. 10. (Color online) N = 2 and J⊥ = −1: same data as in
Fig. 9 after removing the oscillations due to the bond modulations
using SvN + 〈Si · Si+1〉, see Eq. (29). The fit of the central charge
(dashed line) then gives c = 1.53.

B. Three-leg ladders (N = 3)

We now turn to the three-leg geometry (N = 3) using a
similar analysis. Note that since chains are not equivalent, we
have checked that the dimerization measured on chain 1 gives
similar results with the one averaged over all chains. Let us also
remind that since N is odd, the system is critical in the absence
of cyclic exchange K = 0, which implies that the transition is
now from a gapless phase to a gapped one.

1. N = 3 antiferromagnetic rung coupling case: J⊥ = 1.0

In this case, we cannot use TBC in ED simulation to get an
accurate estimate of the critical point, but even with PBC, we
do not observe any level crossing between the lowest singlet
and triplet with momentum π (with respect to the ground-state)
for lengths L up to 12. Therefore we have to determine first the
critical point using DMRG before performing an ED analysis.

As done before, we measure the dimerization in the middle
of the first chain. Data are shown in Fig. 11 and do indicate
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1/L
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K=0.36
K=0.37
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L-0.41

1/L0.3 |ln L|3/4

FIG. 11. (Color online) N = 3 and J⊥ = 1: dimerization at the
center for various K . Power-law decay allows to locate the critical
point for K/J‖ = 0.37.
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FIG. 12. (Color online) N = 3 and J⊥ = 1: von Neumann en-
tropy vs conformal distance d(x|L) at the critical point for various
sizes. Again, oscillations were removed (see text).

a change of concavity for K/J‖ = 0.37. Note that this is not
entirely expected since the dimerization should obey a power
law in the whole critical phase for K < Kc and converge
exponentially to a finite value in the gapped SD phase for
K > Kc only. Nevertheless, if we take this heuristic criterion
to detect the quantum phase transition, we get consistent
results with other approaches (see for instance below for the
ferromagnetic case where DMRG and ED agree on the location
of the critical point). Let us also mention that this change
of concavity at the transition was also observed recently for
a similar phase transition in spin-3/2 chain with three-site
interaction.51

At the critical point, we can either fit our data with a power
law 1/L0.41, but the expected logarithmic corrections [see
Eq. (15)] could also give a reasonable fit 1/(L0.3| ln L|3/4)
(see Fig. 11).

Now that the critical point is located, we can study the
scaling of the von Neumann entropy, and as before, we remove
oscillations by adding the bond energies and plotting SvN (i) +
〈Si · Si+1〉 versus the conformal length d(x|L) (see Fig. 12). A
simple fit gives a central charge c = 1.81 which is in excellent
agreement with the CFT prediction c = 9/5 = 1.8.

Assuming now the critical point to be at K = 0.37, we can
perform a similar ED analysis as for N = 2. Data are shown
in Fig. 13. Unfortunately, strong finite-size effects, as well as
different scalings required for L = 4p and 4p + 2 ladders, do
not allow for accurate extrapolations of e0 and c. Nevertheless,
if we also perform DMRG with PBC on moderate L (in which
case we have kept up to m = 4000 states for L up to 28), we can
obtain a reasonable fit of e0 versus 1/L2 [see Fig. 13(a)]. From
this, we extracted c = 1.89, which is in reasonable agreement
with our previous finding and expectation. Note that since we
have used variational DMRG energies, one could suspect that
either increasing the number of states kept or extrapolating
with the discarded weight, energies will be slightly lower for
the largest sizes, thus leading to a reduced slope and c value.

However, ED also allows to extract the scaling dimension
x by getting rid of the logarithmic corrections. Our numerical
data support the expected x = 3/10 with an excellent accuracy
[see Fig. 13(c)].
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FIG. 13. (Color online) N = 3 and J⊥ = 1. Finite-size scaling
of various quantities at the critical point K = 0.37: (a) ground-state
energy per rung e0, (b) velocity v, and (c) scaling dimension x of the
primary CFT field (see text for details).

2. N = 3 ferromagnetic rung coupling case: J⊥ = −1.0

When considering ferromagnetic rung coupling, ED sim-
ulations show a level crossing between the lowest singlet
and triplet excitations at momentum π with respect to the
ground-state momentum. This enables a determination of
the critical point at Kc = −0.284 (see the inset of Fig. 14),
which is exactly the same as previously found for N =
2. By performing a finite-size scaling analysis at fixed
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FIG. 14. (Color online) N = 3 and J⊥ = −1. Finite-size scaling
of various quantities at the critical point K = −0.28: (a) ground-state
energy per rung e0, (b) velocity v, and (c) scaling dimension x of the
primary CFT field (see text for details). Inset: scaling of the level
crossing vs system size.
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FIG. 15. (Color online) N = 3 and J⊥ = −1: dimerization at the
center for various K . The critical point corresponds to a power-law
decay for K/J‖ = −0.275.

K = −0.28, one can extract CFT quantities as explained
above. Figures 14(a)–14(c) present finite-size scaling behavior
of e0, v, and x. As in the previous case, size limitation does
not allow an accurate estimate of the slope of the energy, but
still we note that the extrapolation of x(L) is rather smooth
and leads to x = 0.3 as predicted. In order to get an estimate
of the central charge, we have also performed DMRG with
PBC (up to L = 24) in order to compute e0. Fitting e0 and v

allows to extract an estimate c = 1.90, which is not far from
the expected 9/5.

Turning now to DMRG with OBC, the quantum phase
transition from the critical phase to the UD phase can be
located as usual on Fig. 15. From the power-law decay of the
dimerization, we determined the transition at K/J‖ = −0.275,
a value that is extremely close from our ED estimate, thus
giving us confidence in its accuracy. Indeed, we remind that
since dimerization should obey a power law in the whole
critical phase, it is not obvious that there is a change of
concavity at the transition. Nevertheless, if we try to fit the
dimerization decay at the transition, we get exactly the same
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FIG. 16. (Color online) N = 3 and J⊥ = −1: von Neumann
entropy plus bond energy vs conformal distance d(x|L) at the critical
point K = −0.275 for L = 128.
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FIG. 17. (Color online) N = 4 and J⊥ = 1: crossing point with
PBC and TBC vs system size (see text for definitions). Extrapolations
are difficult but point towards a critical value between 0.3 <

Kc < 0.5.

behavior as in the antiferromagnetic case, namely that we can
fit either with a power law L−0.41 (exact same exponent as
for J⊥,K > 0) or with the expected behavior from Eq. (15)
1/(L0.3| ln L|3/4).

Since the von Neumann entropy at the transition exhibits
large oscillations (see details in Sec. III A1), we use the same
technique as before and add the total bond energies. In Fig. 16,
we do observe that oscillations have disappeared and a rather
good fit can be performed. We obtain c = 1.73, in good
agreement with the expected c = 9/5 = 1.8.

C. N = 4

1. N = 4 antiferromagnetic rung coupling case: J⊥ = 1.0

We start by performing ED simulations and using the
crossing point either with PBC or TBC similarly to the N = 2
case (see Sec. III A1 for details). Results are shown in Fig. 17
and do not allow for a precise determination of Kc which
we estimate to be between 0.3 and 0.5. Therefore we cannot
perform a CFT analysis at this stage.

By performing DMRG simulations and plotting the dimer-
ization at the center (see Fig. 18), we can locate the transition
precisely for K/J‖ � 0.4. Note this case is similar to N = 2 in
the sense that both phases are gapped and a change of concavity
is expected at the transition.

0.01 0.1
1/L

0.1

d(
L/

2)

K=0.38
K=0.39
K=0.4
K=0.41
K=0.42

FIG. 18. (Color online) N = 4 and J⊥ = 1: dimerization at the
center for various K . Critical point corresponds to a power-law decay
for K/J‖ � 0.4

10 d(x|L)
2

2.4

2.8

S vN

L=32
L=64
fit  c=2.03

FIG. 19. (Color online) N = 4 and J⊥ = 1: von Neumann en-
tropy vs conformal distance d(x|L) at the critical point K = 0.4 for
various sizes.

At the critical point, the dimerization decays as a power
law L−α with α � 0.5, which does not agree with the expected
3/8 exponent. We believe that this disagreement is due to the
existence of logarithmic corrections as had been observed for
other values of N .

At this critical point, by keeping a large number of states
(m = 4800 for L = 64), we are able to get a very nice entropy
plot (see Fig. 19) and extract c = 2.0 in perfect agreement with
low-energy prediction.

Going back now to ED simulations at K = 0.4 (up to 4 ×
10 ladder), we can perform a similar analysis as before. Data
are shown in Fig. 20. Unfortunately, strong finite-size effects
inhibit us for accurate extrapolations of e0, v, or c. Similarly,
the scaling dimension x does not show a sufficiently smooth
behavior to extract an accurate estimate, but it is reasonable to

30.00 0.06

-2.75

-2.7

-2.65

-2.6

e0

30.00 0.06
0.4

0.5

0.6

0.7

0.8

v

30.00 0.06

1/L2

0.2

0.4

0.6

0.8

1

x

(a)

(b)

(c)

FIG. 20. (Color online) N = 4 and J⊥ = 1. Finite-size scaling
of various quantities at the critical point K = 0.4: (a) ground-state
energy per rung e0, (b) velocity v, and (c) scaling dimension x of the
primary CFT field (see text for details).
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30.00 0.061/L2

-0.4

-0.3
K

FIG. 21. (Color online) N = 4 and J⊥ = −1: crossing point with
PBC and TBC vs system size (see text for definitions). Both PBC and
TBC allow for an accurate extrapolation to Kc = −0.28.

extrapolate it between 0.2 and 0.3, which could be compatible
with the expected 1/4 value. Clearly, we are severely limited
in system size and it would be useful to be able to remove
logarithmic corrections in DMRG simulations.

2. N = 4 ferromagnetic rung coupling case: J⊥ = −1.0

ED crossing results are shown in Fig. 21 and the use of
either PBC or TBC data allows to determine the critical point
K = −0.28, again identical to what we had found for N = 2
and 3. By fixing this value and analyzing our spectra (using up
to 4 × 10 ladders), we can perform a CFT analysis similarly
to what has been done for the other N . Data are shown in
Fig. 22. As for N = 3, size limitation does not allow for a
determination of c, however the behavior of x(L) is smoother
(especially in contrast to the case J⊥ = 1) and leads to an
estimate x = 0.246 in excellent agreement with the expected
value 1/4 for k = 4 SU(2) WZNW.

As usual, we can also compute the dimerization at the
center by DMRG (see Fig. 23), which allows us to locate the
transition precisely at K = −0.272, in excellent agreement
with our ED finding. In particular, it confirms that this critical

30.00 0.06
-2.5

-2.4

-2.3

-2.2

e0

30.00 0.06
0.7

0.75

0.8v

30.00 0.06

1/L2

0.2

0.3

0.4

0.5

x

FIG. 22. (Color online) N = 4 and J⊥ = −1. Finite-size scaling
of various quantities at the critical point K = −0.28: (a) ground-state
energy per rung e0, (b) velocity v, and (c) scaling dimension x of the
primary CFT field.

0.01 0.1
1/L

0.1

d(
L/

2)

K=-0.27
K=-0.272
K=-0.273
K=-0.274
K=-0.276
K=-0.278
K=-0.28
1/ (|ln L|3/4 L1/4)

FIG. 23. (Color online) N = 4 and J⊥ = −1: dimerization at the
center for various K . Critical point corresponds to K/J‖ = −0.272
with a power-law decay with exponent x = 1/4 up to logarithmic
corrections.

value seems independent from N . Note that at the transition,
a simple power-law fit would lead to L−0.41, which is not
in agreement with the expected x = 0.25; however, taking
into account logarithmic corrections, we can perform a quite
satisfactory L−0.25/| ln L|3/4 fit.

Playing again with fitting the von Neumann entropy
by removing oscillations (simply by adding the total bond
energies, see Fig. 24) allows to get an excellent value for c in
agreement with c = 2.0.

IV. CONCLUDING REMARKS

In summary, we have investigated the nature of the quantum
phase transitions of N -leg spin ladders with a cyclic four-spin
exchange interaction by means of complementary techniques.
SD and UD dimerized phases emerge from this ring exchange
on top of the conventional phases of the N -leg spin ladders.
Several quantum phase transitions have been studied here
depending on the sign of the ring-exchange interaction K

and the parity of N . When N is even, we can investigate the

011
d(x|L)

0

0.2

0.4

0.6

0.8

S vN
 +

 <
S i.S

i+
1>

L=64
L=128
c=1.98

FIG. 24. (Color online) N = 4 and J⊥ = −1: von Neumann
entropy plus bond energy vs conformal distance d(x|L) at the critical
point K = −0.272 for various sizes.

075132-12



QUANTUM PHASE TRANSITIONS IN MULTILEG SPIN . . . PHYSICAL REVIEW B 88, 075132 (2013)

transition between the RS (respectively, Haldane) phase and
the SD (respectively, UD) phase when K > 0 (respectively,
K < 0). In contrast, when N is odd, a transition occurs
between the c = 1 Heisenberg gapless phase and the dimerized
phases (SD and UD depending on the sign of K).

Using a low-energy approach, when the chains are weakly
coupled, we find that all these quantum phase transitions
are described by an SU(2)N CFT with central charge c =
3N/(N + 2). This result generalizes the findings of Ref. 46 for
N = 2 where a SU(2)2 emerging quantum criticality has been
revealed by means of a Majorana-fermion approach, which
is very specific to the N = 2 case. In this respect, we have
shown that the quantum phase transitions, driven by four-spin
exchange interactions, belong to the SU(2)N universality class
when N = 2,3,4. For N > 4, a relevant perturbation is likely
to be generated and to drive the system away from criticality. A
first-order phase transition is then expected for N > 4 although
further work is clearly called for to confirm or infirm this result.

In close parallel to this field-theory analysis, we have
investigated numerically the phase transitions for N = 2,3,4
by means of ED and DMRG approaches. As we have seen,
these techniques give a precise location of the quantum phase
transitions for all signs of K . The position of the transition
does not vary too much as a function of N when J⊥ > 0, and
seems to be independent of N when J⊥ < 0. Surprisingly
enough, the estimate of the transition obtained within the
low-energy approach is in rather good agreement with the
numerical results. The nature of the quantum phase transitions
was then obtained by extracting numerically the central charge
c and the scaling dimension x of the lowest primary field of
the SU(2)N CFT. Let us emphasize that while DMRG is the
tool of choice to measure the central charge c, the presence
of logarithmic correction prevents a reliable determination
of x; on the contrary, x can be extracted accurately from
ED data as shown in our study. In all cases, we found a
very good agreement with the prediction of the low-energy
approach according to which the quantum phase transitions
should belong to the SU(2)N universality class for N � 4. In
this respect, the N = 3 case is intriguing due to the prediction
of a transition between the standard gapless c = 1 phase and
the dimerized phases (SD and UD phases) that is not of
the BKT type with central charge c = 1, as for the J1 − J2

Heisenberg spin-1/2 chain, but rather an SU(2)3 transition
with the emergence of nontrivial critical modes with fractional
central charge c = 9/5. All our results are summarized
in Table I.

The field-theory and numerical approaches presented in
this paper therefore show that four-spin exchange interaction
may generate an exotic emerging quantum criticality in one
dimension. In this respect, there is the question whether our
analytical approach can shed some light on the deconfined
quantum criticality universality class between Néel and UD
phases in two dimensions.2 Unfortunately, we are not able to
determine the nature of the phase transition between the RS
(or the c = 1 gapless phase) and UD phases for K < 0 when
N > 2 within our low-energy approach. A phenomenological
approach, describing the 2D system as an infinite array of
1D spin-1/2 Heisenberg chains, predicts that the Néel-UD
transition is governed by an anisotropic O(4) nonlinear σ

model with a topological term.91 Our work is more relevant

TABLE I. Summary of our results showing the existence of a
quantum phase transition in the N -leg spin-1/2 ladder with ring
exchange K . Low-energy analysis predicts a transition for K/J⊥ =
π 2/36 � 0.274 in the SU(2)N universality class for N = 2,3,4 with
central charge c = 3N/(N + 2) and scaling dimension x = 3/(2N +
4). Numerical analysis performed by ED and DMRG simulations (see
text) provides a very good confirmation of the nature of this quantum
phase transition.

N = 2 N = 3 N = 4

K/J⊥ π 2/36 � 0.274 π 2/36 π 2/36
low-energy analysis c 3/2 9/5 2

x 3/8 3/10 1/4

numerical K/J⊥ 0.255 0.37 0.4
c 1.52 1.81 2.0

J⊥ = J‖
x 0.375 0.3 0.2-0.3

numerical K/J⊥ 0.275 0.28 0.27-0.28
c 1.55 1.73 1.98

J⊥ = −J‖
x 0.376 0.3 0.246

to the investigation of the transition between the Néel phase
and a staggered VBS which has been observed numerically in
the spin-1/2 Heisenberg model with a ring-exchange on the
square lattice.92 An estimation of the location of the transition
by means of ED calculations is K/J ∼ 0.4,93 which is close
to our numerical findings in the ladder limit. The nature of the
universality class of the transition is unknown but it seems
to be different from the deconfined criticality paradigm.94

Furthermore, a first-order transition has been found in the
quantum Monte Carlo simulations of the spin-1/2 Heisenberg
model with a special six-spin exchange interaction.95 Our
field-theory approach, combined with the ideas presented
in Ref. 91, seems to suggest that the transition in two
dimensions can be described in terms of an anisotropic O(4)
nonlinear σ model. In the future, it will be very meaningful
to pursue this approach starting from coupled spin chains to
investigate the nature of two dimensions Néel-SD transition,
in particular, in the easy-plane limit to make connections with
the phenomenological theory of Ref. 94.
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APPENDIX: CONTINUUM LIMIT

In this Appendix, we provide the technical details for
the derivation of the continuum limit of model (1). The
ring-exchange operator Pn+1,n, which performs a cyclic
permutation of the spins Sa,n,Sa,n+1,Sa+1,n+1,Sa+1,n between
two consecutive chains, can be written in terms of quadratic
and biquadratic products of spins as22,96

Pn,n+1 + P −1
n,n+1

= 1
4 + Sa,n · Sa+1,n + Sa,n+1 · Sa+1,n+1

+ Sa,n · Sa,n+1 + Sa+1,n · Sa+1,n+1 + Sa,n · Sa+1,n+1
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+ Sa+1,n · Sa,n+1 + 4(Sa,n · Sa+1,n)(Sa,n+1 · Sa+1,n+1)

+ 4(Sa,n · Sa,n+1)(Sa+1,n · Sa+1,n+1)

− 4(Sa,n · Sa+1,n+1)(Sa+1,n · Sa,n+1). (A1)

The spin ladder with a ring-exchange (1) is thus a particular
case of a general Hamiltonian corresponding to a ladder with
quadratic and biquadratic spin-spin interactions:

Hgen = (J‖ + J�)
∑

n

N∑
a=1

Sa,n · Sa,n+1

+ Jr

∑
n

N−1∑
a=1

Sa,n · Sa+1,n

+ Jd

∑
n

N−1∑
a=1

(Sa,n · Sa+1,n+1 + Sa,n+1 · Sa+1,n)

+ Jrr

∑
n

N−1∑
a=1

(Sa,n · Sa+1,n)(Sa,n+1 · Sa+1,n+1)

+ J��

∑
n

N−1∑
a=1

(Sa,n · Sa,n+1)(Sa+1,n · Sa+1,n+1)

+ Jdd

∑
n

N−1∑
a=1

(Sa,n · Sa+1,n+1)(Sa,n+1 · Sa+1,n), (A2)

with Jrr = J�� = −Jdd = 4K and Jr = J⊥ + 2K, J� =
K, and Jd = K for the spin-ladder with a ring exchange (A1).

In the following, we are going to investigate the continuum
limit of the model (A2) in the weak coupling limit when
|J�,Jr ,Jd,Jrr ,J��,Jdd | � J‖, i.e., in the vicinity of the decou-
pling point. The continuum limit was done in the two-leg case,
i.e., N = 2, in Ref. 37, but we believe that the identification
of the coupling constants of the effective Hamiltonian are not
correct. To perform such calculations, one needs a free-field
representation of the fields of Eq. (2) in terms a bosonic field

a with chiral components 
aR,L:47

na = λ

πa0
(cos(

√
2π �a), sin(

√
2π �a), − sin(

√
2π 
a)),

εa = λ

πa0
cos(

√
2π 
a),

J z
aR,L = 1√

2π
∂x
aR,L, (A3)

J+
aL = 1

2πa0
exp(i

√
8π 
aL),

J+
aR = 1

2πa0
exp(−i

√
8π 
aR),

where the bosonic fields are normalized according to

〈
aL(z)
bL(0)〉 = −δab

4π
ln z,

(A4)

〈
aR(z̄)
bR(0)〉 = −δab

4π
ln z̄,

where z = vτ + ix (τ being the imaginary time) and the
boson fields satisfy the following commutation relations:
[
aR(x),
bL(y)] = iδab/4. Within this Abelian bosonization

procedure, the WZNW field ga of Eqs. (3) and (5) expresses
as

ga = 1√
2

(
e−i

√
2π
a ie−i

√
2π�a

iei
√

2π�a ei
√

2π
a

)
. (A5)

This free-boson representation of the SU(2)1 CFT is also
useful to derive the different OPEs which will play a crucial
role in the continuum limit of the general Hamiltonian (A2):

J α
L (z)J β

L (w) ∼ δαβ

8π2(z − w)2
+ iεαβγ J

γ

L (w)

2π (z − w)
,

J α
R (z̄)J β

R (w̄) ∼ δαβ

8π2(z̄ − w̄)2
+ iεαβγ J

γ

R (w̄)

2π (z̄ − w̄)
,

J α
L (z)nβ(w,w̄) ∼ − δαβε(w,w̄)

4πi(z − w)
− εαβγ nγ (w,w̄)

4πi(z − w)
,

J α
R (z̄)nβ(w,w̄) ∼ δαβε(w,w̄)

4πi(z̄ − w̄)
− εαβγ nγ (w,w̄)

4πi(z̄ − w̄)
,

nα(z,z̄)J β

L (w) ∼ δαβε(w,w̄)

4πi(z − w)
− εαβγ nγ (w,w̄)

4πi(z − w)
,

nα(z,z̄)J β

R (w̄) ∼ − δαβε(w,w̄)

4πi(z̄ − w̄)
− εαβγ nγ (w,w̄)

4πi(z̄ − w̄)
,

π2

λ2
nα(z,z̄)nβ(w,w̄) ∼ δαβ

2a0|z − w|
+ π2δαβ

3a0|z − w|
[
(z − w)2J2

L(w)

+ (z̄ − w̄)2J2
R(w̄)

]
+ 2π2 |z − w|

a0

[
δαβ(JL · JR)(w,w̄)

− (
J α

LJ
β

R + J
β

L J α
R

)
(w,w̄)

]

+ iπεαβγ

a0|z − w|
[
(z − w)J γ

L (w)

+ (z̄ − w̄)J γ

R (w̄)
]
, (A6)

where z − w = vτ + ia0 and z̄ − w̄ = vτ − ia0.
With all these results at hand, one can investigate the leading

contribution of the continuum limit of the generalized two-leg
spin ladder (A2). The calculations are very cumbersome and
our final result reads as follows:

Hgen = 2πv

3

∫
dx

N∑
a=1

(
J2

aL + J2
aR

)

+ a0(Jr − 2Jd )
N−1∑
a=1

∫
dx na · na+1

+ 3a0(Jrr + Jdd + 3J��)

π2

N−1∑
a=1

∫
dx εaεa+1

+ a0

N∑
a=1

∫
dx JaL · JaR

{
−γ + 2J�(1 − λ2)

+ λ2

π2
[λ2(Jdd + Jrr + 3J��) + Jrr − Jdd − 3J��]

}
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+ a0

N−1∑
a=1

∫
dx[JaL · Ja+1R + JaR · Ja+1L]

[
Jr + 2Jd

+ 1 + 4λ4

2π2
(Jdd − Jrr )

]
, (A7)

where we have neglected all chiral interactions.
For the spin ladder (1) with a ring exchange, we finally get

Hring = 2πv

3

∫
dx

N∑
a=1

(
J2

aL + J2
aR

)

+ a0J⊥
N−1∑
a=1

∫
dx na · na+1

+ 36a0K

π2

N−1∑
a=1

∫
dx εaεa+1

+ a0

N∑
a=1

∫
dx JaL · JaR

[
−γ + 2K(1 − λ2)

+ 4λ2K

π2
(3λ2 − 1)

]

+ a0

N−1∑
a=1

∫
dx (JaL · Ja+1R + JaR · Ja+1L)

×
(

J⊥ + 4K − 4K
1 + 4λ4

π2

)
. (A8)
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