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In a previous publication [Betzinger, Friedrich, Görling, and Blügel, Phys. Rev. B 85, 245124 (2012)] we
presented a technique to compute accurate all-electron response functions, e.g., the density response function,
within the full-potential linearized augmented-plane-wave (FLAPW) method. Response contributions that are
not captured (completely) within the finite Hilbert space spanned by the LAPW basis are taken into account
by an incomplete-basis-set correction (IBC). The latter is based on a formal response of the basis functions
themselves, which is derived by exploiting their dependence on the effective potential. Its construction requires
the solution of radial differential equations, having the form of Sternheimer equations, by numerical integration.
The approach includes a formally exact treatment of the response contribution from the core states. While we
restricted the formalism to spherical perturbations in the previous work, we here generalize the formalism to non-
spherical perturbations. The improvements are demonstrated with exact-exchange optimized-effective-potential
(EXX-OEP) calculations of antiferromagnetic NiO. It is shown that with the generalized IBC a basis-set
convergence is realized that is as fast as in density-functional theory calculations using standard local or semilocal
functionals. The EXX-OEP band gap, magnetic moment, and spectral function of NiO are in substantially better
agreement with experiment than results obtained from calculations with local and semilocal functionals.
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I. INTRODUCTION

Over recent decades, linear response theory based on Kohn-
Sham density-functional theory (KS-DFT)1–3 has evolved to a
powerful numerical approach in solid state physics for calcu-
lating the response of a system due to an external perturbation,
which may arise, for example, from an atomic displacement
giving rise to lattice vibrations or from an external electric
field leading to the electric-field response of the material.4

Furthermore, response quantities are often central ingredients
in electronic structure methods that go beyond standard DFT.
For example, the adiabatic-connection fluctuation-dissipation
theorem5,6 as well as the GW approximation7,8 for the
electronic self-energy involve the frequency- and momentum-
dependent density response function within the random-phase
approximation (RPA). The inverse of its static limit enters the
optimized-effective-potential (OEP) approach of KS-DFT9,10

where an effective local potential is constructed from a general
orbital-dependent exchange-correlation (xc) functional.

In all cases, the linear change of the KS single-particle wave
functions due to a perturbing potential has to be calculated. By
expressing the linear response in the complete space of the
KS eigenstates, one obtains an exact expression written as an
infinite sum over the unperturbed eigenstates, a well known
result from quantum mechanics textbooks.

In a practical calculation, of course, only a finite number of
states are available, leading to a loss of accuracy. It is a matter
of experience that the response function converges very slowly
with respect to the number of states taken into account. Fur-
thermore, the calculated KS wave functions, especially those at
high energies, deviate from the true physical eigenstates due to
the incompleteness of the basis set, which also has an adverse
effect on the accuracy of the sum-over-states expression.
These issues are particularly problematic in minimal basis
sets that are optimized for representing the occupied single-

particle states. Examples are the linearized muffin-tin orbital
(LMTO)11,12 and the full-potential linearized augmented-
plane-wave (FLAPW) method.13–15 Only a relatively small
number of empty states are available in these methods, and
only the lower lying ones are accurate representations of the
true eigenstates. The majority of linear response calculations
have been performed within the pseudopotential plane-wave
method16,17 so far, where much larger basis sets are employed.

Recently,18 we presented an incomplete-basis-set correc-
tion (IBC) for the calculation of response functions in the
FLAPW method, which tremendously accelerates the conver-
gence in terms of the basis set and the number of unoccupied
states. The IBC corrects (1) for the truncation of the sum-over-
states expression and (2) for the deviations in the calculated
wave functions from the true pointwise solutions of the KS
equation. In order to give a simple picture of the IBC we remind
the reader of the basic construction principle of the LAPW
basis functions in the atomic muffin-tin (MT) spheres: There,
one employs functions that are pointwise solutions of the KS
equation with the spherical part of the effective potential.
These basis functions can already be regarded as approximate
solutions to the underlying KS equation and thus form a very
accurate basis set. In the IBC, we adopt this principle for the
linear response: By solving radial Sternheimer equations19 we
construct the linear response of the basis functions in terms of a
perturbation in the potential, yielding the exact response for the
spherical problem, which already gives the main contribution
to the response for the full-potential case. Through the exact
response, an infinite number of empty states is incorporated
in principle. The seeming disadvantage of the minimal LAPW
basis set is thus turned into an advantage.

We note in passing that the present method should not
be mistaken with the Sternheimer approach,4 usually used
in the pseudopotential plane-wave method, which replaces
the sum-over-states expression by the identical solution
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to the inhomogeneous differential Sternheimer equation in
a basis set. In contrast to the present IBC method, the
Sternheimer approach does not account for corrections due to
the incompleteness of the basis set. In other words, response
contributions that lie outside the space spanned by the basis
set are lost.

For simplicity, we restricted in Ref. 18 the formalism of
the IBC to spherical perturbations, which have the beneficial
property that the corresponding response of a basis function
of angular momentum l and magnetic quantum number m

stays in the same lm channel as the unperturbed function.
This is no longer the case for nonspherical perturbations. If,
e.g., the perturbation has a shape like a p function, it will
raise or lower the angular quantum number of a function by
1: a d function will acquire p and f orbital character; the lm

channels become coupled.
In this work, we extend our original formulation of the IBC

to nonspherical perturbations in the MT spheres. Fortunately,
many of the equations derived in Ref. 18 remain valid. We
only have to generalize the basis response, which becomes
a vector quantity in the lm quantum numbers. Furthermore,
we have to find a new treatment for the response of the core
states because the finite-difference approach chosen for purely
spherical perturbations is no longer applicable, as our core
Dirac solvers do not allow for nonspherical potentials. As
a solution, we solve the inhomogeneous radial Sternheimer
equations with the additional boundary condition that the core-
state response goes to zero for large distances from the nucleus.

As a proof of principle, we apply the generalized IBC to
the exact-exchange (EXX) OEP approach, in which a local
effective potential is constructed from the self-interaction free
orbital-dependent EXX functional. The local effective poten-
tial is given as the solution of an integral equation whose central
ingredients are response functions for the electron density and
the KS single-particle wave functions. While we demonstrated
in Ref. 18 that the IBC for spherical perturbations already
improves EXX-OEP calculation in terms of numerical stability
and computational efficiency for a wide range of materials, we
show here that for complex materials such as antiferromagnetic
NiO, whose electronic density is strongly anisotropic, the gen-
eralized IBC is essential and leads to a basis-set convergence
behavior similar to calculations with standard xc functionals
such as the LDA or GGA. Furthermore, very few empty states
are needed to converge the response quantities.

The paper is organized as follows. In Sec. II we give a
short recapitulation of the IBC and derive its generalization
for nonspherical perturbations. In Sec. III we apply the IBC
to the EXX-OEP approach and analyze the effect of the
generalized IBC on the convergence of the KS density response
function, the EXX potential, and the KS EXX gap in detail.
The electronic structure of antiferromagnetic NiO as obtained
by the EXX-OEP method is discussed in Sec. IV. Finally, we
draw our conclusions in Sec. V.

II. INCOMPLETE-BASIS-SET CORRECTION

As already mentioned, the generalized derivation of the
IBC follows very closely the one developed in Ref. 18 for
the spherical perturbations. Therefore, we recapitulate this
derivation in Sec. II A and extend the formalism whenever

necessary to the more general case of nonspherical perturba-
tions in the effective potential. In Sec. II B we then discuss
the calculation of the core-state response, which requires
a more sophisticated treatment than for purely spherical
perturbations. When referring to equations of Ref. 18 we
use a prime (′). Unless noted otherwise, we employ the
same notation, definitions, and units (i.e., Hartree atomic
units). For simplicity, the spin index is suppressed and we
restrict the discussion to the nonrelativistic equations. The
numerical implementation, however, uses the corresponding
scalar-relativistic equations.

A. Generalization

We want to calculate the response ϕ
(1)
nk,I (r) of a KS

single-particle wave function ϕnk(r) in terms of a perturbation
MI (r) [Eq. (19′)], where the latter is a function of the mixed
product basis (MPB) set {MI (r)}.20–22 While in Ref. 18 we
restricted the formalism to spherically symmetric functions
MI (r) = MI (r), we now allow generally for nonspherical
perturbations MI (r) = MI (r)YLM (r̂) given as a product of
radial function MI (r) and spherical harmonic YLM (r̂) with
the composite index I = (a,P,L,M), where a is the atomic
index and P distinguishes between different radial functions
MI (r) = Ma

PL(r). The latter do not depend on the magnetic
quantum number M . With the azimuthal and magnetic
quantum numbers L and M we can realize general angular
dependent perturbations in the MT sphere, including spherical
perturbations as the special case L = M = 0.

When representing ϕnk(r) in terms of the LAPW basis
[Eq. (8′)], the functional derivative in Eq. (19′) will pro-
duce one term where the basis functions themselves are
differentiated [Eq. (24′)]. In the MT spheres, the basis
functions Eq. (9′) depend, in fact, on the potential through
the functions ua

lmp(r) = ua
lp(r)Ylm(r̂) defined in Eqs. (12′) and

(14′). The linear response of the latter due to a spherical
perturbation MI (r) = MI (r) given by Eqs. (26′) and (27′)
remains in the same lm channel as the original function,
i.e., u

a(1)
lmp,I (r) = u

a(1)
lp,I (r)Ylm(r̂). A nonspherical perturbation

MI (r) = MI (r)YLM (r̂) with L > 0, however, creates response
contributions in more than one lm channel. The total response
of ua

lmp(r) is thus given generally as a sum over spherical
harmonics,

u
a(1)
lmp,I (r) =

∑
l′m′

u
a(1)
lmp,I,l′m′(r)Yl′m′(r̂) , (1)

whose radial parts obey inhomogeneous differential equations
derived in the framework of Rayleigh-Schrödinger perturba-
tion theory for degenerate states. Instead of Eq. (26′), the
response of the radial basis function for p = 0 is given by

[
ha

l′ − εa
l

]
ru

a(1)
lm0,I,l′m′(r) = GMm′m

Ll′l
[
δll′ε

a(1)
l,I − MI (r)

]
rua

l0(r) ,

(2)

and Eq. (27′), the response of the energy derivative (p = 1), is
replaced by[

ha
l′ − εa

l

]
ru

a(1)
lm1,I,l′m′(r) = GMm′m

Ll′l
[
δll′ε

a(1)
l,I − MI (r)

]
rua

l1(r)

+ ru
a(1)
lm0,I,l′m′(r) (3)
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with the Gaunt coefficients GMm′m
Ll′l =∫

YLM (r̂)Y ∗
l′m′(r̂)Ylm(r̂)d�.

For the linear change ε
a(1)
l,I of the energy parameter we

employ the expectation value Eq. (28′). Equations (2) and
(3) become identical to Eqs. (26′) and (27′) in the case of
a spherical perturbation MI (r) = MI (r)/

√
4π ; note that

Y00(r̂) = 1/
√

4π. Fortunately, we do not have to evaluate
Eqs. (2) and (3) for all combinations of the lm, l′m′, and
LM channels. First, the Gaunt coefficients are zero unless
the conditions l + l′ + L is even, |l − l′| � L � l + l′, and
m − m′ + M = 0 are fulfilled, which reduces the nonzero
terms in Eq. (1) to just a few; e.g., for a p-like perturbation a
d function acquires p and f character. Furthermore, Eqs. (2)
and (3) depend on m, m′, and M only through the factor
GMm′m

Ll′l . Since the differential equations are linear, we only
have to solve them for each l, l′, and L and then scale
the solution by GMm′m

Ll′l to account for the m, m′, and M

dependence. As a result, Eqs. (2) and (3) have to be integrated
just a few times, leading to a negligible computational cost.

The differential equations above do not determine the
response u

a(1)
lmp,I,l′m′(r) uniquely since we may always add a

multiple of the homogeneous solution of[
ha

l′ − εa
l

]
ru

a,hom
l,l′ (r) = 0 . (4)

To make the response unique, we require it to be orthogonal
to the homogeneous solutions∫

dr r2 u
a,hom
l,l′ (r)ua(1)

lmp,I,l′m′(r) = 0 , (5)

which ensures that a mere rigid shift of the potential to higher
or lower energies (constant perturbation) leaves the wave
functions unchanged. Equations (2), (3), and (4) are solved
using the same radial integrators as employed to determine the
radial basis functions ua

lp(r).
A change in the functions ua

lmp(r) also affects the matching
coefficients Aa

lmp(k,G) in Eq. (9′). In Ref. 18, we explicitly
differentiated the coefficients Aa

lmp(k,G) [given in Eq. (10′)]
with respect to the spherical part of the effective potential
yielding A

a(1)
lmp,I (k,G) [Eq. (31′)]. For the more general case

of a nonspherical perturbation we determine the change in the
matching coefficients differently, because a straightforward
differentiation would be very complicated. We exploit the
fact that upon perturbing the potential in the MT spheres
(1) the interstitial (potential independent) plane waves remain
unaffected and (2) the matching at the MT sphere boundaries
must preserve continuity in value and slope. Thus, the change
in the LAPW basis must have the form of Eq. (25′); i.e., its
value and slope go to zero at the sphere boundaries, a condition
that determines A

a(1)
lmp,I (k,G) uniquely as

A
a(1)
lmp,I (k,G)

=
[
ulp(Sa),

∑
l′m′

∑1
p′=0 Aa

l′m′p′ (k,G)ua(1)
l′m′p′,I,lm(Sa)

]
[ulp(Sa),ulp(Sa)]

(6)

for p = {0,1} with p = 1 − p, the Wronskian [f (r),g(r)] =
f (r)g′(r) − f ′(r)g(r), and the radius Sa of the MT sphere of
atom a. For the special case of a spherical perturbation, Eq. (6)
is identical to Eq. (31′).

Local orbitals23 are additional basis functions that are com-
pletely confined within the MT spheres. They are employed
to improve the description of semicore states or high-lying
unoccupied states. A set of 2l + 1 local orbitals of angular
momentum l and magnetic quantum number m at atom a is
obtained from linearly combining three functions—ulm0(r),
ulm1(r), and ulmp(r) = ulp(r)Ylm(r) with p � 2 and an energy
parameter εlp �= εl—in such a way that the resulting function
and its slope are zero at the MT sphere boundary. In analogy
to the LAPW basis response, we find the linear change of
the so-defined local orbitals from (a) the responses of the
separate contributing functions according to Eqs. (2) and (3)
[Eq. (2) for p � 2 ] and (b) the linear change of the expansion
coefficients of the linear combination. As in the case of the
LAPW matching coefficients, we determine the latter uniquely
by requiring that the local-orbital response goes to zero in value
and slope at the MT boundary and that it is orthogonal to the
unperturbed local orbital.

The response of the basis functions, the basis response,
is thus defined completely for general perturbations in the
effective potential in the MT spheres. Linear combination with
the wave-function coefficients yields ϕ̃

(1)
nk,I (r) [Eq. (32′)]. The

rest of the derivation is, as already mentioned in Ref. 18, in-
dependent of whether spherical or nonspherical perturbations
are considered. Therefore, we only give the final result here,

ϕ
(1)
nk,I (r)

=
∑
n′�N

n′ �=n

[ 〈ϕn′k|MI |ϕnk〉 + 〈ϕn′k|H − εn′k|ϕ̃(1)
nk,I 〉

εnk − εn′k

]
ϕn′k(r)

+
∫

d3r ′
[
δ(r − r′) −

∑
n′�N

ϕn′k(r)ϕ∗
n′k(r′)

]
ϕ̃

(1)
nk,I (r′) .

(7)

The first term is the usual sum-over-states expression of
standard perturbation theory (SPT) with an additional term
that we name Pulay term because it resembles the Pulay force
in atomic force calculations.24,25 It corrects for deviations of
the calculated single-particle wave functions ϕnk(r) from the
exact eigenstates. These deviations occur, especially for empty
states at high energies, due to the incompleteness of the basis
set.26 The last term, numerically much more important than
the Pulay term, contains in the square brackets a projection
operator onto the orthogonal space. Thus, this term, which
we call basis-response (BR) term, adds response contributions
that lie outside the Hilbert space spanned by the basis set or,
more specifically, the space spanned by the N wave functions.
We will later see that these contributions are substantial. This
concludes the definition of the IBC. It is easy to see that the
Pulay and basis-response terms vanish in the (theoretical) case
of a complete basis (and N = ∞).

B. Core-state response

In the FLAPW method, the core states are eigensolutions
of an atomic problem for the spherical part of the effective
potential inside the MT sphere including the −Z/r Coulomb
potential. The wave functions are thus determined as solutions
to the Dirac equation with atomic boundary conditions. In
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Ref. 18, we calculated the core response to a spherical
perturbation directly from the finite difference of the perturbed
and the unperturbed solution to the Dirac equation. However,
given the spherical core solver at hand, this approach cannot
be applied to nonspherical perturbations. Instead, we seek
solutions of the perturbed Dirac equation, for which we employ
the scalar-relativistic approximation for simplicity. For the
general case of a nonspherical perturbation, this leads to a
response in the form of Eq. (1), where l and m then correspond
to the angular momentum and magnetic quantum number of
the core state, and p can be taken as the principal quantum
number. The radial functions obey inhomogeneous differential
equations similar to Eq. (2), where one would have to add the
principal quantum number as an index to the radial functions
and energies. In this sense, what we termed basis response
above already yields the exact response of the core states, and
no SPT and Pulay term is required. The only difference is
that the radial differential equations are to be solved under
the additional boundary condition that the core-state response
approaches zero for r → ∞.

For a given core state with quantum numbers l and m,
a given perturbation MI (r) with I = (a,P,L,M) and a
given l′m′ channel of the response [Eq. (1)], we enforce
this boundary condition by a shooting approach, i.e., by
performing both outward and inward integrations.27 The
former starts at the first numerical radial mesh point rmin,
which is very close to the nucleus (r = 0), and the latter starts
at a large distance rmax (typically rmax = 20 a0 with Bohr’s
atomic radius a0) from the nucleus. Both end at the classical
turning point rTP defined by [l(l + 1)]/(2r2

TP) + Veff(rTP) = εc

with the core-state energy εc. Employing zero initial values
we construct two special solutions of the inhomogeneous
differential equation, {pout(r),qout(r)} and {pin(r),qin(r)},
where p(r)/r and q(r)/cr are the relativistic large and small
component, respectively. Then, two homogeneous solutions
{phom

out (r),qhom
out (r)} and {phom

in (r),qhom
in (r)} are obtained by

setting phom
out (rmin) and phom

in (rmax) to arbitrary finite values,
while qhom

out (rmin) and qhom
in (rmax) follow from the relations

limr→0 q(r)/p(r) = {[1 + l′(l′ + 1) − (Z/c)2]1/2 − 1}c2/Z

and limr→∞ q(r)/p(r) = −{−(E/2)/(1 + E/2c2)}1/2.28–30

The two sets of solutions are matched at rTP, giving two linear
equations pout(rTP) + aphom

out (rTP) = pin(rTP) + bphom
in (rTP)

and qout(rTP) + aqhom
out (rTP) = qin(rTP) + bqhom

in (rTP), from
which a and b are determined. In the case l = l′ the two
equations become linearly dependent, and the solution is
unique only up to a multiple of the core-state eigenfunction.
To fix the solution, we require it to be orthogonal to the
core eigenfunction. On the contrary, for l �= l′ no regular
homogeneous solution can exist that is continuous and
continuously differentiable over the whole range of radii
(since there is no eigenstate in the l′ channel with the same
eigenvalue). So, the solution of the linear equations is unique
in this case.

The so-obtained function, pout(r) + aphom
out (r) for r � rTP

and pin(r) + bphom
in (r) for r > rTP [analogously for q(r)], then

solves the inhomogeneous differential equation, is continuous
and continuously differentiable over the whole range of radii,
and goes to zero at infinity. For spherical perturbations the
present approach and the finite-difference method proposed
in Ref. 18 yield identical results (up to numerical accuracy)

when the scalar-relativistic approximation is used in both.
The scalar-relativistic approximation for the response has been
tested against the Dirac response for spherical perturbations
and the differences were insignificant for all materials consid-
ered so far.

III. APPLICATION TO EXX-OEP

As in Ref. 18, we apply the IBC to the OEP equation
[Eq. (4′)], which involves two response functions, one for
the electron density and one for the KS single-particle states.
With the results of the previous section, the former is given by
Eq. (36′), while the latter combines with the EXX functional
to a corrected expression for the right-hand side of the OEP
equation given by Eq. (37′).

To demonstrate the performance of the IBC, we cal-
culate the antiferromagnetic (AFM-II, i.e., ferromagnetic
(111) planes are coupled antiferromagetically along the [111]
direction) bulk phase of NiO in the NaCl structure with four
atoms in the unit cell. In this electronically complex material
the localized Ni 3d states are only partially occupied: Due
to the crystal field the 3d states are split into three occupied
t2g and two empty eg states in one spin channel,31 while the
3d shell of the other spin channel is completely filled. This
partial 3d occupation gives rise to a pronounced anisotropy
in the electron density distribution around the Ni atoms and,
as a consequence, also in the calculated optimized effective
potential V σ

x (r), where σ is the spin quantum number. Thus,
nonspherical terms in V σ

x (r) play a crucial role. The restriction
of the IBC to spherical perturbations, while successful in other
materials, turns out to be inadequate, and the generalization of
the IBC is absolutely essential.

The calculations are performed at the experimental lattice
constant of 7.882 a0 and with LAPW cutoff values Gmax =
4.1 a−1

0 and lmax = 8 for the linear and angular momenta,
respectively. For the mixed product basis we employ G′

max =
3.0 a−1

0 and Lmax = 4.22,32 The Ni 3s and 3p semicore states are
described as valence electrons by local orbitals. The Brillouin
zone (BZ) is sampled with a 2 × 2 × 2 and a 4 × 4 × 4 k-point
set in the test calculations and the calculations for Table II,
respectively. We consider the convergence of the LAPW basis
set only in the MT spheres, while the convergence in terms
of Gmax is much less demanding in practice and will not be
discussed any further. We improve the description in the MT
spheres by adding local orbitals with energy parameters in
the unoccupied spectrum; we add from one (nLO = 1) up to
six (nLO = 6) sets of local orbitals per atom and lm channel
with 0 � l � 6,32 corresponding to 196 up to 1176 additional
functions.

Figure 1 shows the trace of the density response function
χs of NiO [tr(χ↑

s ) and tr(χ↓
s ) are identical due to the

antiferromagnetic structure] in terms of the parameter nLO.
The top axis gives the corresponding size of the basis set. All
calculated states are included in the sums of Eq. (36′). We omit
the response of the core states (Sec. II B) as they would merely
shift the curves downwards. We distinguish between elements
corresponding to functions without (solid lines, left scale) and
with spherical symmetry (dashed lines, right scale) as well
as between the SPT term, the BR term, the Pulay term, and
their sum. The inset shows the latter on a finer scale. We see
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FIG. 1. (Color online) Convergence of the trace of the density
response matrix χs for antiferromagnetic NiO as a function of nLO,
which determines the size of the basis set given in the top axis. The
trace is over the spherical (dashed lines, right scale) and nonspherical
MT parts of χs (solid lines, left scale). The (green) crosses, (blue)
stars, and (orange) squares correspond to the SPT, BR, and Pulay
terms, respectively. The sum of all terms is shown as (red) pluses.

that the nonspherical part of χs exhibits the same convergence
behavior as the spherical part; also compare the corresponding
plot for ScN in Ref. 18. The SPT term, the standard expression
usually used in linear response calculations, shows a very slow
convergence with respect to the size of the basis set. The IBC
accounts for nearly 100% for what is missing in the SPT
term as evidenced by the lines representing the sums of all
terms, which appear to be nearly constant on the scale of the
graph; also compare the finer scale in the insets. A very precise
response function is achieved already with the conventional
LAPW basis (nLO = 0). We also see that the spherical and the
nonspherical parts of χs converge equally fast with respect to
the basis-set size. Without showing further results, we note
that the right-hand side of the OEP equation benefits from the
IBC in a similar way.

So far, all calculated states (as many as there are basis
functions) have been considered in Eq. (36′), i.e., all occupied
and unoccupied states. Now, we treat the number of unoc-
cupied states as a convergence parameter and examine for
fixed basis sets the convergence behavior of the trace tr(χs).
Figure 2(a) shows the corresponding SPT, Pulay, and BR terms
and their sum including spherical and nonspherical elements
for nLO = 0 and nLO = 6. Similarly to Fig. 3 in Ref. 18, the sum
converges very rapidly as a function of the number of empty
states. The slight zigzag behavior of the sum between the
circles and squares corresponds to the difference in values for
nLO = 0 and nLO = 6 in Fig. 1. Figure 2(b) shows these curves
on a finer scale including results for nLO = 1 for comparison.
Up to now, we have only shown results for that part of χs

that corresponds to perturbations in the MT spheres. These are
the perturbations for which the IBC is defined. The response
to perturbations in the interstitial, on the other hand, is only
covered by the SPT term. Fortunately, the interstitial response
exhibits a favorable convergence behavior with respect to the
unoccupied states, as shown by the solid line in Fig. 2(b), so
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FIG. 2. (Color online) (a) Convergence of the SPT [(green) open
symbols], BR [(blue) solid symbols], and Pulay terms [(orange) half-
solid symbols] of the MT part of tr(χs) as well as their sum [(red) open
symbols] as a function of the number of unoccupied states. Circles
and squares are used to distinguish the cases nLO = 0 and 6. Figure
(b) shows in addition results for nLO = 1 [(red) crosses] and the total
trace including the interstitial part [(magenta) solid line]. (We note
that for these calculations the reciprocal cutoff value was increased
to Gmax = 5.1 a−1

0 to generate enough states.)

that good convergence is achieved for the whole of the density
response matrix.

We now turn to the local exchange potential V σ
x (r) obtained

as the solution of the OEP equation [Eq. (4′)]. Figure 3 shows
the spin-up and spin-down potential at the Ni site. The former
is lower in energy than the latter, which favors occupation
of spin-up states at this Ni atom. The local magnetization
thus points in the direction of spin up. In the (111) plane
[Fig. 3(a)], in which the Ni atoms order ferromagnetically,
the potential is circularly symmetric (on the scale of the
diagram), which is due to the symmetry of the crystal and
magnetic structure. In the spin-down channel, only the t2g

states are filled, while the eg states are empty leading to the
circularly symmetric potential on the (111) plane when we
disregard for the moment contributions from higher angular
momenta (l > 2). The antiferromagnetic order breaks the
cubic symmetry of the lattice. But since it is along the [111]
direction, it leaves the symmetry in the (111) plane intact,
and the potential remains symmetric. The same applies to the
spin-up channel, in which the whole 3d shell is occupied. Very
slight deviations from circular symmetry, not visible on the
scale of the diagram, arise from including angular momenta
beyond l = 2. In the (110) plane, which is perpendicular to
the ferromagnetic planes, we still find an approximate circular
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FIG. 3. (Color online) Local exchange potential V σ
x (r) of antifer-

romagnetic NiO at the Ni atom (a) in the ferromagnetically ordered
(111) plane as well as (b),(c) in the perpendicular (110) plane for
the two spin channels, where the up spin is in the direction of local
magnetization. While V σ

x (r) is approximately circularly symmetric
in (a) and (b), it shows a pronounced direction dependence in (c).
Figure (b) also shows V σ

x (r) calculated without the IBC. (See Fig. 4.)

symmetry of the potential in the spin-up channel [Fig. 3(b)],
which—together with the symmetry seen in (a)—makes the
spin-up potential nearly isotropic. However, in contrast to the
(111) plane, the direction dependence becomes clearly visible
in the diagram. A much stronger effect is, however, seen when
the 3d shell is not completely filled. Figure 3(c) shows the
spin-down potential for several directions in the plane (110)
from 0◦ [perpendicular to the (111) plane] over 90◦ [parallel
to the (111) plane] to 150◦; the direction 180◦ is identical to
0◦ owing to the twofold rotational symmetry. There is a clear
difference between the potential along the ferromagnetic plane
(90◦) and the one that connects to the neighboring Ni plane
with opposite magnetization (0◦). We also observe a strong
influence of the immediate atomic environment: there is a
maximum in the direction of the nearest oxygen atom at around
60◦ and a smaller maximum in the direction of the oxygen atom
of the neighboring plane at around 150◦ (see Fig. 4). This

FIG. 4. (Color online) (110) plane of NiO; Ni atoms are shown
as the large bright (grey) and dark (blue) balls for spin up and down,
respectively; the O atoms are shown as small (red) balls. The open
balls refer to atoms located on the neighboring plane. The 0◦, 90◦,
and 180◦ directions corresponding to Fig. 3 are indicated.

strong direction dependence of the spin-down potential makes
the generalization of the IBC to nonspherical perturbations
absolutely necessary for obtaining a well converged potential
already with the conventional LAPW basis (nLO = 0). In
Fig. 3(b) we indicate the potential calculated without the IBC
as a comparison. It exhibits unphysically strong oscillations,
especially at the positions of the intershell humps, pointing at
an underconverged density response function.

The augmentation of the LAPW basis by local orbitals
leads to changes of the EXX potential which would be (nearly)
indistinguishable on the scale of Fig. 3. Between nLO = 0 and
nLO = 1 maximal absolute changes of the potential of 0.06 Htr
occur in the vicinity of the intershell humps. These correspond
to a relative change of 3%, demonstrating that the generalized
IBC leads to a stable and physical EXX potential already at
the conventional LAPW basis set with nLO = 0.

Finally, we analyze the convergence of the EXX transition
energies for NiO as a function of the quality of the LAPW
basis set. In particular, we focus on the KS transitions between
the highest occupied and the lowest unoccupied state at the 	,
L, and F points of the rhombohedral BZ of NiO. The rhombo-
hedral BZ with its high-symmetry points is illustrated in Fig. 3
of Ref. 33. We show in Table I PBE and EXX KS transition
energies as a function of the number of local orbitals nLO

added to the LAPW basis for each atom in all lm channels with
0 � l � 6. In the case of the EXX functional we moreover dis-
tinguish two cases: (a) only the SPT term is taken into account
in the computation, and (b) the generalized IBC is employed.

We perform a single EXX-OEP iteration starting from the
self-consistent PBE potential for each basis set, characterized
by the number of local orbitals added. Then, in order to
eliminate possible linearization errors of the basis,34 the OEP
Hamiltonian is diagonalized with the most accurate basis set
(nLO = 6) so that the variations in the transition energies can
be solely attributed to the precision of the EXX potential.

In accordance with the previous analysis, the transition
energies exhibit a very slow convergence in case (a). Between
nLO = 0 and nLO = 6, for example, the 	 → 	 transition
energy changes by as much as 2.402 eV. Not even with
nLO = 6 can we achieve satisfactory convergence. With the
generalized IBC, however, the KS transition energies are
already converged at nLO = 0 to a precision of 58 meV.
Adding one set of local orbitals yields a transition energy
that deviates from the fully converged one only by 15 meV. In
fact, by comparing with the first column of the table, we find
that this convergence behavior is similar in quality to that of
calculations with the much simpler semilocal PBE functional.

As already mentioned, the local exchange potential of
NiO is strongly nonspherical around the Ni atom, which
is a consequence of the partially filled 3d states. In fact,
if we restrict V σ

x (r) to be spherical by setting Lmax = 0,
we obtain a metal instead of a large-gap semiconductor in
EXX-OEP. For the same reason, the IBC restricted to spherical
perturbations (corresponding to the formulation of Ref. 18)
even worsens the results with respect to SPT because of an
imbalance between an underconverged nonspherical part of
V σ

x (r) and a well converged spherical part. This imbalance
pushes the system towards a metallic ground state. This is
in contrast to electronically less complex materials, such as
rocksalt ScN, where the X→X transition energy changes
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TABLE I. One-shot EXX KS band transition energies for antiferromagnetic NiO for LAPW basis sets augmented by up to six local orbitals
(nLO = 6) per atom and lm channel with 0 � l � 6. The (absolute) change 
 of the transition energies between nLO = 0 and nLO = 6 is shown
in the last row of the table. Fully converged results are given in Table II.

EXX

NiO PBE (a) SPT (b) SPT + IBC

nLO 	 → 	 L → L F → F 	 → 	 L → L F → F 	 → 	 L → L F → F

0 2.343 1.558 2.196 5.952 9.132 9.194 3.395 7.357 6.825
1 2.362 1.598 2.220 4.817 8.782 8.449 3.373 7.411 6.871
2 2.363 1.602 2.221 4.159 8.270 7.781 3.373 7.427 6.875
3 2.366 1.608 2.225 3.763 7.856 7.338 3.357 7.414 6.860
4 2.366 1.608 2.225 3.659 7.746 7.205 3.361 7.417 6.866
5 2.366 1.609 2.226 3.575 7.644 7.103 3.359 7.415 6.864
6 2.367 1.610 2.226 3.550 7.604 7.072 3.358 7.415 6.862

 0.024 0.052 0.030 2.402 1.528 2.122 0.037 0.058 0.037

by 220 meV (16 meV) between nLO = 0 (1) and nLO = 6
if only the SPT is employed. Including the spherical IBC,
the corresponding difference is reduced to 36 meV (5 meV),
whereas the generalized IBC reduces the difference further to
4 meV (<1 meV).

IV. DISCUSSION OF NiO

In this section, we discuss the electronic structure of
antiferromagnetic NiO as obtained with the EXX functional
and compare it to corresponding PBE and experimental results.

The most obvious result is an opening of the KS band
gap from 1.00 eV in the PBE approximation to 3.42 eV in
EXX. Including correlation35 on the level of LDA opens the
gap further by 0.23 eV. The EXX as well the EXX + LDAc
(EXXc) gaps are much closer to the experimental values of
4.0 eV36 and 4.3 eV37 than the PBE value. In comparison to the
pseudopotential EXXc calculation of Ref. 38, our all-electron
KS gap is smaller by 0.45 eV. We note that the KS gaps do not
include the derivative discontinuity of the exchange potential
(see Refs. 9 and 39 for a detailed discussion). Furthermore, we
observe an increase of the spin magnetic moment. In fact, the
EXX moment of 1.90 μB lies very close to the experimental
magnetic moment (cf. Table II).

Figure 5 shows the KS band structure and density of states
(DOS) calculated with the PBE and EXX functional. We

TABLE II. Fundamental band gap Egap (eV) and spin magnetic
moment Mspin (μB ) of antiferromagnetic NiO (AFM-II) calculated
with the VWN, PBE, EXX, and EXXc functionals and experimental
values. (Note that the experimental magnetic moment also contains
the orbital contribution.40) The values in brackets are taken from a
pseudopotential plane-wave study.38 All calculations are performed
with a 4 × 4 × 4 k-point set.

VWN PBE EXX EXXc Expt.

Egap 0.46 1.00 3.42 3.65 (4.10) 4.0a, 4.3b

Mspin 1.27 1.41 1.90 1.90 (1.89) 1.81c, 1.90d

aReference 36.
bReference 37.
cReference 41.
dReference 42.

distinguish between the two spin channels, where spin up again
refers to the direction of the magnetization of a given Ni atom.
We first focus on the occupied valence states. While in the PBE
calculation the spin-up and spin-down DOS of the occupied Ni
3d states overlap strongly, they are clearly separated by a gap of
0.8 eV in the EXX approach. The highest occupied states in the
EXX approach, which reside in the spin-down channel, exhibit
nearly pure Ni 3d character. In contrast, these states are a mix-
ture of spin-up and spin-down Ni 3d and O 2p states in the PBE
calculation. The O 2p states stretch out over the energy range
from −8 eV to 0 eV with small contributions even in the con-
duction states, whereas they are almost completely confined
within a region from −8 eV to −1.7 eV in the EXX approach.
The prominent peak at about −7.1 eV in the EXX spectrum
formed by the flat spin-down t2g bands, which is seen in exper-
iment (see below), is completely absent in the PBE calculation.

The PBE and EXX calculations predict valence band
maxima at different positions in the BZ. While the maximum
lies on the BZ path between the 	 and F points in the case of
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FIG. 5. (Color online) PBE (dashed black lines) and EXX (solid
black lines) KS band structure and density of states (DOS) (in units of
states/eV) for NiO. The contributions of the spin-up and spin-down
Ni 3d states to the total DOS (black line) are shown as the (red)
dot-dashed and (blue) dashed lines, respectively, and the partial DOS
for O 2p as the (green) dotted line.
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FIG. 6. Comparison of the EXX (solid line) and PBE (dashed
line) DOS of NiO with experimental spectra from x-ray photoe-
mission spectroscopy (XPS) and bremsstrahlung isochromat spec-
troscopy (BIS) (dashed line with dots) taken from Ref. 37.

the PBE functional, it is found in the vicinity of the L point for
the EXX functional. Similarly, the conduction band minimum
differs in both approaches. For the PBE functional it is located
on the BZ path between the T and K points, while it lies in the
center of the BZ for the EXX approach.

We observe that the opening of the band gap is accompanied
by a significant change of the lowest conduction bands. While
in the PBE approximation the lowest unoccupied band are
formed mainly from spin-down Ni 3d states with a parabolic
band of dominant Ni 4s character following above them, the
band ordering is reversed in the EXX band structure. The
lowest unoccupied state exhibits Ni 4s character, and the spin-
down Ni 3d bands appear at higher energies. We point out
that the discussed characteristics of the all-electron EXX band
structure and DOS are in very good agreement with previous
pseudopotentials results (cf. Fig. 5 of Ref. 38).

In Fig. 6, we compare the PBE and EXX DOS with the
experimental spectrum of NiO. The experimental spectrum
of the occupied states exhibits a double peak structure with
discrete peaks at −0.7 eV and −2.4 eV and a shallow peak
at −7.9 eV. Both the double peak structure and the peak at
−7.9 eV are reproduced by the EXX calculation. From the
PBE calculation, on the other hand, one would expect a single
broad peak below the Fermi energy and at least one additional
peak at about −4.8 eV, which is in contradiction to experiment.
The experimental spectrum of the unoccupied states measured
by inverse photoemission shows three peaks between 4 eV and
16 eV above the Fermi energy. The energetic position of the
first peak is strongly underestimated in the PBE calculation.
Due to the opening of the band gap by the EXX functional
(see above) the position of the first peak is shifted to a higher
energy so that it is in good agreement with the peak found
in experiment, albeit slightly overestimated. The two other

experimental peaks, while absent in PBE, are reproduced by
EXX, however at smaller energies.

V. CONCLUSIONS

In this work, we extended the incomplete-basis-set cor-
rection (IBC), introduced in Ref. 18 for the calculation of
all-electron response functions, to nonspherical perturbations,
corresponding to response matrix elements that involve non-
spherical functions. The main ingredient of the IBC is the
response of the basis functions to perturbations in the effective
potential. This response is constructed from the solutions of
inhomogeneous differential equations in the muffin-tin (MT)
spheres, which can be understood as radial Sternheimer equa-
tions. Rather than by summing over unoccupied states, these
solutions are obtained straightforwardly by radial integration,
in a similar way as the construction of the MT basis functions
themselves.

In contrast to the simpler case of spherical perturbations in
the effective potential, the lm channels couple in the case of
nonspherical perturbations, and the basis response no longer
has pure angular character; it is given by a linear combination
over different angular momenta. Likewise, the response of the
core electrons to a nonspherical perturbation is calculated solv-
ing the scalar-relativistic Sternheimer equation by a shooting
method to obey the proper boundary conditions. We note that
the full-potential IBC is a rather general approach that can also
be applied to calculate the response due to a nonspherical per-
turbation caused by an external potential, even in all-electron
methods where the potential is restricted to be spherical.

We have applied the generalized IBC to the exact-
exchange (EXX) optimized-effective-potential (OEP) ap-
proach of Kohn-Sham (KS) density-functional theory. The
generalization of the IBC is crucial in systems that exhibit
strongly angular dependent electron densities around the nu-
clei. As an example, we have discussed antiferromagnetic NiO,
whose 3d shell is only partially occupied. The generalized IBC
leads to a converged KS density response function, a converged
EXX potential, and converged KS transition energies at much
smaller LAPW basis sets than without the correction. The
EXX-OEP calculations become numerically very stable, and
the converged EXX potential is obtained at a much smaller
computational cost. Basis-set convergence is realized as fast
as in conventional density-functional theory calculations using
standard or semilocal functionals.

In comparison to the PBE functional, the EXX-OEP ap-
proach leads to an opening of the band gap and an enhancement
of the spin magnetic moment of antiferromagnetic NiO so that
both values are in much better agreement with experiment.
Moreover, the EXX density of states shows a good agreement
to experimental spectra obtained from direct and inverse
photoemission experiments.
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