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We report on the extension and implementation of the Sternheimer-GW method introduced by Giustino
et al. [Phys. Rev. B 81, 115105 (2010)] to the case of first-principles pseudopotential calculations based on a
plane-waves basis. The Sternheimer-GW method consists of calculating the GW self-energy operator without
resorting to the standard expansion over unoccupied Kohn-Sham electronic states. The Green’s function is
calculated by solving linear systems for frequencies along the real axis. The screened Coulomb interaction is
calculated for frequencies along the imaginary axis by using the Sternheimer equation. Analytic continuation to
the real axis is performed using Padé approximants. The generalized plasmon-pole approximation is avoided by
performing explicit calculations at multiple frequencies using Frommer’s multishift solver. We demonstrate our
methodology by reporting tests on common insulators and semiconductors, including Si, diamond, LiCl, and SiC.
Our calculated quasiparticle energies are in agreement with the results of fully converged calculations based on
the sum-over-states approach. As the Sternheimer-GW method yields the complete self-energy �(r,r′,ω) and not
only its expectation values on Kohn-Sham states, this work opens the way to nonperturbative GW calculations
and to direct calculations of spectral functions for angle-resolved photoemission spectroscopy. As an example of
the capabilities of the method we calculate the G0W0 spectral functions of silicon and diamond.
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I. INTRODUCTION

Quasiparticle GW calculations represent nowadays an es-
tablished theoretical and computational framework for study-
ing electronic excitations.1–4 Excitation energies calculated
using the GW method are generally in good agreement with
experiment in many cases, from bulk solids3 to surfaces and
interfaces,5–7 defects,8 and molecules.9 Recent advances in
this area include the move beyond many-body perturbation
theory and the use of the GW method for total energy
calculations.10–14 For a comprehensive review of the method,
history, and recent developments we refer the reader to
Refs. 15–18.

Despite the successes of the GW method and the growing
interest in this technology, the computational workload re-
mains considerably heavier than in ordinary density-functional
theory (DFT) calculations. As a rule of thumb, while standard
DFT total energy calculations scale as N3, N being the
number of atoms in the system, the scaling of GW calculations
is of the order of N4.19 An additional difficulty is that
traditionally GW calculations rely on a slowly converging
expansion over unoccupied Kohn-Sham states,3 and in some
cases fully converged calculations are exceedingly expensive.
Lastly, there remains an unresolved issue concerning the
energy dependence of the self-energy. While the original
generalized plasmon-pole approximation and its subsequent
improvements3,20,21 are gradually being replaced by more
recent approaches such as the contour deformation method22,23

and the analytic continuation technique,24–26 there is still a
need for a more robust and accurate procedure. This need is
especially relevant for the discussion of lifetime broadening in
photoelectron spectroscopy.7,27

Several recent studies addressed some of these limitations,
and devised procedures for calculating the screened Coulomb
interaction more efficiently than in the standard approach. For
instance Refs. 28 and 29 employ an optimal representation
of the electronic polarizability operator, and Refs. 30–32

use an iterative diagonalization to determine the most sig-
nificant eigenvectors of the dielectric matrix. Alternatively
Refs. 33–36 improve on the sum-over-states approach by
means of effective-energy techniques.

In a similar spirit Ref. 19 proposed a methodology for
calculating the GW self-energy without the need for un-
occupied electronic states. In this method both the Green’s
function and the screened Coulomb interaction are evaluated
through the direct solution of linear-response Sternheimer’s
equations. In the following we will refer to the method of
Ref. 19 as the “Sternheimer-GW” approach. The method of
Ref. 19 draws from techniques well established in the context
of density-functional perturbation theory for phonons,37,38 and
was used for calculating the dielectric matrix for the first time
in Ref. 39. Earlier attempts along the same lines involved
nonperturbative calculations using supercells.40

The main advantages of the Sternheimer-GW method are
as follows. (i) It avoids from the outset the use of unoccupied
Kohn-Sham states. This is important because fully converged
calculations are challenging and in some cases it is difficult to
reach a consensus on the “GW gap.”41–43 (ii) The numerical
convergence of all the quasiparticle shifts (both band gaps
and absolute corrections) is controlled by a single parameter,
precisely as in standard DFT calculations. (iii) Despite the
much improved accuracy, the computational workload is
similar to or even smaller than that in current sum-over-states
implementations.

In Ref. 19 the Sternheimer-GW approach was demonstrated
using a proof-of-concept pilot implementation based on
empirical pseudopotentials.44 In the present work we report on
the development and implementation of the Sternheimer-GW
method in a fully ab initio pseudopotential implementation
based on a plane-waves basis and exploiting the symmetry
operations of the crystal space group. Related work is currently
ongoing in order to extend the Sternheimer-GW method to the
case of local orbital basis sets.45,46
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In order to validate the ab initio Sternheimer-GW method
we calculate the quasiparticle energies for a few standard
semiconductors and insulators, including silicon, diamond,
lithium chloride, and silicon carbide. We compare our calcula-
tions with the results of the standard sum-over-states approach
and with experiment. We also present some initial results on
the complete quasiparticle spectral functions of silicon and
diamond, as obtained from our calculated GW self-energy.

The organization of the paper is as follows. Section II
reviews the formalism introduced in Ref. 19. In particular we
give an overview of the method in Sec. II A, we specialize the
equations to the case of a plane-wave basis in Sec. II B, and
we briefly discuss the calculation of the spectral function in
Sec. II C. Section III addresses the technical aspects of our new
developments. In particular we discuss how to exploit crystal
symmetry operations in order to minimize the computational
workload in Sec. III A. We address the frequency dependence
of the screened Coulomb interaction and of the Green’s
function in Sec. III B. In this section we also discuss Padé
approximants, frequency-dependent preconditioning, and the
multishift solver. The computational details of the present ab
initio implementation are described in Sec. III C. Section IV
presents our numerical results, including validation tests
for standard semiconductors and insulators (Sec. IV A) and
calculations of complete spectral functions (Sec. IV B). We
offer our conclusions and outlook in Sec. V.

II. FORMALISM FOR THE STERNHEIMER-GW METHOD

In this section we briefly review the general formalism
for Sternheimer-GW calculations introduced in Ref. 19 and
summarize the key equations for the case of a plane-wave basis.
Throughout the paper we will refer to the G0W0 approximation
for the self-energy, and we will limit the discussion to
spin-unpolarized systems. Hartree atomic units will be used
throughout.

A. Real-space formulation

In the GW approximation the self-energy � is given in
terms of the Green’s function G and the screened Coulomb
interaction W by3,15

�(r,r′; ω) = i

2π

∫ ∞

−∞
G(r,r′; ω + ω′)W (r,r′; ω′)e−iδω′

dω′,

(1)

where r and r′ are spatial coordinates, ω is the fre-
quency/energy, and δ is a positive infinitesimal. The Green’s
function in this equation is conveniently written as the sum of a
function GA which is analytic in the upper half of the complex
plane and a nonanalytic part GN.19 The explicit expressions
of these functions in terms of single-particle states ψn(r) with
eigenvalues εn are

GA(r,r′; ω) =
∑

n

ψn(r)ψ∗
n (r′)

ω − εn + iη
, (2)

where η is a positive real infinitesimal, and

GN(r,r′; ω) = 2πi
∑

v

δ(ω − εv)ψv(r)ψ∗
v (r′). (3)

The latter sum is restricted to occupied single-particle states
ψv of energy εv , and the functions δ(ω − εv) are Dirac’s
delta functions. The screened Coulomb interaction is formally
defined by the following Dyson’s equation:

W (r,r′; ω) = v(r,r′) +
∫

dr′′ W (r,r′′; ω)

×
∫

dr′′′P (r′′,r′′′; ω)v(r′′′,r′), (4)

where v(r,r′) = 1/|r − r′| is the bare Coulomb interaction,
and P is the irreducible polarizability. In the random-phase
approximation the polarizability can be expressed in terms of
single-particle states as follows:

P (r,r′; ω) = 2
∑
nm

fn − fm

εn − εm − ω
ψn(r)ψ∗

m(r)ψ∗
n (r′)ψm(r′),

(5)

where fn is 1 for occupied states and zero otherwise, and the
factor of 2 accounts for the spin degeneracy.

In the standard sum-over-states approach the sums in
Eqs. (2) and (5) are evaluated explicitly, and it is necessary to
include many unoccupied states in order to achieve numerical
convergence. This aspect is rather critical in many systems of
current interest.41–43,47–49 On the other hand the evaluation of
the nonanalytic part of the Green’s function in Eq. (3) does not
pose any problems and will not be discussed further.

In the Sternheimer-GW approach the sum over unoccupied
states is replaced by the solution of linear systems involving
only the occupied states.19,38,39 In order to proceed we rewrite
the Green’s function and the screened Coulomb interaction as
functions of the space coordinate r′, parametric in the variables
[r,ω]: G(r,r′,ω) = G[r,ω](r′) and W (r,r′,ω) = W[r,ω](r′). The
analytic component of the Green’s function is obtained by
solving the following linear system:

(Ĥ − ω − iη)GA
[r,ω] = −δ[r], (6)

where Ĥ is the single-particle Hamiltonian (i.e., the Kohn-
Sham Hamiltonian in what follows), and δ[r] is a Dirac delta
function centered at the position r. The screened Coulomb
interaction is obtained by solving, for each occupied state ψv ,
the following two Sternheimer’s equations corresponding to
the choices of sign ±:

(Ĥ − εv ± ω)	ψ±
v[r,ω] = −(1 − P̂occ)	V[r,ω]ψv. (7)

Here P̂occ is the projection operator onto the manifold of
occupied states, and 	ψ±

v[r,ω] are the variations of the single-
particle wave functions corresponding to the perturbation
	V[r,ω]. From these variations the change of the density matrix
can be calculated as

	n[r,ω] = 2
∑

v

ψ∗
v (	ψ+

v[r,ω] + 	ψ−
v[r,ω]). (8)

There are two possible choices for the perturbation 	V[r,ω]

in Eq. (7). (i) If the perturbation is set to the bare Coulomb
potential 	V[r,ω] = v(r,r′), then it can be shown19 that the
variation of the density matrix yields the dielectric matrix:

ε(r,r′,ω) = δ(r,r′) − 	n[r,ω]. (9)
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In order to obtain the screened Coulomb interaction this matrix
needs to be inverted:

W (r,r′,ω) =
∫

dr′′v(r,r′′) ε−1(r′′,r′,ω). (10)

(ii) The second possibility is to set the perturbation in Eq. (7)
to the screened Coulomb interaction: 	V[r,ω] = W (r,r′,ω). In
this case the variation of the density yields a Hartree potential
which screens the bare Coulomb interaction as follows:19

	V[r,ω] = v(r,r′) +
∫

dr′′	n[r,ω](r′′)v(r′′,r′). (11)

Since the perturbing potential now depends on the variation of
the density, in this second option Eq. (7) needs to be solved
self-consistently.

The choice between the self-consistent Sternheimer scheme
and the non-self-consistent scheme depends on the system
under consideration. The inversion of the dielectric matrix is
very fast for small systems; hence in this case the non-self-
consistent scheme of Eqs. (9) and (10) is advantageous. In
the case of large systems where memory requirements are
important, the self-consistent scheme of Eq. (11) is preferable.

B. Reciprocal-space formulation

In this section we summarize the equations for the
Sternheimer-GW method within a plane-wave implementa-
tion. An alternative formulation based on local orbitals was
presented in Ref. 45 and 46. The key advantages of a plane-
wave basis are (i) the possibility of controlling the numerical
accuracy of the calculations using a single parameter, i.e.,
the kinetic energy cutoff, and (ii) the availability of many
established electronic structure codes based on plane waves.

The derivation of the following equations is given in
Ref. 19; we here report only the key results. We denote by
G and G′ the reciprocal lattice vectors, k and q the Bloch
wave vectors, and � the volume of the unit cell. We assume
for ease of notation a uniform grid of Nk (Nq) wave vectors
in the first Brillouin zone, although this is not essential. Our
convention for transforming a two-point function F (r,r′,ω)
into its reciprocal-space counterpart f[k,G,ω](G′) is as follows:

F (r,r′,ω) = 1

Nk�

∑
k,GG′

e−i(k+G)·rf[k,G,ω](G′)ei(k+G′)·r′
. (12)

This convention is used for the Green’s function G, the bare
Coulomb interaction v, the screened Coulomb interaction W ,
and the self-energy �. The expansion of Bloch states ψnk is
defined by

ψnk(r) = 1√
�

∑
G

unk(G)ei(k+G)·r, (13)

where unk is the Bloch-periodic part of the wave function. The
linear variation of the occupied eigenfunctions appearing in
Eq. (7) has a slightly more complicated expansion:

	ψ±
vk[r,ω](r

′) = 1

Nq�

∑
qGG′

e−i(q+G)·rei(k+q+G′)·r′

×	u±
vk[q,G,ω](G

′). (14)

Here the appearance of the Bloch wave vectors k and k + q
in the exponentials is a consequence of the conservation of
crystal momentum in the Sternheimer equation.19,38

The counterpart of Eq. (6) for the analytic part of the Green’s
function in reciprocal space is

(Ĥk − ω − iη)gA
[k,G,ω](G

′) = − δ−GG′ , (15)

where Ĥk indicates the k-projected single-particle Hamil-
tonian. This equation is solved for each k and G using
standard methods based on conjugate-gradient solvers. The
frequency dependence is dealt with using Frommer’s multishift
method,50 as described in Sec. III B, and effectively requires
calculations only for one value of ω.

The reciprocal-space counterpart of Eq. (7) for the variation
of the wave functions induced by the Coulomb interaction is

(Ĥk+q − εvk ± ω)	u±
vk[q,G,ω] = −(

1 − P̂ k+q
occ

)
	v[q,G,ω]uvk,

(16)

where P̂
k+q
occ is the projector over the occupied states with

Bloch wave vector k + q. This equation is solved for each k, q,
G, and ω using standard conjugate-gradient techniques. Since
the linear operator Ĥk+q − εvk ± ω becomes singular when
the excitation energy ω corresponds to transitions between
occupied and unoccupied states, we choose to calculate
	u±

vk[q,G,ω] along the imaginary axis, and to obtain the real-axis
solutions by approximate analytic continuation or by means
of the Godby-Needs plasmon-pole model. These aspects are
described in Sec. III B. Once we have obtained the variations
of the wave functions from Eq. (16) for every k vector we
can construct the linear change in the density matrix. The
reciprocal-space counterpart of Eq. (8) is

	n[q,G,ω] = 2

Nk

∑
vk

u∗
vk(	u+

vk[q,G,ω] + 	u−
vk[q,G,ω]). (17)

By using Eqs. (17) and (12) it is then straightforward to obtain
the reciprocal-space version of Eqs. (9)–(11).

Summarizing this section, Eqs. (15) and (16) allow us
to calculate the complete Green’s function Gk(G,G′,ω) and
the complete screened Coulomb interaction Wq(G,G′,ω) in
reciprocal space. Once these quantities have been determined,
it is possible to calculate the Bloch-periodic part of the GW
self-energy �k(r,r′,ω) by transforming G and G′ into real
space and by evaluating the convolution

�k(r,r′,ω) = i

2π

1

Nq

∑
q

∫
dω′e−iδω′

×Gk−q(r,r′,ω + ω′)Wq(r,r′,ω′). (18)

A step-by-step derivation of the equations presented in this
section, and their relation with the standard sum-over-states
approach, can be found in Ref. 19.

C. Spectral function

Since in the Sternheimer-GW approach we calculate the
complete self-energy �(r,r′,ω), it is possible to investigate not
only the usual quasiparticle corrections, but also the quasipar-
ticle spectral function. The possibility of calculating complete
spectral functions is especially important for interpreting
angle-resolved photoemission (ARPES) experiments.51,52
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For the sake of demonstrating calculations of spec-
tral functions we here limit ourselves to considering only
the diagonal elements of the GW self-energy in the ba-
sis of Kohn-Sham orbitals: 	�nk(ω) = 〈unk|�(r,r′,ω) −
Vxc(r)δ(r,r′)|unk〉, where Vxc is the DFT exchange and cor-
relation potential. This is expected to be a fair approximation
for the test cases considered here,53,54 but for more complicated
situations off-diagonal terms can be included without any
computational overhead.

With this choice the spectral function is also diagonal and
can be calculated as follows:

Ak(ω) = 1

π

∑
n

|Im�nk(ω)|
[ω − εnk − Re	�nk(ω)]2 + [Im�nk(ω)]2

.

(19)

Two illustrative examples of spectral functions calculated
using this expression will be discussed in Sec. IV B.

III. COMPUTATIONAL METHODOLOGY

In this section we discuss some aspects of our methodology
which are critical for achieving competitive performance. In
Sec. III A we describe the reduction of the number of wave
vectors k and q, and reciprocal lattice vectors G by use
of crystal symmetry operations. In Sec. III B we describe
our strategy for handling the frequency dependence, and in
particular the speedup achieved by using Frommer’s multishift
linear solver. At the end of this section we provide technical
details on the implementation and on the calculations described
in Sec. IV.

A. Use of crystal symmetry operations

The use of crystal symmetry operations in the context of
GW calculations based on the sum-over-states approach has
been discussed in Refs. 53 and 55. In this section we discuss
how to minimize the computational workload of Sternheimer-
GW calculations by exploiting crystal symmetry.

With reference to Sec. II B it is possible to reduce the
number of k, q, and G vectors in four places: Eq. (16) needs
to be solved only for inequivalent G vectors and q vectors.
Equation (15) needs to be solved for inequivalent G vectors
and k vectors. In Eq. (17) the sum can be restricted to the
irreducible part of the Brillouin zone. In Eq. (1) the convolution
requires only a subset of q vectors. Taken together these
symmetry considerations allow us to reduce the number of
independent Sternheimer equations that need to be solved.

We here denote a symmetry operation of the crystal
following the notation of Ref. 56:

{S|v}r = Sr + v, (20)

where S is a rotation and v is the (possibly) associ-
ated fractional translation. We denote by Gq the small
group of q, i.e., the subset of operations which leave this
wave vector unchanged modulo a reciprocal lattice vector:
{S|v} such that Sq = q + G. The self-energy �, the Green’s
function G, and the screened Coulomb interaction W are all

invariant under any crystal symmetry operation {S|v}:
f ({S|v}r,{S|v}r′; ω) = f (r,r′; ω) with f = �,G,W.

(21)

By applying this relation to the Fourier expansion in Eq. (12)
we obtain

f[q,G,ω](G′) = f[Sq,SG,ω](SG′)ei(G′−G)·v. (22)

If q belongs to Gq then we have a recipe for generating the
solution 	v[q,SG,ω] of Eq. (16) from the solution 	v[q,G,ω]

without explicitly solving the Sternheimer equation for SG:

	v[q,SG,ω](G′) = e−i(S−1G′−G)·v	v[q,G,ω](S−1G′). (23)

This observation implies that we need to solve the Sternheimer
equation only for the subset of plane waves which are
irreducible with respect to the small group G(q).

Once the solution 	v[q,G,ω](G′) has been determined for
every G and G′ and one wave vector q in the Brillouin zone,
we use the symmetries of the full space group of the crystal
in order to generate the symmetry-equivalent solutions for
all the other wave vectors belonging to the star of q. The
transformation law is again derived from Eq. (22) and reads as
follows:

	v[Sq,G,ω](G′) = e−iS−1(G′−G)·v	v[q,S−1G,ω](S−1G′). (24)

The sum over the wave vectors k in Eq. (17) can be restricted
to the wedge of the Brillouin zone which is irreducible with
respect to Gq. In order to show that this is the case, we consider
the simplest case of nondegenerate bands and we rewrite the
Sternheimer equation (16) for the wave vector Sk, with S
belonging to Gq:

(ĤSk+q − εvSk ± ω)	u±
vSk[q,G,ω]

= −(
1 − P̂ Sk+q

occ

)
	v[q,G,ω]uvSk. (25)

If we now observe that ĤSk+q(r) = Ĥk+q(S−1r) and
uvSk(Sr) = uvk(r) we find

[Ĥk+q(r) − εvk ± ω]	u±
vSk[q,G,ω](Sr)

= −[
1 − P̂ k+q

occ (r)
]
	v[q,G,ω]uvk(r). (26)

In this last equation the nonlocality of the Hamiltonian and
of the projector are not displayed for clarity. By comparing
Eq. (26) with Eq. (16) we obtain the transformation law for
the variation of the wave functions:

	u±
vSk[q,G,ω](r) = 	u±

vk[q,G,ω](S−1r). (27)

This result can be employed in Eq. (17) in order to reduce the
k vectors to the irreducible wedge of the Brillouin zone for the
small group of q. In fact, from Eq. (9) we see that the density
matrix response 	n[r,ω](r′) inherits the symmetry properties of
the screened Coulomb interaction. In addition, from Eq. (27)
we know that every term u∗

vk	u+
vk[q,G,ω] appearing in Eq. (17)

transforms as the square modulus of the Bloch wave function
|uvk|2. By combining these observations together we conclude
that the rule for the Brillouin zone reduction is identical to
the case of standard DFT calculations of the electron density,
provided the symmetries are restricted to Gq. This is the same
rule which applies to density-functional perturbation theory
calculations of phonon dispersion relations.38 Finally, in the
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case of degenerate eigenvalues this procedure holds almost
unchanged, and the unitary relation between the Bloch wave
functions uvk and uvSk is traced out in the calculation of the
density matrix response.

In the calculation of the Green’s function gA
[k,G,ω](G

′) via
Eq. (15) we also make use of the symmetries of the entire space
group of the crystal. The transformation law is most easily seen
by considering the formal expansion of the Green’s function
over the entire set of single-particle states unk:

Gk(r,r′,ω) =
∑

n

u∗
nk(r)unk(r′)
ω − εnk

. (28)

The same transformation law for the states unk leading to
Eq. (26) gives in this case

GSk(G,G′,ω) = Gk(S−1G,S−1G′,ω), (29)

where use was made of the convention expressed by Eq. (12).
If we now restrict the symmetry operations to the small

group of k, G(k) = {S|Sk = k + G}, then the last equation
can be adapted to reduce the number of explicit solutions of
Eq. (15):

Gk(SG,G′,ω) = Gk(G,S−1G′,ω). (30)

Lastly, it is possible to restrict the Brillouin zone sum in
Eq. (18) by using only the q vectors which are irreducible with
respect to the symmetry operations belonging to the small
group G(k). This is possible since whenever Sk = k + G we
can replace Gk+SqWSq in Eq. (18) by its symmetry-equivalent
GS−1k+qWq = Gk+qWq. As an example of the saving afforded
by the use of symmetry, in a highly symmetric crystal such as
the typical example of silicon, the number of evaluations of
the Sternheimer equation is reduced by a factor of ∼50.

B. Frequency dependence and multishift solver

As the Green’s function and the screened Coulomb in-
teraction both depend on the frequency ω, it is in principle
necessary to solve Eqs. (15) and (16) separately for every
frequency. In order to avoid the singularities in G and W

along the real axis, the calculations are performed using a small
imaginary component (in the case of the Green’s function) or
directly along the imaginary axis (in the case of the screened
Coulomb interaction). The presence of an imaginary term
in the frequency makes it necessary to replace the standard
conjugate gradients method for the solution of these linear
systems by its extension to non-Hermitian operators, such as
the complex biconjugate gradients method (cBiCG).57 In this
work we employed the multishift generalization of the cBiCG
algorithm described in Ref. 50 and the stabilized version of
cBiCG as described in Refs. 50 and 58, hereafter referred to
as BiCGStab(l). This choice is only one of several possible
options; for instance the use of the generalized minimal
residual method would also be possible.59

1. Green’s function

In order to solve the non-Hermitian eigenvalue problem
given by Eq. (15) we used the multishift linear system solver
introduced by Frommer.50 The rationale for this choice is that
the multishift method enables the construction of the complete

spectral structure of the Green’s function at the cost of one
single-frequency calculation.19 Equation (15) is a special case
of the general linear system

(A + ωI )x = b, (31)

where A is a complex linear operator, b a known complex
vector, I the identity matrix, and x the unknown solution
vector. This system can be thought of as being obtained from
the “seed” system Ax = b by “shifting” the operator A by
a constant ω. Frommer’s method relies on the observation
that the Krilov subspaces associated with the seed and the
shifted systems, i.e., {b,Ab,A2b, . . .} and {b,(A + ωI )b,(A +
ωI )2b, . . .}, respectively, do coincide. This makes it possible
to build the solution vectors for both the seed and the shifted
systems by performing only once the matrix-vector operations
Ab,A2b,A3b, . . ., and by using different coefficients for the
Krilov chains.50

Our calculation proceeds in two steps. In the first step we
address the seed system and solve Eq. (15) for ω = 0 using the
standard cBiCG algorithm. The cBiCG algorithm iteratively
generates one sequence of solution vectors xn, two sequences
rn and r̃n of biorthogonal residuals, and two sequences pn

and p̃n of search directions. The trial solution vector is set to
x0 = 0 in order to generate collinear residuals for the seed and
shifted systems. The initial search directions are set to p0 = b

and p̃0 = b�. The calculation of each element of the solution
sequence requires the evaluation of the following coefficients:

αn = 〈r̃n|rn〉/〈p̃n|Apn〉, (32)

βn = −〈A†p̃n|rn+1〉/〈p̃n|Apn〉, (33)

where A† is the Hermitian conjugate of A.57 The evaluation
of the matrix-vector products Apn and A†p̃n is the time-
consuming part of the whole procedure. As usual the iterative
solution continues until the residual rn = b − Axn becomes
smaller than a given tolerance. At each iteration the residuals
rn and the coefficients αn and βn are stored for subsequent use
with the shifted system.

In the second step of the procedure we address the shifted
systems for each frequency ω. The sequence of residuals and
the coefficients calculated for the seed system are retrieved and
used to generate the corresponding quantities rn,ω, αn,ω, and
βn,ω for the shifted operators A − ωI . The recurrence relations
for the Krilov chains of the shifted system are50

rn,ω = rn

πn,ω

, αn,ω = πn,ω

πn+1,ω

αn, βn,ω =
(

πn,ω

πn+1,ω

)2

βn,

(34)

with the coefficient πn+1,ω given by

πn+1,ω = (1 + ωαn)πn,ω + αnβn−1

αn−1
(πn,ω − πn−1,ω). (35)

Owing to these relations, in the case of the shifted systems
we do not perform any matrix-vector operations. Since the
application of the Hamiltonian to trial solutions is the most
expensive part of the solution of Eq. (15), the use of the
multishift method leads to a substantial computational saving.

This procedure is amenable to efficient parallelization.
Each G component of the Green’s function gA

[k,G,ω](G
′) can
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be calculated on one processor independently of the other
components. All the vectors gA

[k,G,ω] are then collected in one
place before proceeding to the evaluation of the self-energy.

For systems larger than those considered in this study, and
for systems that require very high kinetic energy cutoffs, it
may become necessary to use preconditioning schemes. While
it should be possible to adapt polynomial preconditioners
designed for Krilov multishift solvers,60 we did not explore this
direction. Instead we experimented with the calculation of the
Green’s function in Eq. (15) using the standard (nonmultishift)
BiCGStab(l) algorithm,58,61 combined with a slightly modified
version of the Teter-Payne-Allen (TPA) preconditioner.62

The TPA conditioning matrix consists of a diagonal matrix
whose elements are given by

Mk(G,G′) = 27 + 18x + 12x2 + 8x3

27 + 18x + 12x2 + 8x3 + 16x4
δG,G′ , (36)

with x = |k + G|2/2Eref
kin and Eref

kin a reference kinetic energy.
This matrix ensures that the high-frequency Fourier com-
ponents of the Kohn-Sham Hamiltonian (dominated by the
kinetic energy) are “renormalized” to Eref

kin, and the spectrum
of the conditioned system is effectively compressed.

In the case of Eq. (15) the high-frequency Fourier com-
ponents of the linear operator correspond to |k + G|2 − ω;
therefore the same effect as above is obtained by using x =
(|k + G|2 − ω)/2Eref

kin instead of the original TPA prescription.
This corresponds to a translation of the TPA preconditioner
along the energy axis. When x < 0 (i.e., when |k + G|2 < ω)
we set Mk(G,G′) = δG,G′ in order to preserve the smooth
behavior of the TPA conditioner at low energy.

2. Screened Coulomb interaction

In the present work we consider two options for calculating
the screened Coulomb interaction. (i) In order to generate
the quasiparticle spectral functions we need the complete
spectral structure of W . In this case we perform calculations
for frequencies along the imaginary axis, followed by an
approximate analytic continuation to the real axis via Padé
functions. (ii) In order to make the link with GW calculations
based on the sum-over-states approach we use instead the
Godby-Needs plasmon pole model.20

A handful of techniques is currently in use for describ-
ing the frequency-dependence of the GW self-energy, from
contour deformation methods22,23 to analytic continuation
techniques.26 In the present work we choose to use Padé ap-
proximants since they provide consistently improved accuracy
over standard plasmon-pole approximations.19

Padé approximants are routinely employed in the Eliash-
berg theory of superconductivity in order to calculate the
superconducting gap function on the real-frequency axis,
starting from the values of the gap function at the imaginary
Matsubara frequencies.63–65 In the context of GW calculations
the use of Padé approximants has been demonstrated in
Refs. 19,23, and 25.

Given a function f (ω) whose values are known in N distinct
frequencies ω1, . . . ,ωN , the Padé approximant of order N is
defined as the rational function of order N [i.e., with numerator
and denominator of order (N div 2)] which matches f at each
of these frequencies, and provides the best approximation to f

outside of these points. The coefficients of the polynomials are
obtained by setting f (ωi) = Wq(G,G′,ωi) for i = 1, . . . ,N

and using the recursive algorithm of Ref. 63. Here we choose
all the frequencies ω1, . . . ,ωN to lie on the imaginary axis.

In the present case of Sternheimer-GW calculations the
use of Padé approximants with purely imaginary frequencies
is especially useful since this guarantees that the worst-
case scenario for the condition number of the linear system
in Eq. (16) corresponds to ω = 0. Other choices for the
frequencies ω1, . . . ,ωN are certainly possible.

The Godby-Needs plasmon-pole model can be seen as a
special case of Padé approximants, where the order to the
rational function is set to N = 2 (i.e. two evaluations of W are
required for each set of q,G,G′).

The choice of calculating the screened Coulomb interaction
along the imaginary axis may not be optimal in those cases
where the dielectric response exhibits significant structure.
However, the present method is completely flexible in terms
of the choice of the frequency grid. For example, it is possible
to improve the quality of the Padé continuation using exact sum
rules, and also use Padé frequencies along an optimized path
in the complex plane. The only requirement of our approach
is that the frequency is not purely real, as this would lead
to a ill-conditioned linear system in Eq. (7). The present
method can also be adapted easily to alternative strategies for
describing the frequency dependence of the self-energy, e.g.,
the contour deformation technique23 can also be employed
without requiring significant changes to the formalism or the
core algorithms.

As discussed in Sec. II A we consider two strategies for
obtaining the screened Coulomb interaction at each frequency
via Eq. (16). In one approach we solve the non-self-consistent
Sternheimer equation, thereby obtaining εq(G,G′,ω). In order
to compute W the dielectric matrix is subsequently inverted
following the procedure of Ref. 3. The advantage of this
strategy is that we make use of Frommer’s multishift solver
(Sec. III B1) in order to evaluate the dielectric matrix for
every ω at the cost of only one frequency. In the second
approach we solve the self-consistent Sternheimer equation,
thereby obtaining directly Wq(G,G′,ω). The advantage of this
second procedure is that no explicit inversion of the dielectric
matrix is performed, and the memory requirements are kept at
a minimum.

C. Technical details of the implementation and calculations

The ab initio Sternheimer-GW method was implemented
by starting from the QUANTUM ESPRESSO implementation
of density-functional perturbation theory (PHONON code).66

All ground-state DFT calculations were performed using
QUANTUM ESPRESSO. GW calculations based on the sum-over-
states approach were performed using the SAX code,67 which
also uses Kohn-Sham wave functions and eigenvalues obtained
from QUANTUM ESPRESSO. In order to ensure consistency
we used identical parameters and pseudopotentials in the
ground-state DFT calculations for both Sternheimer-GW and
sum-over-states calculations.

DFT calculations were performed within the local density
approximation (LDA).68,69 We used Troullier-Martins norm-
conserving pseudopotentials70 with plane-wave kinetic energy

075117-6



Ab INITIO STERNHEIMER-GW METHOD FOR . . . PHYSICAL REVIEW B 88, 075117 (2013)

cutoffs set to 20 Ry for Si and 60 Ry for diamond, SiC, and
LiCl. We used a shifted 6 × 6 × 6 Monkhorst-Pack mesh71

in order to describe the DFT electron density, as well as
the screened Coulomb interaction W . The dielectric matrices
were described using kinetic energy cutoffs of 10, 24, 20,
and 15 Ry for silicon, diamond, silicon carbide, and lithium
chloride, respectively. The exchange part of the self-energy
was calculated using the same kinetic energy cutoff as for the
wave functions in all cases. The singularity in the Coulomb
interaction at long wavelength was removed by using the
spherical truncation scheme of Ref. 72.

The evaluation of the screened Coulomb interaction along
the imaginary axis was performed at frequencies equally
spaced by 2 eV up to the plasmon frequency, and equally
spaced by 20 eV beyond this point and up to 100 eV. This
sampling was meant to capture at once the finer structure in
the dielectric response at low frequency and the asymptotic
behavior at high frequency. In the case of the self-consistent
solution of Eq. (16) we used an adaptive threshold in order
to speed up the convergence of the combined procedure
consisting of cBiCG iterations and density updates.

A generalization of the modified Broyden method for
charge-density mixing73 was used in order to minimize charge
fluctuations during the self-consistent calculations.19 In order
to achieve a relative numerical convergence of 10−6 in the L2

norm of W we needed at most six iterations for all systems
studied here. The one exception is the long-wavelength limit
G = G′ = 0 and q → 0, which may require up to 30 iterations.
In the case of calculations using the Godby-Needs plasmon-
pole model we set the imaginary frequencies to 1.2 Ry for Si
and C and 1.3 Ry for SiC and LiCl.

The Green’s function was calculated at frequencies slightly
off the real axis. In particular we used frequencies equally
spaced by 0.1 eV in the range ±150 eV, and with an imaginary
component of 0.3 eV. The calculation of the self-energy in
Eq. (18) was performed numerically along the real axis, using
a spacing of 0.1 eV and a broadening of 0.3 eV. The integration
boundaries were set to ±120 eV.

Since Eq. (16) needs to be solved independently for every
G, the Sternheimer-GW approach is intrinsically parallel. In
our implementation each perturbation of wave vector G is
dealt with by one processor, and the resulting W and G are
collected at the end using global communications. Figure 1
illustrates the timing of the Sternheimer-GW method in our
current parallel implementation. As we increase the number
of processes the calculation time decreases as expected. In the
current implementation we use only one level of parallelization
(over the G vectors). As a consequence the number of
processors exceeds the number of symmetry-reduced plane-
wave perturbations for certain q points; hence increasing the
number of processors does not reduce the execution time.
A second level of parallelization (over q vectors) would be
needed in order to achieve linear parallel scaling, and it is
currently under development.

From Fig. 1 we see that the calculation of W is considerably
more time consuming than for G. This can be understood
by comparing Eqs. (16) and (15). In fact the calculation of
the screened Coulomb interaction involves solutions for k, q,
and the valence bands, while the calculation of the Green’s
function involves only solutions for the various k vectors. The

FIG. 1. (Color online) Parallel execution time for a Sternheimer-
GW calculation of silicon. The time refers to a calculation of the
complete self-energy �k(G,G′,ω) with the parameters given in
Sec. III C. We report the total execution time (full black bars), the time
required for calculating the screened Coulomb interaction (straight
cross-hatched blue bars), the Green’s function (oblique cross-hatched
red bars), and the frequency convolution in Eq. (18) (oblique hatched
black bars).

evaluation of the self-energy � is not parallel in the current
implementation and the timing for this operation is a constant
in Fig. 1.

For the sake of clarity we point out that a sum-over-states
calculation performed with a number of electronic states
equal to the number of plane waves should in principle
be equivalent to the Sternheimer-GW method. However, in
practice performing sum-over-states calculations with the
maximum possible number of unoccupied states is challenging
in terms of memory requirements and diagonalization of the
highest-lying states. In terms of floating-point operations, in
Ref. 19 it was shown that the Sternheimer-GW method should
be more efficient than the sum-over-states approach if both
diagonal and off-diagonal self-energy matrix elements are to
be evaluated.

IV. RESULTS

A. Quasiparticle corrections

In this section we validate our method by comparing the
quasiparticle corrections of Si, C, SiC, and LiCl obtained using
the Sternheimer-GW and those obtained using the sum-over-
states approach. In Figs. 2 and 3 we consider the comparison
between the quasiparticle corrections to the band edges in
silicon and diamond, calculated by us using the Sternheimer-
GW method (blue solid lines) and using the standard method as
implemented in SAX (red dashed lines). In Table I we compare
the quasiparticle energies of Si, C, SiC, and LiCl calculated
using the Sternheimer-GW method with previous calculations
and experiment. The quasiparticle corrections are defined
with reference to the LDA Kohn-Sham eigenvalues using the
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FIG. 2. (Color online) Quasiparticle corrections to the band edge
states at high-symmetry points in silicon: Sternheimer-GW (solid
blue line) and sum-over-states approaches as implemented in SAX (red
disks and dashed line). The corrections are shown as a function of the
energy of the highest unoccupied state included in the sum-over-states
calculation. The zero of the energy is set to the top of the valence band.
(a) Band edges at �, (b) band edges at X, and (c) band edges at L.

standard prescription:3 	εnk = Znk	�nk(εnk), where Znk is
the quasiparticle renormalization of the state unk. In all cases
discussed in this section we used the Godby-Needs plasmon-
pole model in order to be consistent with the sum-over-states
method.

In these figures we see that our method and the standard
approach yield essentially the same quasiparticle corrections,
provided a large number of unoccupied states is included
in the latter calculation. The convergence of differences of
quasiparticle corrections is relatively fast within the standard
approach; however, the calculation of absolute quasiparticle
energies is considerably more challenging. In fact, fully
converged sum-over-states calculations of the absolute quasi-
particle energies require cutoffs comparable to that of the
underlying plane-wave basis set. This result was somewhat
expected since the wave-function cutoff enters the matrix
elements of the polarizability in the sum-over-states approach.3

The fact that the Sternheimer-GW approach is able to
provide absolute quasiparticle energies without the need of
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FIG. 3. (Color online) Quasiparticle corrections to the band edge
states at high-symmetry points in diamond: Sternheimer-GW (solid
blue line) and sum-over-states approaches as implemented in SAX (red
disks and dashed line). The corrections are shown as a function of the
energy of the highest unoccupied state included in the sum-over-states
calculation. The zero of the energy is set to the top of the valence band.
(a) Band edges at �, (b) band edges at X, and (c) band edges at L.

unoccupied states (as opposed to relative corrections) is
expected to be important for the study of heterogeneous
systems, such as surfaces, interfaces, and defects.

An interesting observation that we can make by inspecting
Figs. 2 and 3 is that, in fully converged calculations, the
GW correction is not concentrated on the conduction band
as is generally assumed. For example in the case of silicon
our calculations suggest that the quasiparticle correction is
actually concentrated in the valence band (Fig. 2), while in
the case of diamond the correction to the band gap is equally
distributed between valence and conduction bands (Fig. 3).
These findings are in line with recent calculations on oxides
and semiconductors where similar trends were observed,48,49

and suggest that some caution should be used when applying
semiempirical scissor corrections.

For definiteness we now analyze in detail the calculated
quasiparticle corrections to the band edge states of diamond
at �, i.e., the �′

25v and �15c states, shown in Fig. 3(a). This
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TABLE I. Quasiparticle energies corresponding to the band edges
of Si, C, SiC, and LiCl at high-symmetry points: comparison between
the results of Sternheimer-GW calculations and previous work using
the sum-over-states approach. The initial DFT/LDA eigenvalues are
also reported for completeness. All values are in units of eV and the
zero of the energy is set to the top of the valence bands in all cases.
All previous calculations for silicon, diamond, and LiCl are from
Ref. 23, 16, and 3, respectively.

DFT/LDA GW

Present Previous Present Previous Experiment

Silicon
�′

25v 0.00 0.00 0.00 0.00 0.00
�15c 2.55 2.54 3.26 3.09 3.40a, 3.05b

X4v −2.87 −2.85 −2.92 −2.90 −3.3 ± 0.2c

X1c 0.65 0.61 1.32 1.01 1.25b

L1v −6.99 −6.99 −7.10 −6.97 −6.7 ± 0.2a

L′
3v −1.21 −1.19 −1.18 −1.16 −1.2 ± 0.2a

L1c 1.49 1.44 2.19 2.05 2.4 ± 0.15a

L3c 3.34 3.30 4.09 3.83 4.15 ± 0.1d

Diamond
�′

25v 0.00 0.00 0.00 0.00 0.00
�15c 5.6 5.58 7.50 7.63 7.3a

X4v −6.27 −6.26 −6.68 −6.69
X1c 4.65 4.63 6.12 6.30
L1v − 13.46 −13.33 −14.18 −14.27 −12.8 ± 0.3e

L3v −2.82 −2.78 −2.93 −2.98
L1c 8.49 8.39 10.53 10.63
L3c 8.89 8.76 10.30 10.23

SiC
�15v 0.00 0.00 0.00 0.00 0.00
�1c 6.34 6.25f 7.31 7.32f 7.4g

X5v −3.24 −3.20h −3.53 −3.53h

X1c 1.36 1.31h 2.12 2.19h 2.39a

L3v −1.08 −1.06h −1.07 −1.21h −1.15a

L1c 5.40 5.34f 6.23 6.45f 6.35a

LiCl
�1c 5.90 6.00 8.80 9.10 9.4i

X4v −2.90 −3.00 −3.00 −3.30
X5v −1.10 −1.10 −1.20 −1.30
X1c 7.50 7.50 10.80 10.70

aReference 74.
bReference 75.
cReference 76.
dReference 77.
eReference 78.
fReference 23.
gReference 79.
hReference 16.
iReference 80.

example is representative of all the test cases considered
here. The corrections to the �15c state calculated using the
Sternheimer-GW and sum-over-states approaches are identical
to within 0.01 eV. The corrections to the �′

25v state are
−0.86 eV (Sternheimer-GW) and −0.80 eV (fully converged
sum over states). In this case the renormalization factor (0.83)
and the bare exchange contribution to the quasiparticle correc-
tion (−19.21 eV) are the same in both methods, and the small
residual discrepancy of 0.06 eV comes from the correlation
part of the self-energy. We assign this small discrepancy to

the different strategies used to perform the frequency integral
in Eq. (18), since the standard method performs an analytic
integration while we use a numerical integration. At any rate
these very small differences are well below the typical accuracy
expected from converged GW calculations, especially if we
take into account the dependence on the pseudopotentials and
the DFT exchange and correlation functional.

Table I shows the quasiparticle energies of Si, C, SiC,
and LiCl as obtained using the Sternheimer-GW method,
compared to previously published calculations based on
the sum-over-states approach, as well as experiment. In
this table we set the energy zero to the top of the va-
lence bands; therefore the values reported are truly relative
quasiparticle corrections. The agreement of Sternheimer-GW
results with previous calculations and experiment is generally
very good. The small residual discrepancies of the order
of 0.1 eV can tentatively be assigned to the incomplete
convergence of previous calculations, although this is only a
speculation.

FIG. 4. (Color online) (a) Quasiparticle spectral function Ak(ω)
of silicon for k along �-X, calculated using the Sternheimer-GW
method within the diagonal G0W0 approximation [Eq. (19)]. The
“discrete” structure visible in the more dispersive band is simply a
visualization artifact, resulting from our choice of computing the self-
energy at 20 equally spaced k points. (b) DFT/LDA band structure
of silicon along �-X (black dashed lines), and the corresponding
quasiparticle band structure obtained from (a) (blue solid lines). The
units of the color bar are eV−1.
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FIG. 5. (Color online) (a) Quasiparticle spectral function Ak(ω)
of diamond for k along �-L, calculated using the Sternheimer-GW
method within the diagonal G0W0 approximation [Eq. (19)]. The
“discrete” structure visible in the more dispersive band is simply a
visualization artifact, resulting from our choice of computing the self-
energy at 20 equally spaced k points. (b) DFT/LDA band structure
of diamond along �-L (black dashed lines), and the corresponding
quasiparticle band structure obtained from (a) (blue solid lines). The
units of the color bar are eV−1.

B. Spectral functions

In this section we present examples of calculations of the
quasiparticle spectral functions of silicon and diamond (Figs. 4
and 5). All the calculations were performed using Padé approx-
imants as discussed in Sec. III B2. Once the self-energy � is
obtained using the Sternheimer-GW method, the evaluation of
the spectral function using Eq. (19) is straightforward and is
carried out as a postprocessing operation.

The availability of the spectral function makes it possible
to obtain not only standard quasiparticle energies but also the
intensity and widths of the quasiparticle peaks. For example,
from Fig. 4 we can extract the width of the �1v state at the
bottom of the valence band of silicon. We obtain a width of
1.3 eV, corresponding to a quasiparticle lifetime of 3.2 fs. This
finding is in agreement with previous G0W0 calculations of
the spectral function of silicon.23,81 The same analysis carried
out for diamond in Fig. 5 shows that the width of the states
near the valence band bottom at � is 1.8 eV. This finding

FIG. 6. (Color online) (a) Quasiparticle spectral function Ak(ω)
of silicon for k along �-X, calculated using the Sternheimer-GW
method within the diagonal G0W0 approximation [Eq. (19)]. The
energy range extends to −40 eV in order to show the plasmaron
band structure. The spectral function is given in a logarithmic scale
in order to enhance the plasmaron satellites. (b) Zoom on the plot in
(a) around the binding energy 15–40 eV, showing the plasmaron band
structure. In this case we use a linear scale with values given by the
color bar. We note that the satellite energy is incorrect in the G0W0

approximation (Refs. 13 and 84–86). The units of the color bar are
eV−1.

is in line with ARPES experiments indicating a linewidth
of ∼2 eV.82

We note that our calculated spectral functions carry an
intrinsic linewidth of 0.3 eV. This linewidth is an artifact
resulting from our choice of evaluating the Green’s function at
frequencies slightly off the real axis (cf. Sec. III). This artificial
broadening accounts for the finite linewidths observed near the
top of the valence bands in Figs. 4 and 5.

Figure 6 shows a magnification of the calculated spectral
function of silicon at large binding energy (20–40 eV). In the
G0W0 approximation the structure of the real and imaginary
parts of the self-energy leads to an additional spectral feature,
which was termed a “plasmaron” in Ref. 83. Interestingly
such plasmaron structures exhibit energy vs wave vector
dispersion relations which closely mimic the standard electron
band structure in the binding energy range 0–20 eV. A more
detailed analysis of these “plasmaron band structures” will be
reported elsewhere. Here we limit ourselves to pointing out
that the energy of such plasmarons is overestimated in G0W0

calculations and that more sophisticated solutions of the Hedin
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equations (e.g., based on the cumulant expansion) are known
to yield a series of satellites which are not captured within the
G0W0 approximation.13,84–86 Within this context, the current
implementation of the Sternheimer-GW method carries pre-
cisely the same limitations as the G0W0 approximation; hence
Fig. 6 is meant only to show the capabilities of the method.

We note that the G0W0 spectral functions obtained within
the Sternheimer-GW approach could be used as a start-
ing point for more advanced calculations of photoemission
satellites.13,86

V. CONCLUSIONS AND OUTLOOK

In this paper we presented the implementation of the
Sternheimer-GW method using first-principles pseudopoten-
tials and a plane-waves basis. The present work extends the
method of Ref. 19, where the theoretical methodology was
introduced and a proof-of-concept implementation based on
empirical pseudopotentials was given.

The Sternheimer-GW method presented here enables GW
calculations based solely on the occupied Kohn-Sham elec-
tronic states and therefore completely eliminates the need
for laborious convergence tests typical of the sum-over-states
approach. As a result the Sternheimer-GW approach requires
only one convergence parameter, namely, the kinetic energy
cutoff of the inverse dielectric matrix.

The decoupling of the plane-wave perturbations afforded
by the Sternheimer equation makes the present scheme
intrinsically parallel, as we have shown in a simple test
calculation on silicon.

We have demonstrated our method by considering a few
standard test cases such as Si, C, SiC, and LiCl. We proved
good agreement with previous GW calculations, and excellent
agreement with sum-over-state calculations performed using
exactly the same pseudopotentials and calculation parameters.

Our method provides the complete G0W0 self-energy, and
therefore naturally lends itself to the study of quasiparticle
spectral functions, e.g., within the context of angle-resolved
photoemission experiments. We demonstrated the possibility
of calculating the G0W0 spectral functions of silicon and dia-
mond without any computational overheads, and we discussed
additional features corresponding to plasmaron satellites.

Extensions of the present method in the direction of including
multiple plasmon satellites along the lines of the cumulant
expansion are highly desirable.

While our method yields more information than a standard
sum-over-states calculation, the calculation time is competitive
owing to an extensive use of crystal symmetry operations,
as well as to the adoption of a multishift iterative solver for
the linear systems. Further optimization of the linear system
solvers is possible and under way.

The inclusion of self-consistency in GW calculations is
an important avenue for future development;10,14 therefore
we briefly comment on the possibility of extending the
Sternheimer-GW method to include self-consistency. In the
present formalism it should be possible to include self-
consistency at the level of the quasiparticle self-consistent
GW method of Ref. 10. Indeed, while this choice would
result in added computational complexity, the structure of our
key equations would be preserved. An additional element that
could be explored is the inclusion of first-principles linewidths
in in Eqs. (6) and (7). A related possibility would be to
update the DFT exchange and correlation potential by using
the self-energy obtained from our calculations, for example
following the proposal of Ref. 87.

Since our method is based on the repeated application of
the Kohn-Sham Hamiltonian to a state vector, it also represents
an ideal starting point for exploring the effects of various DFT
starting points in perturbative GW calculations.48,88,89 Indeed,
it should be possible to extend the present method in order to
perform calculations using wave functions, eigenvalues, and
screening corrections beyond the random-phase approxima-
tion, e.g., using a hybrid-functional Hamiltonian. In a time
when GW calculations are rapidly becoming the standard
tool for studying electronic excitations from first principles,
we hope that the method presented in this work will serve
as a platform for accurate, parameter-free, and reproducible
quasiparticle calculations.
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45H. Hübener, M. A. Pérez-Osorio, P. Ordejón, and F. Giustino, Phys.
Rev. B 85, 245125 (2012).
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