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Superconducting and pseudogap effects on the interplane conductivity and Raman scattering cross
section in the two-dimensional Hubbard model
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Cluster dynamical mean field methods are used to calculate the superconductivity-induced changes in the
interplane conductivity and Raman scattering cross section of the two-dimensional Hubbard model. When
superconductivity emerges from the pseudogap, the superconducting response is found to be diminished in
amplitude, broadened, and, in the case of the interplane conductivity, shifted to higher frequency. The results are
in agreement with data on high-temperature copper-oxide superconductors indicating that the Hubbard model
contains the essential low-energy physics of the pseudogap and its interplay with superconductivity in the
cuprates.
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I. OVERVIEW

Three important characteristics of the layered copper-
oxide materials such as YBa2Cu3O6+x are the existence of
a large-gap insulating phase when x = 0, of a “pseudogap”
regime involving a suppression of the density of states for a
range of x > 0, and of a dx2−y2 -symmetry superconducting
state occurring for a range of x which partly overlaps
the pseudogap regime. Understanding the relation (if any)
between these phenomena is one of the central issues in the
field. Two experimental probes which have been important
in the discussion of this issue are the interplane (c-axis)
conductivity and the B1g Raman scattering cross section.
These spectroscopies are interesting because they appear to be
controlled by the “antinodal” electrons which are most affected
by superconductivity and the pseudogap and exhibit dramatic
variations with temperature and carrier concentration. Both
of these probes reveal striking temperature and x-dependent
effects associated with the pseudogap and superconductivity,
which one would like to understand theoretically. The problem
has attracted considerable attention, but work to date has been
primarily based on approximate analytical approaches, often
involving particular phenomenologically chosen Ansätze for
the relevant physical processes.

The development of cluster dynamical mean field theory1–5

has changed the theoretical situation, providing an unbiased
(in the sense of not preselecting a particular interaction
channel or set of diagrams) numerical approach to determining
the properties of some of the basic models of condensed
matter physics. Recent algorithmic developments6–8 enable
implementations of this procedure which are now at the point
of providing a semiquantitative solution for the normal-state9

and superconducting10 properties of the two-dimensional
square-lattice Hubbard model, which is widely believed to
capture the essential physics of the high-transition-temperature
superconductors. Crucially, the new methods enable access
to clusters large enough to provide confidence that the true
behavior of the Hubbard model is revealed, and to low enough
temperatures that the superconducting state can be constructed.

Dynamical mean field methods have determined that the
Hubbard model exhibits a “pseudogap”9,11–29 where some re-
gions of the Brillouin zone are gapped and others are not16–19 as

well as a dx2−y2 -symmetry superconducting state.3,10,30–32 The
superconducting state can now be constructed and aspects of its
interplay with the pseudogap can be studied.10 Quasiparticle
properties10 and energetics33 have been determined. In this
paper, we use the methods to study the superconductivity-
induced changes in the interplane conductivity and B1g Raman
scattering cross section of the two-dimensional Hubbard
model.

The rest of the paper is organized as follows.
Section II presents the response functions to be computed,
gives more specifics of the physical phenomena of interest,
and outlines the theoretical methods used. Section III presents
the main new results of the paper: a computation of the
interplane conductivity and Raman scattering cross sections.
Section IV analyzes the results and their relation to experiment.
Section V summarizes the findings and outlines future direc-
tions for research. Appendixes provide calculational details.

II. INTRODUCTION

A. Model

The essential structural motif of the high-transition-
temperature copper-oxide superconductors is the CuO2 plane,
a square planar array of Cu ions, with an oxygen ion at
the midpoint of each Cu-Cu bond. It is by now accepted
that the interplane coupling is weak enough that it may for
most purposes be neglected, so that the basic physics problem
which must be understood concerns the motion of electrons
in a two-dimensional lattice with a square symmetry. The
interplane conductivity may then be studied by second-order
perturbation theory in the interplane coupling.

In the “parent compounds” of high-Tc superconductors, the
density of electrons is one per CuO2 unit, but the materials
are insulating with a large (∼1.5–2 eV) band gap.34 The
insulating behavior is widely supposed to be a consequence of
strong electronic correlations, related to the “Mott insulating”
phenomenon.35 Removing electrons (adding holes) produces
metallic and superconducting behavior. The superconducting
state is of dx2−y2 symmetry,36 with the superconducting gap
being maximal at the center of the zone-face [(π,0)] and
vanishing along the zone-diagonal [(0,0) → (π,π )] direction.
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Adding holes also produces a region of “pseudogapped”
behavior,37–39 in which even at temperatures above the su-
perconducting transition temperature the electronic density of
states is suppressed in the zone-face region but not in the
zone-diagonal region.

A widely, but not universally, accepted hypothesis35 is
that the basic theoretical model which describes the physics
of interest is the two-dimensional one-orbital square-lattice
Hubbard model, an idealized description which arises as a
low (ω � 1.5 eV) energy effective model of the underlying
material Hamiltonian. This model represents the physical
situation in terms of electrons moving among sites of a
two-dimensional square lattice, and subject to an interaction
U which disfavors double occupancy. In a mixed posi-
tion/momentum representation, we have

H =
∑
kσ

εkc
†
kσ ckσ + U

∑
i

ni↑ni↓. (1)

Here, c
†
iσ creates an electron of spin σ =↑ , ↓ on site i of

a two-dimensional square lattice of unit-lattice constant, c
†
kσ

is its Fourier transform to momentum space, εk is the energy
dispersion, and ni↑ = c

†
i↑ci↑ is the operator density of up-spin

electrons on site i. In the computations presented in this paper,
we take εk = −2t(cos kx + cos ky) with t = 0.35 eV. While
the dispersion is particle-hole symmetric, we consider nonzero
dopings for which the particle-hole symmetry is broken.

Because we wish to treat superconducting phenomena, it
will be convenient to write subsequent equations in terms of
the Nambu spinors

�
†
k =

(
c
†
k↑

c−k↓

)
(2)

and the corresponding matrix Nambu Green’s function defined
for imaginary time τ > 0 as

G(k,τ ) = −〈�†
k (τ )�k(0)〉. (3)

B. Formalism: Dynamical mean field method

Evaluation of the interplane conductivity and Raman scat-
tering amplitude require knowledge of the normal and anoma-
lous components of the electron Green’s function [Eq. (3)].
We obtain these using the dynamical cluster approximation1,31

(DCA) version of cluster dynamical mean field theory. In this
method, the Brillouin zone is divided into some number N of
equal volume patches labeled by a central momentum K and
the electron self-energy �(k,ω) is represented as a piecewise
constant function taking different values in each patch, so
defining φK (k) = 1 if k is in the patch labeled by K and
φK (k) = 0 otherwise,

�(k,ω) =
∑
K

φK (k)�K (ω). (4)

The �K are obtained from the solution of an N -site quantum
impurity model specified by the original Hubbard interaction
and a self-consistency equation which relates lattice [G(k,ω)]
and impurity [GK (ω)] quantities:

GK (ω) = N

∫
d2k

(2π )2
φK (k)G(k,ω). (5)
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FIG. 1. (Color online) Solid lines and filled circles (black online):
superconducting critical temperature of the Hubbard model with
nearest-neighbor hopping calculated for U = 6t using the eight-site
dynamical cluster approximation (see also Ref. 10). Dashed line (red
online) denotes crossover to normal-state pseudogap. Dotted lines
(blue online) indicate the temperatures studied in this paper. Note that
the temperature axis is cut off slightly below the lowest temperature
used in this study.

The solution of the impurity model in the normal and
superconducting states is obtained using continuous-time
quantum Monte Carlo methods8 with submatrix updates6,7 as
described in detail in Appendix A. These methods provide
solutions on the imaginary time or Matsubara frequency axis;
real frequency information is obtained from maximum entropy
analytical continuation as described in Appendix B.

The computational burden of DCA calculations rises
rapidly with cluster size N and interaction strength U . With the
computational resources available to us, study of temperatures
below the superconducting transition temperature at generic
dopings is feasible for U � 7 at N = 8, but to obtain data of
the precision needed for analytical continuation of response
functions we employ U = 6. Figure 1 plots the transition
temperature against carrier concentration for this U . The
onset of the normal-state pseudogap is also indicated as a
dashed line. As will be discussed in the Conclusions, this U

probably is slightly lower than the U which is relevant to the
real materials. In consequence, the superconducting region is
pushed to lower carrier concentrations than observed in the
real high-Tc materials.

C. Raman B1g and Raman B2g cross section

Raman scattering is a process in which an incident photon
at some frequency ωin polarized along some direction a is
scattered to an outgoing photon at some other frequency
ωout = ωin − 
 and some other polarization direction b. The
details of the Raman scattering process are complicated.
Both phonons and electrons may be important. The different
choices of incident and outgoing polarization lead to many
different symmetry channels. Often, to enhance the signal, the
incident or outgoing photon frequencies are tuned to be near
resonance with some other excitation of the solid. Providing a
detailed treatment of all of these effects is beyond the scope
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of this paper. Here, we will focus on electronic scattering
in the “B1g” channel at moderate energy transfers (
 small
compared to bandwidths or interband transition energies). In
this case, the basic Raman process is the creation of a particle-
hole pair of negligible net momentum. For B1g symmetry,
the amplitude for this process vanishes for electrons along
the zone diagonal and is maximal for electrons at the zone
face. We will also present a few results for B2g symmetry,
where the amplitude is maximal for zone-diagonal electrons
and vanishes at the antinodes. We follow the convention in the
literature and assume the simplest forms compatible with the
desired symmetries, which are

HRaman =
∑
kσ

Rkc
†
k,σ ckσ (6)

with (in B1g geometry)

RB1g

k = R(cos kx − cos ky) (7)

and (in B2g geometry)

RB2g

k = R sin kx sin ky. (8)

The amplitude R is not important for our purposes.
Equations (7) and (8) may be derived in the nonresonant limit
by use of a minimal coupling Ansatz and are widely used in
the literature.

Standard linear response methods may then be used to
obtain the susceptibility χ (
) which characterizes the Raman
response. The result involves both the electron Green’s
function and a vertex function describing the interaction of the
particle-hole pairs created by the Raman process. Computation
of the vertex function is very challenging. With the methods
used here it has been recently attempted for a wide frequency
range analysis of the normal-state Raman cross section.40 The
method is too expensive to be run in the superconducting state
on today’s computers, but the results of Ref. 40 indicate that
while vertex corrections have a crucial effect at low dopings
and high frequencies (∼0.5 eV where they express, e.g., the
two-magnon contribution), they are much less important at
the low frequencies of interest here. We therefore neglect the
vertex corrections, so that on the Matsubara axis and in Nambu
notation

χ (
n) = T
∑
ωn,k

Tr
[
R2

kτ3G(k,ωn + 
n)τ3G(k,ωn)
]
. (9)

The presence of the τ3 factors in the expression for
the Raman reflects the fact that the Raman probe does couple
to a quasiparticle at the gap edge. We evaluate the response
function on the imaginary axis and then analytically continue
the result (see Appendix B).

D. Interplane conductivity

The computation of the interplane coupling begins from an
Ansatz for the coupling between planes. Electronic-structure
calculations indicate that the coupling is small,41–44 so only
electron hopping between adjacent planes need be considered.
This is parametrized by a hopping amplitude t⊥(kx,ky)
which connects an electronic state at in-plane momentum
(kx,ky) in one plane with an electronic state of the same
in-plane momentum in an adjacent plane. (Some authors have

considered impurity-mediated interplane coupling45 which
does not conserve momentum, but we will restrict attention
to the ideal undisordered situation here.) Gauge invariance
considerations then imply that the coupling of electrons to an
electric field in the interplane direction may be determined by
multiplying the interplane hopping by the usual Peierls phase
factor involving the vector potential 	A = Aêz with êz denoting
the direction perpendicular to the planes. Band-theory and
tight-binding46,47 considerations indicate that t⊥ has a strong
momentum dependence for simple “one-layer” systems such
as La2−xCuO4 or TlBa2CuO6, so the final result is (setting
e = h̄ = c =interplane distance= 1)

t⊥(kx,ky ; A) = −t⊥(cos kx − cos ky)2eiA. (10)

Thus, the interplane hopping amplitude vanishes for momenta
along the diagonals of the two-dimensional Brillouin zone
and is maximal at the zone faces implying, as many authors
have noted,45–47 that the c-axis conductivity is in effect a
spectroscopy of the behavior of the zone-face electrons.
In bilayer systems such as YBa2Cu3O6+x , the interbilayer
coupling has the form given by Eq. (10) but the intrabilayer
coupling may also have contributions from the zone-diagonal
electrons.48 These complications will not be addressed in this
paper.

In Nambu notation, the Hamiltonian giving the interplane
coupling is then

H⊥ =
∑

j ;kx ,kyσ

�
†
j+1,kx,ky t⊥(kx,ky)eiAτ3τ3�j,kx,ky + H.c.

(11)

Here, τ3 is the Pauli matrix acting in Nambu space and for
simplicity we have assumed t⊥ to be the same between all
planes.

We now use standard linear response theory to write an
expression for the conductivity valid to leading nontrivial order
in both the applied vector potential and the interplane coupling.
The conductivity is as usual the sum of paramagnetic and
diamagnetic terms. In Matsubara space, we have

σc(
n) = σD
c (
n) + σP

c (
n) (12)

with

σD
c (
n) = T


n

∑
mk

Tr[t⊥(k)2τ3G(k,ωm)τ3G(k,ωm)], (13)

σP
c (
n) = T


n

∑
mk

Tr[t⊥(k)2G(k,ωm + 
n)G(k,ωm)]. (14)

The absence of τ3 factors in the expression for σP
c encodes

the fact that a quasiparticle with energy equal to the super-
conducting gap is an equal admixture of electron and hole
states, which because it is chargeless does not couple to an
applied electric field. In materials with a bilayer structure, extra
contributions appear in the conductivity related to intrabilayer
plasmon excitations;48 these will not be considered here.

In one important respect, the piecewise constant self-
energy, an essential feature of the DCA dynamical mean
field approximation, is problematic. As can be seen from
Eq. (10), there is an interplay between the magnitude of the
superconducting gap ∼|kx − ky | and the interplane coupling.
Near the nodes, the superconducting gap is larger than
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the interplane coupling, meaning that the contribution of
nodal quasiparticles to the low-frequency response is strongly
suppressed. On the other hand, in the DCA approximation the
entire momentum sector containing the nodal point is gapless,
so that the Drude response of nodal quasiparticles contributes
strongly to the low-frequency response. In our calculations, we
therefore suppress the nodal region completely by integrating
only over momenta corresponding to the antinodal sector. (This
issue also arises in the Raman case, but is not important for the
analysis because the response is suppressed at low frequen-
cies.) One may view our approximation as using an interlayer
coupling which has the same momentum discretization as the
DCA approximation.

The c-axis superfluid stiffness ρc,S is given by49

ρc,S = T
∑
n,k

t⊥(k)2Tr[τ3G(k,ωn)τ3G(k,ωn)

− G(k,ωn)G(k,ωn)] (15)

and the interplane conductivity may be rewritten as

σc(
n) = ρc,S

i
n

+ σ ′
c(
n) (16)

with

σ ′
c(
n) = σP

c (
n) − T




∑
n,k

t⊥(k)2Tr[G(k,ωn).G(k,ωn)].

(17)

To obtain real-frequency conductivities, we construct
χc(
n) = 
nσ

P
c (
n), which is then analytically continued

using the methods employed for the Raman case as discussed
in Appendix B and from this construct the continued σ

′
c and

thus σc.

We remark that the interplane spectral weight

Sc =
∫

dω

π
σc(ω) (18)

is given by 
nσ
D
c (
n) (Ref. 47) (note that the integral includes

the superfluid delta function if present).

III. RESULTS

A. Raman B1g and Raman B2g cross section

Figure 2 presents one of the principal results of this
paper: the doping dependence of the B1g-symmetry Raman
response of the two-dimensional Hubbard model for several
carrier concentrations at interaction strength U = 6t . This
sequence of carrier concentrations corresponds to the cuts
across the phase diagram shown as dotted lines in Fig. 1. The
cuts include both Fermi-liquid and pseudogapped regimes,
and temperatures both above T = t/30 ≈ 140 K (using t =
0.35 eV) and well below the highest superconducting transition
temperatures (T = t/60 ≈ 70 K ≈ T max

c /2).
The upper left panel of Fig. 2 presents results obtained for

a high doping just outside the regime where superconductivity
is found at the temperatures we have studied. The high-
temperature Raman scattering amplitude (solid curve, black
online) has the features expected of a strongly correlated Fermi
liquid: a low-frequency peak (visible at ω ≈ 250 cm−1) is
characteristic of coherently propagating quasiparticles, while
the relatively featureless higher-frequency scattering intensity
is attributable to the incoherent part of the electron spectral
function. The peak frequency is related to the quasiparticle
scattering rate. Indeed, for quasiparticles with a momen-
tum nonconserving scattering rate qp/2, the Raman cross
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sc T = t/60
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FIG. 2. (Color online) B1g Raman scattering cross section plotted against frequency (expressed in wave numbers using t = 0.35 eV) for the
two-dimensional Hubbard model with U = 6t at carrier concentrations 0.148 (top left), 0.102 (top middle), 0.075 (top right), 0.053 (bottom
left), 0.032 (bottom middle), and 0.015 (bottom right). Solid curve (black online) T = t/30; dotted-dashed curve (red online) T = t/60, normal
state; dashed curve (blue online) T = t/60, superconducting state. Label shading (color online) corresponds to color of curves for this doping
in other figures.
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section is

χ
qp

B1g
(
) = χ0



qp

1 + (



qp

)2 . (19)

As the temperature is decreased the low-frequency peak moves
to lower energy, indicating a decrease in scattering rate. For
further discussion of the normal-state issues, see Refs. 25 and
40 and note that especially at lower dopings the frequency
dependence at frequencies �1500 cm−1 is affected by vertex
corrections not considered here.40

The upper middle and upper right panels of Fig. 2 show
dopings within the superconducting regime. For x = 0.1
the normal-state Fermi-liquid coherence effects are almost
invisible. At the higher temperature T = t/30, the scattering
rate is large enough that the quasiparticle peak has merged with
the continuum. As the temperature is lowered in the normal
state, a modest increase in the low-frequency slope (decrease
in scattering rate) is evident and a hint of a quasiparticle
peak is seen as a very weak minimum at 
 ∼ 250 cm−1, but
there is no clear signature of coherent Fermi-liquid behavior
down to our lowest accessible temperature. x = 0.075 is
a carrier concentration at the boundary of the pseudogap
regime and near the maximum in the Tc versus doping plot.
The normal-state traces show a larger scattering rate (lower
slope at 
 → 0) and no trace of quasiparticle coherence is
visible.

At these carrier concentrations, the onset of superconduc-
tivity has dramatic effects. The low-frequency intensity is
suppressed, and a large peak becomes evident. This peak arises
from quasiparticle excitations across the superconducting gap.
It is visible in this response function because the coherence
factors are such that a quasiparticle at the gap edge couples to
the Raman probe. In an s-wave superconductor with a uniform
single-particle gap � the Raman intensity would diverge
∼1/

√

 − 2�. In a d-wave superconductor, the momentum

dependence of the gap eliminates the divergence, leaving just a
peak, but in our calculation the piecewise constant nature of the
self-energy means that a divergence similar to the s-wave case
will occur. However, the relatively strong inelastic scattering
leads to substantial thermal broadening of the divergence at the
temperatures accessible to us. The peak structure still provides
a good estimate of the gap 2�. At higher frequencies, the
superconducting-state Raman amplitude appears to be smaller
than the normal-state amplitude, but these differences are at
the edge of what can reasonably be resolved with presently
available analytical continuation techniques so it is not clear
how much significance can be attributed to this difference.

The association between the peak in the Raman scattering
intensity and the superconducting gap may be verified from
an examination of the electron spectral function (imaginary
part of the electron Green’s function divided by π ) shown for
two carrier concentrations in Fig. 3. There is not a one-to-one
correspondence since the Green’s function is averaged over
the (0,π ) momentum sector while the Raman intensity is in
essence the average of a product of two G over the sector, and
also involves coherence factors, but one may expect energy
scales to be similar. The lighter weight lines (maroon online)
show the normal (dashed line) and superconducting (solid line)
spectral functions for the doping x = 0.102 whose Raman
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]
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1
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 G

(π
,0

)(ω
)/π
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x = 0.032 ns
x = 0.102 sc
x = 0.032 sc

FIG. 3. (Color online) Imaginary part of (0,π ) sector electron
Green’s function (divided by π ) in normal (dashed lines) and
superconducting (solid lines) states for doping x = 0.102 (heavy
lines, maroon online) and x = 0.032 (lighter lines, blue online).

intensity is displayed in the upper middle panel of Fig. 2.
No normal-state pseudogap is visible. In the superconducting
state, a clear gap is evident. The peak-to-peak separation
∼600 cm−1 is seen to coincide with the peak position in the
Raman intensity.

The left and middle panels of the lower row of Fig. 2 display
results for lower-carrier concentrations, now well within the
pseudogap regime. The pseudogap can be identified from
the decrease in low-frequency normal-state Raman intensity
as temperature is lowered and a normal-state pseudogap
scale can be approximately identified from the frequency
at which the lower-temperature normal-state trace rejoins
the high-temperature trace (∼1100 cm−1 for x = 0.053 and
∼1400 cm−1 for x = 0.032). These estimates are in reasonable
accord with the pseudogap scales inferred from the normal-
state Green’s function. For example, the heavier dashed lines
(blue online) in Fig. 3 show the normal-state Green’s function
for doping x = 0.032. The pseudogap is clearly visible in
the normal-state Green’s function and defining the pseudogap
energy scale 2�pg as the peak-to-peak separation in the
spectral function gives 2�pg ≈ 1400 cm−1 in agreement with
the estimate from the Raman spectrum.

For these dopings, superconductivity again produces a
peak in the Raman cross section, but the peak is broader,
and the relative increase in amplitude less, than at higher
dopings. To demonstrate this more clearly, in Fig. 4 we
present the normal- and superconducting-state B1g Raman
scattering intensity, normalized to the value at 2000 cm−1

for x = 0.102 (intermediate shading, maroon online), 0.053
(light shading, red online), and 0.032 (dark shading, blue
online). This rescaled plot makes it clear that as parameters
are tuned through the pseudogap phase to the low-doping
superconducting boundary, the change in Raman intensity due
to superconductivity weakens both in relative and in absolute
terms.

It is interesting to compare our results to those obtained by
previous analytical techniques.50–52 We focus particularly on
the important work of Dahm, Manske, and Tewordt who used a
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FIG. 4. (Color online) B1g Raman scattering cross section in the
normal (dashed) and superconducting (solid) states for dopings x =
0.075 (light lines, red online), x = 0.053 (intermediate lines, green
online), and x = 0.032 (heavy lines, blue online). All curves are
normalized to the value at 2000 cm−1.

FLEX approximation which includes vertex corrections in the
Raman response, along with a phenomenological respresen-
tation of the pseudogap to study superconductivity-induced
changes in the Raman response of the Hubbard model. The
results are similar in important respects, most notably that the
onset of superconductivity leads to a suppression of intensity
at low frequencies and a peak at higher frequencies. Within
the FLEX approximation, vertex corrections are not found
to have an important effect on the superconductivity-induced
changes, further justifying the neglect of these effects here.
One important difference is that the phenomenological ap-
proximation used for the pseudogap in Ref. 51 leads to a peak
in the normal-state B1g response not found in our calculations
[see Fig. 5(a) of Ref. 51]. A second important difference is that
the nonperturbative (but coarse-grained in momentum space)
calculations presented here reveal a strong suppression of the
amplitude of the superconductivity-induced changes to the
Raman response as the doping is decreased into the pseudogap
phase; this is not found in the analytical calculations.

We have also computed the Raman scattering cross section
in the B2g scattering channel. The B2g matrix element
[Eq. (8)] is maximal in the zone-diagonal sector, and contribu-
tions from the antinodal sector which carries the information
about pseudogap and superconductivity are small. Representa-
tive results are displayed in Fig. 5. The evolution of the spectra
as temperature is lowered in the normal state is consistent with
that reported previously.25 At all dopings, a clear quasiparticle
peak is observed which becomes better defined as temperature
is lowered. The difference with the normal-state B1g spectra
reflects the momentum-space differentiation characteristic9,18

of the approach to the Mott transition in this model. The
zone-diagonal states which dominate the B2g response remain
more or less Fermi-liquid-like while more exotic physics
affects the states near the zone face which determine the
B1g response. The effects of superconductivity are difficult
to discern in the calculated spectrum because in the DCA
approximation used here the piecewise constant nature of the
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FIG. 5. (Color online) B2g Raman scattering cross section in the
normal state at high T (solid line, black online) and at low T (dashed
line, red online) and in the superconducting state at low T (dotted-
dashed line, blue online), for carrier concentration x = 0.102 (top
panel) and 0.053 (bottom panel).

self-energy means that the anomalous self-energy vanishes
in the entire zone-diagonal momentum sector where the B2g

matrix element is peaked. A DCA calculation of the effects
of superconductivity on the B2g spectra would require a much
finer momentum-space resolution, corresponding to N = 32
or larger, to capture the behavior of the superconducting gap
near the nodes. These cluster sizes are can not yet be studied
in the relevant range of T and U . It is interesting to note
that despite these limitations, the B2g spectra obtained here
are qualitatively similar to those previously obtained from the
analytical (FLEX) calculations.

B. Interplane conductivity

Figure 6 shows the interplane conductivity calculated
for the same parameters as the Raman scattering shown in
Fig. 2. The normal-state physics has previously been discussed
in the context of eight-site dynamical mean field theory
(DMFT) calculations25 and similar results for N = 2 and
4 have also been presented.18,29 Our normal-state results
are consistent with these previous works. The overdoped
case (upper left panel) exhibits a well-defined low-frequency
“Drude” peak which rapidly sharpens as the temperature is
decreased. As the doping is decreased, first the Drude peak
is broadened and decreased in amplitude, then the temper-
ature dependence ceases and a hint of pseudogap becomes
visible (upper right panel). With further decrease of doping,
the pseudogap becomes obvious; the pseudogap magnitude
increases as the doping decreases. Note the large changes
in y-axis scale between the two first panels, the panels for
intermediate doping, and the panels for low doping, reflecting
the drastic reduction of low-frequency interplane conductivity
as doping is decreased although for frequencies greater than
�3000 cm−1 the calculated interplane conductivity has only a
weak doping dependence.

Inspection of Fig. 6 shows that in the overdoped (x � 0.1)
regime, the low-frequency spectral weight (integral of the
conductivity over the region of the Drude peak) increases as
T is decreased. On the other hand, in the underdoped regime
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FIG. 6. (Color online) Real part of interplane conductivity plotted against frequency (expressed in wave numbers using t = 0.35 eV) for
the two-dimensional Hubbard model with U = 6t at carrier concentrations 0.148 (top left), 0.102 (top right), 0.075 (middle left), 0.053 (middle
right), 0.032 (bottom left), and 0.015 (bottom right). Solid curve (black online) T = t/30; dotted-dashed curve (red online) T = t/60, normal
state; dashed curve (blue online) T = t/60, superconducting state (n > 0.02). Label colors (online) distinguish doping levels: in other figures,
different dopings are indicated by the corresponding colors.

(x � 0.07), the formation of the pseudogap corresponds to a
decrease in the low-frequency spectral weight. To determine
if the spectral weight is drawn from other frequencies, we
present in Fig. 7 the kinetic energy, i.e., the integral of the
optical conductivity over all frequencies. We see that for
the normal-state calculations, as temperature is decreased the
kinetic energy indeed increases on the overdoped side while
on the underdoped side it decreases. We attribute the effect to
temperature-dependent modifications of the scattering rate for
the antinodal carriers.
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FIG. 7. (Color online) Interplane spectral weight Sc(x) [optical
integral obtained from Eq. (18)] as a function of doping x, in the
normal state at T = t/30 (circles, black online) and at T = t/60
in the normal state (dashed-dotted lines, squares, red online) and in
the superconducting state at T/t = 60 (dashed lines, diamonds, blue
online).

We now turn to the effects of superconductivity. At x =
0.102 where the superconductivity emerges from a more or
less Fermi-liquid state, the opening of the superconducting
gap causes a suppression of the conductivity at low frequency
(top middle panel). An increase in conductivity at a higher fre-
quency ∼600 cm−1 is also evident. As the doping is decreased
to the edge of the pseudogap regime (x = 0.075) and beyond,
we see that the peak in the superconducting conductivity
moves rapidly to higher energy, becoming comparable to the
pseudogap energy scale.

The existence of a superconductivity-induced peak is
interesting because the BCS coherence factors49 are such
that the conductivity vanishes at the superconducting gap
edge. Thus, in standard BCS/dirty limit calculations of the
c-axis optical response of a layered superconductor,47 this
increase does not occur: at 
 = 0 the superconducting state
conductivity lies below the corresponding normal-state curve.
The changes therefore should be interpreted as arising from
superconductivity-induced changes in the electron scattering
rate, presumably associated with the pseudogap. Comparison
of Fig. 6 to Fig. 2 shows that at the higher-carrier concentration,
the frequency scale in the peak in the superconducting-state
c-axis conductivity matches that in the Raman cross section,
while at the lower dopings the effects in the c-axis conductivity
clearly occur at the pseudogap scale, not the superconducting
gap scale.

An important characterization of the superfluid properties
is the c-axis superfluid stiffness, shown for a range of dopings
in Fig. 8. A clear maximum is visible. For dopings higher
than the maximum, the well-defined Drude peak observed
in the normal state means that conventional clean-limit (or
intermediate-scattering) BCS physics applies. The decrease in
penetration depth with increasing doping in this overdoped
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FIG. 8. Superfluid stiffness ρs determined in the superconducting
state at T = t/60 from Eq. (15), as a function of doping.

regime occurs because our lowest accessible temperature is
not far enough below the actual transition temperature, so
that thermal excitations have reduced the superfluid stiffness.
We believe that if the calculation could be performed at very
low temperatures, the superfluid stiffness would monotoni-
cally increase with doping until the high-doping end of the
superconducting range.

For the points x = 0.117,0.102, and 0.075, the accessible
temperatures are sufficiently far below Tc that the results reflect
the low-temperature limit. It is important to note that for the
value U = 6t studied here, x = 0.06 is approximately the
point of maximum transition temperature and that all of these
points lie outside the pseudogap regime. The decrease in pene-
tration depth is therefore not directly related to the pseudogap,
but is due instead to the rapid decrease with decreasing doping
of the low-frequency normal-state conductivity. As discussed
in Ref. 25, this decrease is due to the rapid increase of the
low-frequency scattering rate for antinodal electrons which is
a precursor to the pseudogap.

Comparison of Figs. 6 and 7 shows that for the dopings
0.12 > x > 0.06 where the low-temperature limit is reached,
the “Ferrell-Glover-Tinkham” sum rule is violated, at about
the 10% level. This means that the total optical integral
in the superconducting state (including the delta-function
contribution) is different than that in the normal state. The sign
of the violation depends on doping. On the overdoped side, we
see that the c-axis kinetic energy of the superconducting state
is less than that in the normal state at the same temperature. On
the other hand, in the underdoped state it is slightly greater. We
attribute these effects mainly to the superconductivity-induced
changes in the antinodal scattering rate (on the overdoped side)
and changes in the pseudogap (on the underdoped side).

IV. DISCUSSION

We begin the discussion by comparing our results to
experimental data53–68 (for reviews see also Refs. 52 and 69).
As has been previously observed (see Refs. 25 and 40), the
evolution of the normal-state B1g Raman amplitude with
doping and temperature is in good agreement with data.
Overdoped materials exhibit Raman spectra in reasonable
accord with the spectra shown in the upper left panel of Fig. 2,
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FIG. 9. (Color online) Difference of Raman intensity computed
in the superconducting state at temperature T = t/60 and in the
normal state at temperature T = t/30 for carrier concentrations x =
0.075,x = 0.053, and x = 0.032.

with a weak but visible coherent quasiparticle part which
steepens as T is reduced. For a doping-dependent temperature
less than about 150 K, a quasiparticle peak appears, centered at
∼200 cm−1. As the doping is decreased, first the peak vanishes
as in the upper right panel of Fig. 2 and then the pseudogap
leads to a suppression of the intensity over a wide range. See,
e.g., Fig. 1 of Ref. 70.

The superconductivity-induced changes are similarly in
reasonable qualitative agreement with the data. For overdoped
materials, the onset of superconductivity leads to a large
amplitude peak in the Raman intensity, at a frequency which
it is reasonable to interpret as twice the gap magnitude. As
doping is decreased, this peak moves to higher energy, loses
intensity, and broadens, and at very low doping the peak ceases
to be visible. To make this more evident, we plot in Fig. 9
the difference between the superconducting Raman spectra at
our lowest temperature T = t/60 and the normal-state Raman
spectra at T = t/30. These trends are in reasonable qualitative
agreement with the results presented in Fig. 4 of Ref. 71.

The theoretical curves shown in Fig. 2 reveal an addi-
tional remarkable result: at the lower dopings, the size of
the superconducting gap (position of the maximum in the
superconducting state Raman cross section) is less than the size
of the pseudogap (energy scale at which the two normal-state
traces merge). This phenomenon may also be observed by
comparing the peak-to-peak distances in the superconducting-
and normal-state x = 0.02 spectral functions shown in Fig. 3.
It is not found in previous approximate analytical work.51

That the onset of superconductivity leads to a decrease
in the gap scale suggests that superconductivity and the
pseudogap are competing phenomena. The correspondence
of the calculations to data suggest that this competition also
occurs in the actual materials. This idea is more extensively
discussed elsewhere.10,33

One set of quantitative differences is that the numerical
values for gaps, for the dopings delineating different regimes
and for the temperature scales are somewhat different in
the theory than in the experimental data. We believe this
is a consequence of the relatively small value of U = 6t
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which is numerically accessible to us. The results of Ref. 10
indicate that increasing U will increase the doping scales
and decrease the gap values. However, Refs. 71 and 72 also
report a coherence peak which remains reasonably sharp
even in underdoped materials,71 in contrast to the broadening
observed here, and also indicate that, apart from the B1g

coherence peak, the temperature-dependent changes are of
smaller magnitude than found in the calculations reported here.
These are important issues for future investigation.

We now turn to the interplane conductivity. Here, compar-
ison with experiment73–83 (see also Ref. 84) is complicated
because in “single-layer” compounds the coupling between
the planes is so weak that it is difficult to obtain reliable data
while in the YBCO family of materials where the interplane
conductivity is an order of magnitude larger, bilayer plasmon
effects complicate the interpretation of the data. Nevertheless,
several important points of comparison are possible. First, the
qualitative feature that the conductivity is significantly doping
dependent only at frequencies below ∼2000 cm−1 is consistent
with data (see, e.g., Fig. 2 of Ref. 48). Second, in optimal and
overdoped materials, the superconductivity-induced changes
correspond to a strong decrease in the absorption at frequencies
below ∼1000 cm−1 with only a weak increase at higher
frequencies >1000 cm−1. As the doping is decreased, the
amplitude of the changes due to superconductivity (both
the low-frequency decrease and the high-frequency increase)
rapidly become smaller. However, an important difference is
that the weak higher-frequency peak does not shift as much
with doping in the data as in the calculation.

The rapid drop in superfluid stiffness as doping is decreased
is consistent with observation [see, e.g., Fig. 2(a) of Ref. 85].
Our calculations reveal that the initial stages of the drop are not
due to the pseudogap per se, but instead reflect the dramatic
increase in low-frequency zone-face scattering rate which is a
precursor to the pseudgap.

V. CONCLUSIONS

The high-Tc copper-oxide superconductors exhibit both
dx2−y2 superconductivity and a normal-state “pseudogap.” In
some regions of phase space, these phenomena coexist and
manifestations in different spectroscopies of the interplay
between them has been of long-standing interest in condensed
matter physics. The results of this paper, taken in conjunction
with a wide range of previous work,3,9–31 strongly suggest that
the two-dimensional Hubbard model does contain the essence
of the pseudogap and d-wave superconductivity phenomena
observed in the cuprates. The essential ingredient in the
calculation is the electron Green’s function, which is affected
both by the pseudogap and by superconductivity. The interplay
between these two phenomena, in combination with the BCS
coherence factors, leads to the somewhat different behavior in
Raman and c-axis conductivities. In the c-axis conductivity,
the key doping-dependent changes reflect a precursor of the
pseudogap, namely, the rapid increase in the scattering rate
for electrons near the zone face. The correspondence between
the calculated and measured Raman spectra lends support to
the proposal10 that when superconductivity emerges from the
pseudogap regime, the gap is decreased.

The calculations presented here are not in precise cor-
respondence to data. Because of limits on computational
resources, they are performed for an interaction strength
U = 6t and with no second-neighbor hopping t ′. The onset
of the pseudogap and the maximum in Tc occur at doping
x ≈ 0.07 rather than the ≈0.14 observed experimentally.39

Available evidence10,25 indicates that the phase boundaries
move to larger x as U is increased, but increasing U or
t

′
dramatically increases the severity of the fermion sign

problem which is the crucial limiting factor in the calculation.
Similarly, we studied the N = 8 cluster dynamical mean
field approximation because for larger cluster sizes, studies
at the necessary low temperatures and strong interactions are
computationally too expensive. For N = 8 (and for N = 16,
not studied here) the piecewise constant self-energy used in
the DCA dynamical mean field method produces a gap with
three values: +� in the region of one antinode, −� at the
other antinode, and 0 along the zone diagonal. The much
larger (N = 25,36) clusters needed to resolve the details of the
momentum dependence of the gap are at present simply not
accessible at the low temperatures needed for these studies.
However, results presented so far in the literature9 make it
clear that the N = 8, U = 6 case studied here represents many
essential features of the model.

In summary, the physical picture emerging from these and
other calculations is that the various charge-related experimen-
tal spectroscopies of the pseudogap and superconductivity may
be understood in terms of the pseudogap and superconductivity
effects on the electron propagator, and that these effects
may reasonably be studied in terms of the two-dimensional
Hubbard model. The important open theoretical issues are
to extend the formalism to the computation of magnetic
quantities (which requires a treatment of vertex functions)
and to understand the physical origin, in the model, of
the superconductivity and the pseudogap. More generally,
relating these and related results to the more refined picture
of the cuprates now becoming available, in particular to the
growing evidence for the importance of charge and spin stripe
ordering,86–90 is an important open question.
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APPENDIX A: NUMERICAL METHODOLOGY

We use a momentum-space (DCA) formulation of dynam-
ical mean field theory, written following31 in Nambu space,
thereby allowing for superconducting order.10 We restrict
our solution to the paramagnetic phase, suppressing long-
ranged antiferromagnetism but allowing for antiferromagnetic
fluctuations (albeit coarse grained to the momentum resolution
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of the cluster). We focus on clusters of size eight; a size that
is a compromise between accuracy (DCA becomes exact as
N → ∞ but is approximate for any finite N ) and numerical
expense (away from half-filling, the cost of simulations
as a function of U , N , and T −1 increases exponentially
due to the fermionic sign problem). The N = 8 cluster
approximation was found in previous work9 in the normal
state to be large enough to distinguish generic N → ∞
behavior from that specific to particular clusters. Work in
the superconducting state10 showed similar behavior but large
differences to simulations on smaller clusters (both CDMFT
and DCA).

The formalism requires an impurity solver formulated in
Nambu space. Due to the small energy difference between
the superconducting- and the normal-state solutions,33 an
unbiased, numerically exact solution of the impurity model is
required. Continuous-time quantum Monte Carlo methods6,8

are the only impurity solver methods able to access to
couplings strong enough to produce a pseudogap at tem-
peratures low enough to construct the superconducting state
numerically exactly. A variant of the continuous-time auxiliary
field (CT-AUX) impurity solver with “submatrix update”
numerical techniques7 makes such simulations feasible in
practice. The solver requires a decoupling of the (repulsive)
Hubbard interaction in Nambu space, which is implemented
analogously to the one in normal state presented in Ref. 6. The
extension to Nambu space means that all matrices are twice as
large as in a normal-state computation at the same temperature.

We have found that the most stable procedure to ob-
tain a converged solution is to begin at a relatively high
temperature (e.g., T = t/10) and introduce a pairing field
η1(k) = η1φk via the replacement G(k,iωn; η1) = [iωnτ0 +
(μ − εk)τ3 + η1(k)τ1 − �]−1 with, e.g., φk = cos kx − cos ky

for d-wave superconductivity, and η1 typically 0.1t. Retaining
the pairing field, we obtain converged solutions G(K,iωn; η1)
first at the initial temperature, then, using the solution at the
initial temperature as a seed, at the desired range of lower
temperatures. We remark that the sign problem for large η1

is less severe than at η = 0, so these computations are not
inordinately expensive.

Then, at each temperature, using the converged
G(K,iωn; η1) as a seed, we set η1 = 0 in the self-consistency
condition and continue iterating until convergence is reached.
At selected points, we check the solution by taking the
putatively converged self-energy, dividing the anomalous part
by a large number (typically 20), and verifying that under
further iterations the solution converges back to the one
previously found (see also Supplemental Material of Ref. 10).

The formalism produces normal and anomalous Matsubara
Green’s functions GA/N (iωn) and self-energies �A/N (iωn),
with constant relative errors of �: ��

�
∼ const as a function of

Matsubara frequency. We then use �A and �N to evaluate the
expressions for the conductivity and the stiffness [Eqs. (17) and
(15)] and the “bubble” term of the Raman response [Eq. (9)] on
the Matsubara axis. We neglect the Raman vertex corrections
that have been introduced in Ref. 40, based on the fact that they
are (a) found to be small for small (real) frequencies, where we
see the large superconducting response, and (b) at the moment
too expensive to compute numerically to the accuracy required
for analytic continuation.

APPENDIX B: ANALYTICAL CONTINUATION

In the condensed matter physics context, the analytical
continuation problem is the inversion of a relation of the
general form

M(i
n) =
∫

dx

π

S(x)

i
n − x
, (B1)

where M is a quantity measured on the imaginary frequency
(or time) axis with measurement uncertainties which are
relatively small, assumed to be Gaussian and characterized
by a covariance matrix. S is the corresponding real axis
spectral function. Because the kernel 1/(i
n − x) has many
small eigenvalues, its inversion is an ill-posed problem. With
the statistical methods commonly used in condensed matter
physics, it is not easy to quantify the uncertainties in S arising
from the combination of the approximate inversion and the
measurement uncertainties in M . We view the process as
one of data fitting, which generates a spectral function that
is consistent with the Matsubara data within error bars. We
find that if the measurement uncertainties are sufficiently
small (our relative error is typically smaller than 10−4),
different implementations of the continuation process produce
a reasonably robust and consistent representation of data. In
general, the lower-frequency structures are most reliable and
small differences over large-frequency ranges are less robust
to variations due to choices in the continuation procedure.

In the most widely studied case, M is a measurement of the
electron Green’s function on the fermion Matsubara points
ωn = (2n + 1)πT and S is the electron spectral function,
which is non-negative and normalized so that∫ ∞

−∞
dx S(x) = 1. (B2)

We find that our covariance matrix for M(
n) is almost diag-
onal when measured in frequency space,25 so that correlations
between different bins can be neglected.

To continue the Raman scattering amplitude, we observe
that the Raman susceptibility also obeys a Kramers-Kronig
relation

χ (i
n) =
∫

dx

π

Imχ (x)

i
n − x
, (B3)

but here the spectral function is odd: Imχ (x) = −Imχ (−x).
To deal with this, we reformulate the problem as follows:

χ (i
n) =
∫

dx

π

Imχ (x)

x

x

i
n − x
(B4)

=
∫

dx

π

Imχ (x)

x

(
−1 + i
n

i
n − x

)
(B5)

= χ (i
n = 0) + i
n

∫
dx

π

C(x)

i
n − x
(B6)

with

C(x) = Imχ (x)

x
. (B7)

We then invert the equation

χ (i
n) − χ (i
n = 0)

i
n

=
∫

dx

π

C(x)

i
n − x
(B8)
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using standard methods to find C, which is normalized
according to

∫ ∞

−∞
dx C(x) = χ (i
n = 0) (B9)

and then construct the imaginary part of the Raman response
as χRaman = ωC(ω). The c-axis conductivity is continued in
a similar manner, defining χσc

(
n) = 
nσ
P
c (
n) and then

following the steps that led to Eq. (B6). We use the open-source
maximum entropy analytic continuation program available as
part of ALPS (Ref. 91) for all of our continuations.
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Méasson, J. S. Wen, Z. J. Xu, and G. D. Gu, J. Phys.: Conf. Ser.
449, 012011 (2013).

73C. C. Homes, T. Timusk, R. Liang, D. A. Bonn, and W. N. Hardy,
Phys. Rev. Lett. 71, 1645 (1993).

74C. Homes, T. Timusk, D. Bonn, R. Liang, and W. Hardy, Phys. C
(Amsterdam) 254, 265 (1995).

75D. N. Basov, H. A. Mook, B. Dabrowski, and T. Timusk, Phys. Rev.
B 52, R13141 (1995).

76T. Timusk, D. Basov, and C. Homes, J. Phys. Chem. Solids 56,
1821 (1995).

77S. Uchida, K. Tamasaku, and S. Tajima, Phys. Rev. B 53, 14558
(1996).

78C. Homes, Phys. C (Amsterdam) 432, 316 (2005).
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