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Theory of a chiral Fermi liquid: General formalism
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We extend the Fermi-liquid (FL) theory to include spin-orbit (SO) splitting of the energy bands, focusing on
the Rashba SO coupling as an example. We construct the phenomenological Landau interaction function for such
a system using the symmetry arguments and verify this construction by an explicit perturbative calculation. The
Landau function is used to obtain the effective mass, compressibility, and stability conditions of the FL. It is shown
that although the charge-sector properties, such as the effective mass and compressibility, are determined solely
by well-defined quasiparticles, the spin-sector properties, such as the spin susceptibility, contain a contribution
from damped states between the spin-split Fermi surfaces and thus cannot be fully described by the FL theory,
except for the case of weak SO coupling. We derive some specific properties of a chiral FL and show, in particular,
that for contact interaction spin-splitting of the Fermi velocities of Rashba subbands occurs because of the Kohn
anomaly, also modified by SO coupling.
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I. INTRODUCTION

A large number of many-body systems are characterized
by nontrivial correlations between spin and orbital degrees
of freedom. To name just a few, these are two-dimensional
(2D) electron and hole gases in semiconductor heterostruc-
tures with broken inversion symmetry,1,2 noncentrosymmetric
normal metals3 and superconductors,4 surface/edge states of
three-dimensional (3D)/2D topological insulators,5 conduct-
ing states at oxide interfaces,6 atomic Bose7 and Fermi8

gases in simulated non-Abelian magnetic fields, etc. Spin-orbit
(SO) coupling inherent to all these systems locks electron
spins and momenta into patterns characterized by chirality.9

Electron-chiral materials are endowed with unique properties
that are interesting from both the fundamental and the applied
points of view.

Recently, there has been a surge of interest in the
interplay between chirality and the electron-electron (ee)
interaction, which is necessarily present in all these sys-
tems. The current tendency—driven in part by the need
to develop semiconductor-based spintronic devices—is to
enhance the strength of the SO interaction relative to other
energy scales, namely, the Fermi energy and the poten-
tial energy of Coulomb repulsion. In semiconductor het-
erostructures, this can be achieved by reducing the carrier
number density, even to the point when only the lowest
of the spin-split Rashba subbands is occupied.10 In other
systems, such as the Au-intercalated graphene-Ni interface,11

Bi/Ag(111)12 and BixPb1−x /Ag(111)13 surface alloys, and
bismuth tellurohalides,14 SO coupling is enhanced due to the
presence of heavy, e.g., Au and Bi, atoms. If the three energy
scales (SO, Fermi, and Coulomb) become comparable to each
other, one ventures into a regime where new phases of matter
become possible. For example, a strong-enough Coulomb
repulsion can force all electrons to occupy only one Rashba
subband15 or to form a spin-nematic phase with spin-split
Fermi surface (FS) but zero net magnetization,16 or else, if
only the lowest Rashba subband is occupied, to form a number
of liquid-crystal and crystalline phases.17 An important task
is, therefore, to classify and analyze new phases of electronic

matter that become possible due to the interplay of the ee and
SO interactions.

Analysis of possible new phases usually starts with the
Fermi-liquid (FL) theory. The well-established theory of a
nonchiral [or SU(2)-symmetric (SU2S)] FL18 allows one
to classify possible Pomeranchuk instabilities that break
rotational but not translational symmetry of the FS and to
derive stability conditions in terms of the Landau parameters.

With the exception of quantum wires and surface states
of 3D topological insulators at the Dirac point, all other
examples of electron-chiral systems are believed to behave
as FLs with well-defined quasiparticles near the FS (or
multiple FSs in case of spin-split states), as long as the
ee interaction is too weak to break some symmetries. This
conclusion is supported by a large number of studies in which
various FL quantities—the effective mass,19–22 quasiparticle
renormalization factor,19,22 quasiparticle lifetime,19,22 spin and
charge susceptibilities,15,19,23–31 spin-Hall conductivity,32,33

charge- and spin-drag resistivities,34,35 profiles of Friedel
oscillations,31,36 plasmon spectra and Drude weights,20 etc.—
were calculated within some version of the perturbation theory
in the ee interaction. Yet, it is obvious that the conventional
FL theory, based on the assumption of SU(2) invariance of
electron spins, is not applicable to electron-chiral systems.
Indeed, the Landau function of an SU2S FL,

f̂ (p,p′) = f s(p,p′)11′ + f a(p,p′)σ̂ · σ̂ ′, (1.1)

contains only two invariants: unity and the scalar product of
electron spins. (Here and in what follows, the product of
two matrices is to be understood for projections onto the
spin basis as fα,β;γ,δ = f sδαγ δβδ + f aσ̂ αγ · σ̂ βδ .18) Clearly,
broken SU(2) symmetry of a chiral FL allows for a much
richer variety of invariants, which cannot be separated into
the charge and spin parts. Although the SO interaction is
a relativistic effect, a relativistic generalization of the FL
theory,37 developed in the context of dense nuclear matter,
is also not applicable to SO-coupled electron systems because
the latter are never fully Lorentz invariant. Another line of
work focuses on FLs with SO coupling arising because of
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the dipole-dipole interaction of fermion spins.38 While this
type of theory is relevant to atomic gases, the dipole-dipole
SO coupling—as opposed to simulated non-Abelian fields—is
very much different from both the Rashba- and Dresselhaus-
type couplings,2 which exist already at the single-particle level.
Actually, the closest analogy to a chiral FL is a ferromagnetic
or partially spin-polarized FL, e.g., He3 in a magnetic field,
which has a long history of studies, starting from Refs. 39–45
and culminating in a series of detailed papers by Meyerovich
et al.46–48 (For a detailed discussion of more recent studies, see
Refs. 49.) The difference between partially polarized and chiral
FLs is in that fermions in the latter experience an effective
(momentum-dependent) rather than real magnetic field. In this
paper, we employ this analogy, while also emphasizing the
differences between the two cases. Also, a chiral FL with
two occupied spin-split bands shares some properties with any
multicomponent FL;50 yet its spin sector is very special and,
as we show later, cannot be treated simply by assigning extra
indices to FL parameters. References 51 and 32 considered
an SU2S FL perturbed by a weak SO coupling; in particular,
Ref. 32 studied FL renormalization of spin-chiral resonances.
A FL theory for a generic and not necessarily weak SO
interaction was addressed in Ref. 52; however, subtleties of
the spin sector of such a FL were not considered in that paper.

In this paper, we explore a possibility of constructing a
general theory of chiral FLs. For concreteness, we focus
mostly on linear Rashba SO coupling, relevant for a number
of 2D electron heterostructures; however, we also discuss
briefly the cubic coupling relevant, e.g., for 2D hole gases in
III-V semiconductor heterostructures53 and the surface state
of SrTiO3.54,55

We argue that whether a particular quantity of a chiral
FL can be described within the FL formalism depends on
whether this quantity is spin-independent, e.g., the effective
mass or charge susceptibility, or spin-dependent, e.g., the
spin susceptibility.56 For spin-independent properties, which
are local in the spin space, the original Landau’s FL theory
can be extended to include the effects of SO by rather
straightforward modifications similar to any two-band FL
theory.50 Spin-dependent properties, on the other hand, are
controlled by particles with momenta in between the two
spin-split FSs. If SO splitting is not small compared to the
Fermi energy, these particles are away from their respective
FSs and thus strongly damped. In general, therefore, one
cannot describe the spin sector of a chiral FL in terms of
noninteracting quasiparticles. One can thus view chiral or,
more generally, non-SU2S fermion systems as “non-Landau
FLs”, i.e., FLs without a full FL theory.

On a technical level, this means that one has to consider
off-diagonal components of the density matrix, and also that
some familiar relations of the SU2S theory, which are local
in the momentum space, are replaced with nonlocal integral
equations. For example, we show that the renormalized g factor
of chiral quasiparticles satisfies an integral equation, where
the integral goes over the entire interval of the momentum in
between spin-split subbands. We show, however, that it is still
possible to account for first-order effects in SO while keeping
the interaction arbitrary. As pointed out by Herring in 1966,57

the same difficulty arises also in the theory of ferromagnetic
and partially spin-polarized FLs. Later research47,48 confirmed

his arguments; see, in particular, a detailed discussion of the
importance of the off-diagonal components in Ref. 47. (Quite
foresightfully, Herring also anticipated a similar problem for a
system with SO coupling in the absence of inversion symmetry,
which is the subject of this paper).

An important topic of current interest comprises the
collective modes of a chiral FL.32,58–60 We will discuss this
topic in a separate forthcoming publication.61

The rest of the paper is organized as follows. In Sec. II, we
construct the phenomenological Landau function of a chiral
FL. Having been equipped with the Landau function, we pro-
ceed to calculate the effective masses of chiral quasiparticles
in Sec. III and discuss Overhauser-type62 spin splitting of
effective masses in the zero magnetic field, which is similar
to effective-mass splitting in a partially spin-polarized FL.63,64

Thermodynamic properties of a chiral FL are discussed in
Sec. IV. In particular, the compressibility of a chiral FL is
derived in Sec. IV A, Pomeranchuk stability conditions are
specified in Sec. IV B, and the spin susceptibility is discussed
in Sec. IV C. The FL formalism for the spin susceptibility
is presented in Sec. IV C1, where the out-of-plane spin
susceptibility is shown to contain a contribution from the states
in between the spin-split FSs. In Sec. IV C2, we discuss the
physical implications of this result and also demonstrate that
the physical origin of mutual cancellation between induced
magnetic moments of occupied Rashba subbands is time-
reversal symmetry (at fixed magnetic field). In Sec. V, we
establish the relation between the phenomenological Landau
function and microscopic interaction vertices. In Sec. VI,
we apply the formalism developed in the previous sections
to a number of specific cases. In Sec. VI A, we evaluate
explicitly the Landau function to second order in a finite-range
ee interaction and confirm the phenomenological form of
the Landau function obtained in Sec. II. The microscopic
Landau function from Sec. VI A is used to calculate mass
renormalization in Sec. VI B, where we show that spin-
splitting of the masses occurs (to second order in both ee

and SO interactions) as a nonanalytic effect, resulting from the
Kohn anomaly modified by the SO interaction. Simple limiting
cases for the spin susceptibility are considered in Sec. VI C.
Our conclusions are given in Sec. VII. Some technical details
of the calculations are delegated to Appendices A–D.

II. LANDAU FUNCTION

We consider a 2D electron system in the presence of linear
Rashba SO coupling, described by the Hamiltonian65

Ĥ = Ĥf + Ĥint = p2

2m
1 + α(σ̂ × p) · ez + Ĥint, (2.1)

where m is the effective electron mass, σ̂ are the Pauli matrices,
ez is the unit normal vector, and Ĥint entails a nonrelativistic,
density-density ee interaction. (Here and in the rest of the
paper, α is chosen to be positive, while the Planck and
Boltzmann constants are set to unity. Also, the index f denotes
properties of an interaction-free system.) The space group of
Hamiltonian (2.1) is C∞v , and the Rashba SO term is the only
combination of the spin and momentum that is invariant under
the symmetry operations of this group.
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Eigenvectors and eigenenergies of Ĥf are given by

|s,p〉 = 1√
2

(
1

−iseiθp

)
(2.2)

and

εp,f
s = p2/2m + sαp, (2.3)

correspondingly, where θp is the azimuth of the momentum p,
and s = ±1 denotes the chirality, i.e., the winding direction of
spins around the FS.

In the rest of the paper, we assume that the chemical
potential, μ, is positive and intersects both Rashba subbands.
The (bare) Fermi momenta and Fermi velocities of the
individual subbands are given by

p
f
± =

√
(mα)2 + 2mμ ∓ mα = m(v0 ∓ α), (2.4a)

v
f

F± = v0 ≡
√

α2 + 2μ/m. (2.4b)

The central object of the FL theory is the Landau function
describing the interaction between quasiparticles with

momenta p and p′ and spins σ̂ and σ̂ ′. Since SO coupling
reduces SU(2) symmetry down to U(1), the Landau function
will contain more invariants compared to the SU2S case
[Eq. (1.1)]. The task of finding all invariants is simplified by
noting that the Rashba coupling is equivalent to the effect of a
non-Abelian magnetic field BR(p) = (2α/gμB)p × ez, where
g is the electron’s g factor and μB is the Bohr magneton. The
most general form of the Landau function must include all
invariants formed out of the six objects—1, σ̂ , and BR(p) for
each of the two quasiparticles—that are invariant under C∞v ,
time reversal, and permutations of quasiparticles. The Landau
function in the real magnetic field B contains extra “Zeeman”
terms, σ̂ ′ · B and σ̂ · B, as well as their products.39 In addition
to these couplings, the Rashba field can be coupled to spins
in more ways because, in contrast to the real-field case, the
cross product BR(p) × BR(p′) ∝ p × p′ is nonzero and acts
on spins as another effective magnetic field along the z axis.

Exploring all possible invariants, we arrive at the following
Landau function:

f̂ = f s11′ + f a‖(σ̂x σ̂
′
x + σ̂y σ̂

′
y) + f a⊥σ̂zσ̂

′
z + 1

2gph[1σ̂ ′ × ( p′ − p) · ez − 1′σ̂ × ( p′ − p) · ez]

+ 1
2gpp[1σ̂ ′ × ( p′ + p) · ez + 1′σ̂ × ( p′ + p) · ez] + h(1)(σ̂ × ep · ez)(σ̂

′ × ep′ · ez) + h(2)(σ̂ × ep′ · ez)(σ̂
′ × ep · ez)

+ 1
2h[(σ̂ × ep · ez)(σ̂

′ × ep · ez) + (σ̂ × ep′ · ez)(σ̂
′ × ep′ · ez)], (2.5)

where ek ≡ k/k for any k. The scalar functions f s through h

depend on p2, p′2, and p · p′; for brevity, we do not display
these dependences in Eq. (2.5). Superscripts “ph” and “pp”
in the “g” terms indicate that, in the perturbation theory,
these terms come from the interaction in the particle-hole and
particle-particle (Cooper) channels, respectively. The electron
momenta enter f̂ via the Rashba field, BR(p). In the h(1), h(2),
and h terms, which contain bilinear combinations of p and p′,
we took the product pp′ out of the invariants and absorbed
it into the scalar functions. In the gph and gpp terms, which
contain the p ∓ p′ combinations, we kept the full vectors p
and p′. In Sec. V, we show how all the terms in Eq. (2.5) are
generated by the perturbation theory for the interaction vertex.

As is to be expected, SO coupling breaks spin-rotational
invariance of the exchange, σ̂ · σ̂ ′, term of an SU2S FL.
Anisotropy in the exchange part of f̂ comes from the combi-
nation [σ̂ · (BR × B′

R)][σ̂ ′ · (BR × B′
R)] ∝ σ̂zσ̂

′
z, which af-

fects only the σ̂zσ̂
′
z part of the exchange interaction. [Here,

BR ≡ BR(p) and B′
R ≡ BR(p′).] Consequently, anisotropic

exchange interactions [the second and third terms in the
first line of Eq. (2.5)] contain different couplings (f a|| and
f a⊥) parametrizing the interaction between the in-plane
and out-of-plane spins, correspondingly. Recent perturbative
calculations27,29,31 show that anisotropy is of the Ising type,
i.e., that f a⊥ > f a||. In addition to breaking the rotational
symmetry of the exchange interaction, SO coupling generates
effective Zeeman terms [with coupling constants gph, gpp, h(1),
and h(2)], which depend explicitly on p and p′. It is worth
pointing out that the “h” terms can be written in two equivalent
forms. For example, the h(1) term can be written down either

as (σ̂ × p · ez)(σ̂ ′ × p′ · ez) or as (σ̂ · p)(σ̂ ′ · p′), which results
in equivalent Landau functions upon a redefinition of f a‖.

Spins in Eq. (2.5) are not yet represented in any particular
basis. However, in order to project electrons’ momenta on the
FSs, we need to specify the basis. Since the ee interaction
commutes with spins, the spin structure of quasiparticles’
states is still governed by the Rashba term, as long as the
interaction is below the threshold value for a Pomeranchuk
instability. This argument is nothing more than the usual
assumption that symmetries of the system do not change
if the interaction is switched on adiabatically. Microscopic
calculations in Sec. V indeed show that the spin structure
of quasiparticles is the same as of noninteracting electrons.
Therefore, we take the chiral basis of Eq. (2.2) as the eigenbasis
for quasiparticles of a Rashba FL.

III. EFFECTIVE MASS

The original Landau’s derivation of the FL effective mass18

is restricted to Galilean-invariant systems and thus cannot be
applied to our case because the SO term breaks Galilean
invariance. A generalization of the Landau’s derivation for
a relativistic FL37 is also not applicable here because our
Hamiltonian [Eq. (2.1)] is not fully Lorentz invariant either.
Therefore, we need to devise an argument that involves neither
Galilean nor Lorentzian boosts.

To this end, we notice that the position operator commutes
with Ĥint because Ĥint depends only on the positions of
electrons but not on their velocities. Therefore, the velocity
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operator is the same as in the absence of the ee interaction:

v̂j = −i[x̂j ,Ĥ ] = −i[x̂j ,Ĥf ] = pj

m
1 + α(ez × σ̂ ). (3.1)

Summing Eq. (3.1) over all particles, we obtain

Tr
∑

j

vj = 1

m
Tr

∑
j

[pj1 + mα(ez × σ̂ )]. (3.2)

By definition, the total flux of particles is equal to that of
quasiparticles. The same is true for the total momentum and
total spin. Hence, the sums over particles can be converted
into sums over quasiparticles. Introducing a 2 × 2 matrix of
occupation numbers of quasiparticles n̂p, we have

Tr
∫

[p1 + mα(ez × σ̂ )]n̂p(dp) = mTr
∫

∂pε̂
pn̂p(dp),

(3.3)

where (dp) ≡ d2p/(2π )2, ε̂p is the energy functional of a
quasiparticle (also a 2 × 2 matrix), and ∂pε̂

p is its velocity.
Since both the Hamiltonian and n̂p are diagonal in the chiral
basis, i.e., (εp)ss ′ = δss ′ε

p
s and (n̂p)ss ′ = δss ′n

p
s , a projection of

Eq. (3.3) onto this basis reads∑
s

∫
[p + mα(ez × σ̂ ss)]n

p
s (dp) = m

∑
s

∫
∂pε̂

p
s n

p
s (dp).

(3.4)

Now we apply arbitrary independent variations to the diagonal
elements of the occupation number, keeping off-diagonal
elements to be zero: n

p
s = n

0p
s + δn

p
s , where n

0p
s = �(ps − p)

at T = 0 and ps is the Fermi momentum of fermions with
chirality s. (Here, superscript 0 refers to the unperturbed FL
with no variations in the occupation number.) A variation of
the diagonal element of the quasiparticle energy is related to
δn

p
s via

δεp
s =

∑
s ′

∫
fss ′ (p,p′)δnp′

s ′ (dp′), (3.5)

where the diagonal part of the Landau function is given by

fss ′ (p,p′) ≡ fs,s ′;s,s ′ (p,p′) (3.6)

and fs1,s2;s3,s4 (p,p′) is obtained by projecting Eq. (2.5) onto the
chiral basis. (It is understood that the unprimed Pauli matrices
come with with s1s3 indices, while the primed ones come with
s2s4 indices.) Varying both sides of Eq. (3.4), we obtain∑

s

∫
[p + mα(ez × σ̂ ss)]δn

p
s (dp)

= m
∑

s

∫
∂pε

0p
s δnp

s (dp) + m
∑

s

∫
∂pδε

p
s n

0p
s (dp).

(3.7)

Integration by parts in the first term of the right-hand side of
Eq. (3.7) gives, upon relabeling s ←→ s ′, p ←→ p′ and using
symmetry fss ′ (p,p′) = fs ′s(p′,p),∑

s

∫
[p + mα(ez × σ̂ ss)]δn

p
s (dp)

= m
∑

s

(
∂pε

0p
s

)
δnp

s

−m
∑
s,s ′

∫
fss ′ (p,p′)

(
∂p′n

0p′
s ′

)
δnp

s (dp)(dp′). (3.8)

Since variations are arbitrary, the integrands themselves must
be equal. Using ∂p′n

0p′
s ′ = −δ(ps ′ − p′)ep′ and ∂pε

0p
s = ps/m∗

s

as a definition of the quasiparticle effective mass (with ps ≡
psep), projecting Eq. (3.8) onto ep, and setting p = ps , we
obtain

ps

[
1 + mα

ps

(ez × σ̂ ss) · ep

]
= ps

m

m∗
s

+ m
∑
s ′

∫
fss ′ (ps ,p′)

× δ(ps ′ − p′)ep · ep′(dp′).
(3.9)

To simplify the final form of m∗
s , we define

Fss ′ (p,p′) = νsfss ′ (p,p′), (3.10)

with νs = m∗
s /2π being the density of states of the subband s.

All the scalar functions in the f̂ matrix can be redefined in the
same fashion, e.g.,

F s(p,p′) = νsf
s(p,p′), (3.11)

and similarly for the F a‖, F a⊥, Gph, Gpp, H (1), H (2), and H

functions. With these definitions, Eq. (3.9) can be written as

m∗
s

m

[
1 + mα

ps

(ez × σ̂ ss) · ep

]
= 1 +

∑
s ′

ps ′

ps

F
,1
ss ′ , (3.12)

where

F
,�
ss ′ ≡

∫
Fss ′ (ps ,ps ′ ) cos(�θpp′)

dθpp′

2π
(3.13)

and θp,p′ is the angle between p and p′. Using explicit forms
of the Pauli matrices in the chiral basis (2.2),

σ̂x =
(

sin θp i cos θp

−i cos θp − sin θp

)
, σ̂y =

(− cos θp i sin θp

−i sin θp cos θp

)
,

(3.14)

σ̂z =
(

0 1

1 0

)
,

we find (ez × σ̂ ss ′ ) · ep = sδss ′ . (This result simply follows
from the fact the Hamiltonian is diagonal in the chi-
ral basis.) Projecting Eq. (2.5) onto the chiral basis, we
obtain

Fs,s ′ (ps ,ps ′ ) = F s(ps ,ps ′ ) + F a‖(ps ,ps ′ )ss ′ cos θpp′ + Gph(ps ,ps ′ )[sps + s ′ps ′ − (sps ′ + s ′ps) cos θpp′]/2

+Gpp(ps ,ps ′ )[sps + s ′ps ′ + (sps ′ + s ′ps) cos θpp′]/2 + H (1)(ps ,ps ′ )ss ′ cos(2θpp′)

+H (2)(ps ,ps ′ )ss ′ cos2 θpp′ + H (ps ,ps ′ )ss ′ cos θpp′ . (3.15)
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Notice that the f a⊥ component of the Landau function in
Eq. (2.5) does not enter Eq. (3.15), because σ̂z is off diagonal
in the chiral basis and hence f a⊥ drops out from the diagonal
part of the Landau function. In contrast to the case of a SU2S
FL, where the effective mass contains only the � = 1 harmonic
of F s, the � = 1 harmonic of Fss ′ in Eq. (3.12) contains also
both lower and higher harmonics of partial components of Fss ′ .
Namely, F

,1
ss ′ contains the � = 0 and � = 2 harmonics of F a‖,

Gph, Gpp, and H and the � = 3 harmonics of H (1) and H (2).
The final result for the effective masses can be cast into the
following form:

m∗
s

ms

= 1 +
∑
s ′

ps ′

ps

F
,1
ss ′ , (3.16)

where

ms ≡ m

1 + s mα
ps

. (3.17)

Notice that the Luttinger theorem66 guarantees only that the
total area of the FS, π (p2

+ + p2
−), is not renormalized by the

interaction but says nothing about the partial areas. Therefore,
p+ and p− in Eqs. (3.16) and (3.17) must be considered as
renormalized Fermi momenta. The mass ms in Eq. (3.17) has
the same form as the effective mass of free Rashba fermions
m

f
s = p

f
s /∂pε

f
s = m/(1 + smα/p

f
s ), except that the Fermi

momenta of an interaction-free system, p
f
s , are now replaced

with the renormalized ones, ps . From Eqs. (3.16) and (3.17),
we see that a chiral FL liquid is different from an SU2S one
in that the effective mass (and, as we will see later, other FL
quantities) is not determined only by the Landau parameters:
One also needs to know the renormalized Fermi momenta.
In this respect, a chiral FL is similar to other two-component
FLs.46,50

Due to hidden symmetry of the Rashba Hamiltonian—
conservation of the square of the velocity67—the Fermi
velocities of free Rashba fermions with opposite chiralities
are the same; cf. Eq. (2.4b). (However, the masses are
different because of the difference in the Fermi momenta.)
It is reasonable to expect that the ee interaction breaks
hidden symmetry and leads to splitting of the subbands’
velocities. However, no such splitting occurs to first order
in SO coupling,19 even if the ee interaction is accounted
for exactly.68 In the remainder of this section, we present a
microscopic calculation of the effective masses and show that
the velocities are indeed split even by a weak ee interaction
but only at larger values of SO coupling.

We adopt a simple model of a screened Coulomb potential
in the high-density limit (rs � 1). The leading-order result
for mass renormalization, (m∗/m − 1) ∼ rs ln rs , is obtained
already for a static screened Coulomb potential,

UTF
q = 2πe2

q + pTF
, (3.18)

where pTF = √
2rspF is the inverse Thomas-Fermi screening

radius. SO coupling does not affect the form of UTF
q because

the total density of states remains the same as long as both
Rashba subbands are occupied. The self-energy of an electron

in the subband s is given by

�s(p,ω) = − 1

2

∑
s ′

∫
d2q

(2π )2

∫
d�

2π
UTF

q

× [1 + ss ′ cos(θp+q − θp)]gs ′(p + q,ω + �),

(3.19)

where

gs(p,ω) = 1

iω − ε
p,f
s + μ

(3.20)

is the free (Matsubara) Green’s function in the chiral basis with
ε

p,f
s given by Eq. (2.3). At small rs , typical momenta transfers

are small, q ∼ pTF � pF ; therefore, the difference between
θp+q and θp can be neglected and intersubband transitions
(with s ′ = −s) drop out. Simplifying Eq. (3.20) in the way
specified above and subtracting the self-energy evaluated at
the FS, we obtain

��s ≡ �s(p,ω) − �s(ps ,0)

=
∫

d2q

(2π )2

∫
d�

2π
UTF

q

× [gs(p + q,ω + �) − gs(ps + q,�)].

Integration over � gives (for ε
p,f
s ≡ εp,f − μ > 0)

��s =
∫

− ε
p,f
s
v0q

<cos θp<0

d2q

(2π )2
UTF

q

=
∫ p

f
s

ε
p,f
s
v0

dqq

2π2
UTF

q

[
cos−1

(
− ε

p,f
s

v0q

)
− π

2

]
, (3.21)

where v0 is the (common) Fermi velocity of Rashba subbands
given by Eq. (2.4b). Expanding Eq. (3.21) to linear order in
ε

p,f
s and solving the integral over q to logarithmic accuracy,

we find

��s = ε
p,f
s

πv0
e2 ln

p
f
s

pTF
, (3.22)

where the subband Fermi momentum, p
f
s , was chosen as the

upper cutoff. Since the electron Z factor is not affected to
this order of the perturbation theory,19 Eq. (3.22) immediately
gives renormalized Fermi velocities as

v±
v0

= 1 + e2

πv0
ln

p
f
±

pTF
. (3.23)

This result is the same as for a 2D electron gas without
SO coupling, except for that the Fermi momentum, entering
the logarithmic factor, is specific for a given subband. The
mechanism of such splitting is similar to Overhauser-type
splitting of effective masses in a partially spin-polarized
metal.62–64 Equation (3.23) gives spin-splitting of the Fermi
velocities as

v+ − v−
v0

= e2

πv0
ln

p
f
+

p
f
−

. (3.24)

One needs to keep in mind, however, that Eq. (3.24) was
obtained as a difference of two formulas (3.23), each of
which contains a large logarithmic factor, and is thus valid
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if not only each of the logarithms but also their difference is
large. This requires that p

f
+ � p

f
−. Such a case is realized for

strong SO interaction, when mα2/2 � μ > 0. In this case,
p

f
+ ≈ μ/α � p

f
− ≈ 2mα, v0 ≈ α, and thus

v+ − v−
v0

≈ − e2

πα
ln

mα2

μ
. (3.25)

In Appendix A, we compute the self-energy beyond the
logarithmic accuracy and show that Eq. (3.24) is reproduced as
a leading term. Also, we present there a simple way to generate
an analytic expansion of the self-energy in α, which confirms
previous results for velocity splitting.19,21 We return to the
issue of mass renormalization in Sec. VI B, where we show
that a nonanalytic in SO result for velocity splitting comes
from the Kohn anomaly modified by the SO interaction.

IV. THERMODYNAMIC PROPERTIES

In principle, Eq. (2.5) enables one to compute all thermo-
dynamic properties of a chiral FL. In this section, we illustrate
how this program can be carried out in the charge sector
by calculating the isothermal compressibility (Sec. IV A and
deriving Pomeranchuk stability conditions (Sec. IV B).

A. Compressibility

The T = 0 compressibility of a FL is given by

κ = 1

N2

(
∂N

∂μ

)
N

, (4.1)

where N = ∑
s

∫
(dp)np

s = ∑
s Ns is the number density and

N is the total particle number.
The compressibility of a chiral FL is obtained by a simple

generalization of the original Landau’s argument.18 If the
exact dispersions of Rashba subbands are ε±(p) = ε

p
± + μ,

the chemical potential is defined as μ = ε+(p+) = ε−(p−).
The variation of the chemical potential consists of two parts:
The first one is due to a change in the Fermi momenta in each
of the two subbands and the second one is due to a variation
of the quasiparticles’ dispersions. Since the variations of the
chemical potential are the same for both subbands, we have

δμ = ∂ε+(p)

∂p

∣∣∣∣
p+

δp+ + δε
p
+ = ∂ε−(p)

∂p

∣∣∣∣
p−

δp− + δε
p
−, (4.2)

where δε
p
± are given by Eq. (3.5) and δps = (2π/ps)δNs .

Assuming that the variations of n
p
± in the p space are localized

near the corresponding Fermi momenta, we integrate n
p
± over

the magnitude of the momenta to obtain ε
p
s = ∑

s ′ F
,0
ss ′δNs ′/νs .

Combining Eq. (4.2) with the constraint δN = δN+ + δN−,
we solve the resulting system for δN± in terms of δμ and δN

to obtain

κ = 1

N2

ν + ν+(F ,0
−− − F

,0
−+) + ν−(F ,0

++ − F
,0
+−)

(1 + F
,0
++)(1 + F

,0
−−) − F

,0
+−F

,0
−+

, (4.3)

with ν = ∑
s νs . The result for the SU2S case is recovered

in the limit when the intra- and intersubband components of
F

,0
ss ′ are the same. Indeed, substituting F

,0
++ = F

,0
−− = F

,0
+− =

F
,0
−+ = F s,0/2 into Eq. (4.3), we obtain the familiar result18

κ = ν/[(1 + F s,0)N2].

Notice that Eq. (4.3) is different from the compressibility of
a two-component FL50 because of the additional assumption
used in Ref. 50, namely, that not only the total number of
particles but also the numbers of particles of a given type
remains constant under compression. While this assumption is
justified in the context of a degenerate electron-proton plasma
considered in Ref. 50, it is not applicable to our case when
particles of opposite chiralities can be exchanged between the
Rashba subbands, and thus the number of particles with given
chirality is not conserved.

B. Stability conditions

To obtain a stability condition in the charge sector, we
require the Gibbs free energy, �, to be minimal with respect
to arbitrary deformations of the FSs which do not affect their
spin structure. Such deformations can be parametrized via the
angular-dependent variations of the Fermi momenta69

p̄s(θ ) − ps =
n=∞∑

n=−∞
�s,ne

inθ . (4.4)

Corresponding variations in the occupation numbers can be
written as

δn̂p
s = �(p̄s(θ ) − p) − �(ps − p). (4.5)

A change in the free energy,

δ� = Tr
∫

ε̂pδn̂p(dp) + 1

2
TrTr′

∫
f̂ (p,p′)δn̂pδn̂p′

(dp)(dp′),

(4.6)

must be positive definite with respect to such variations. Using
ε̂ss ′ = δss ′ ps

m∗
s
(p − ps), the equation for δ� is simplified to

δ� =
∑
s,n

p2
s

4πm∗
s

�2
s,n +

∑
s,s ′,n

psps ′

4πm∗
s

F̂
,n
ss ′�s,n�s ′,−n. (4.7)

We thus arrive at the stability conditions in the charge sector:

1 + F
,n
++ > 0, (4.8a)

1 + F
,n
−− > 0, (4.8b)

(1 + F
,n
++)(1 + F

,n
−−) > F

,n
+−F

,n
−+, (4.8c)

for any n � 0. Conditions (4.8a) and (4.8b) are the same as for
the single-component case, while condition (4.8c) indicates
that the two-component FL is stable only if the interband
interaction is sufficiently weak.50 For n = 0, condition (4.8c)
coincides with the condition that the denominator of Eq. (4.3)
is positive.

Note that the divergence of κ in gated systems does not
manifest a thermodynamic instability as the total energy of
the system remains positive due to a compensating effect
of the classical charging energy of a parallel-plate capacitor.
Instead, this divergence indicates the onset of the “negative
compressibility” regime, in which the measured capacitance
is larger than the geometric one. Electron and, especially, hole
FLs in semiconductor heterostructures are typically studied in
this regime.70
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C. Spin susceptibility

1. Fermi-liquid formalism

As mentioned in Sec. I, the subtleties of a non-SU2S FL
are all in the spin sector. To illustrate this point more clearly,
we proceed with evaluating the spin susceptibility.

In order to do this within the framework of the FL theory,
one needs to properly define a change in the occupation
numbers of quasiparticles due to an external magnetic field.
Suppose that an external magnetic field is in the ez direction
and of magnitude much smaller than the effective SO field,

gμBH � αpF , (4.9)

where g is effective g factor. (We neglect here the diamagnetic
response of electrons. In principle, the spin part of the total
susceptibility can be measured, e.g., via the Knight shift or
neutron scattering.) In the absence of an external field, the
chiral states |s,p〉 (with s = ±1) are filled up to the Fermi
momenta ps . The presence of a magnetic field affects the
spin structure of quasiparticle states. Let |h,p〉 (with h = ±1)
be the states in the presence of the field, filled up to the
Fermi momenta p̃h. (To distinguish between the quantities
in the absence and in the presence of the field, we denote
the latter with a tilde over the corresponding symbol.) The
energy functional of quasiparticles in the absence of the field
is diagonal in the |s,p〉 basis with eigenvalues ε

p
±:

ε
p
ss ′ = 〈s,p|ε̂p|s ′,p〉 = δss ′εp

s . (4.10)

The occupation number in the absence of the field is diagonal
as well,

n
p
ss ′ = 〈s,p|n̂p|s ′,p〉 = δss ′np

s , (4.11)

where n
p
s = �(ps − p). In the presence of the field, the |s,p〉

basis is not an eigenstate of the Hamiltonian. Therefore, the
Zeeman part of the energy functional is not diagonal in this
basis:71

ε̃
p
ss ′ = ε

p
ss ′ + δε

p
ss ′ , (4.12)

where

δε
p
ss ′ = 1

2g∗(p)μBHσz
ss ′ , (4.13)

g∗(p) is the renormalized g factor which depends on the
electron momentum, and σ z in the chiral basis is given by
the last formula in Eq. (3.14). (At this point, our analysis
differs from that of Ref. 52, where the occupation number was
assumed to be diagonal. On the other hand, our approach is
consistent with that of Ref. 47, which emphasized the need
for including the off-diagonal components of n̂ for the case of
a partially spin-polarized FL.) Both the energy functional of
quasiparticles in the presence of the field and their occupation
number are diagonal in the |h,p〉 basis:

ε̃
p
hh′ = 〈h,p|ε̂p|h′,p〉 = δhh′ ε̃

p
h,

(4.14)
ñ

p
hh′ = 〈h,p|n̂p|h′,p〉 = δhh′ ñ

p
h.

There exists a unitary matrix Û that diagonalizes ε̃
p
ss ′ , such that

ε̃
p
hh′ = U

†
hs ε̃

p
ss ′Us ′h′ (4.15)

or, equivalently,

ε̃
p
ss ′ = U

†
shε̃

p
hh′Uh′s ′ . (4.16)

To first order in H ,

Û = 1 + HM̂ + O(H 2), (4.17)

where M̂ is an anti-Hermitian matrix parametrized as

M̂ =
(

ia β

−β∗ ib

)
, (4.18)

with real a and b. The matrix M̂ is determined from the
condition that the linear-in-H part of ε̃

p
ss ′ is given by Eq. (4.13).

For a diagonal ε̃
p
hh′ , the diagonal elements of U

†
shε̃

p
hh′Uh′s ′ are

equal to zero, while Eq. (4.13) contains only off-diagonal
elements. This fixes β in Eq. (4.18) to be real and equal to

β = g∗(p)μB

2

1

ε
p
+ − ε

p
−

. (4.19)

The diagonal components of M̂ remain undefined to first
order in H but, using Û = eHM̂ , they can be shown to be equal
to zero to all orders in H . Consequently, M̂ can be written as

M̂ = β

(
0 1

−1 0

)
. (4.20)

Since the same matrix Û also diagonalizes the occupation
number, we have

ñ
p
ss ′ = U

†
shñ

p
hh′Uh′s ′ . (4.21)

To find a linear-in-H correction to ñ
p
ss ′ , it suffices to ap-

proximate ñ
p
hh′ by a diagonal matrix diag(np

+,n
p
−) with field-

independent n
p
±. Then

δñ
p
ss ′ = β[M̂†diag(np

+,n
p
−) + diag(np

+,n
p
−)M̂]

= βH (np
+ − n

p
−)σ̂ z

ss ′ . (4.22)

It is at this point when the main difference between the SU2S
and chiral FLs occurs: For the former, the change in the
occupation number is localized near the FS; for the latter,
it is proportional to a difference of the occupation numbers
in the absence of the field and is thus finite for all momenta
between the chiral subbands.

With this remark in mind, we still proceed with a derivation
of the equation for the renormalized g factor. As in the SU2S
case, we decompose the energy variation into the Zeeman part
and the part due to a variation in the occupation number:

δε̃
p
ss ′ = 1

2
g∗(p)μBHσz

ss ′

= 1

2
gμBHσz

ss ′ +
∑
t t ′

∫
(dp′)fst,s ′t ′(p,p′)δñp′

t ′t . (4.23)

Since δñ
p′
t ′t is proportional to σ z

t ′t , the sum over t and t ′ selects
the only component of the Landau function in Eq. (2.5) that
contains σ z, i.e., f a⊥. The renormalized g factor remains
isotropic in the momentum space until a Pomeranchuk insta-
bility is reached: g∗(p) = g∗(p). With these simplifications,
Eq. (4.23) reduces to

g∗(p)

g
= 1 + 4

∫
(dp′)f a⊥(p,p′)(np′

+ − n
p′
−)

β

μBg

= 1 − 2
∫ p−

p+

dp′p′

2π

f a⊥,0(p,p′)

ε
p′
+ − ε

p′
−

g∗(p′)
g

, (4.24)
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where f a⊥,0(p,p′) is the � = 0 angular harmonic of f a⊥ (we
remind the reader that ε

p
± depend only on the magnitude of p).

In contrast to the SU2S case, the equation for g∗(p) remains
an integral one, even if the external momentum is projected
onto one of the FSs. (The occurrence of integral rather than
algebraic equations is also typical for the theory of a partially
spin-polarized FL; see, in particular, Ref. 47.)

The out-of-plane spin susceptibility is then found as

χzz = gμB

2H

∑
ss ′

∫
(dp)σ z

ss ′δñs ′s

= gμ2
B

2

∫ p−

p+

dpp

2π

g∗(p)

ε
p
+ − ε

p
−

= g2μ2
B

2

[ ∫ p−

p+

dpp

2π

1

ε
p
+ − ε

p
−

− 2
∫ p−

p+

dpp

2π

∫ p−

p+

dp′p′

2π

× f a⊥,0(p,p′)

(εp
+ − ε

p
−)(εp′

+ − ε
p′
− )

g∗(p′)
g

]
. (4.25)

In the last line, we used Eq. (4.24) for g∗(p).
Following the same steps, the in-plane spin susceptibility

(χxx = χyy) can be shown to contain contributions both from
each of the FSs and from the interval in between the two.
However, since there is always a finite contribution from the
damped states between the two FSs, the problem remains the
same as for χzz. In addition, the in-plane spin susceptibility
contains angular harmonics of all Landau parameters except
for f a⊥. The final formula for χxx is not sufficiently instructive
to be presented here.

2. Physical interpretation

Equation (4.25) (and a similar formula for χxx) shows that
the spin susceptibility of a chiral FL has a different physical
origin compared to the Pauli susceptibility of a SU2S FL.
Indeed, while the latter is determined by the states right on the
FS, the former comes from a finite interval of states between
the two spin-split FSs. Moreover, this difference is present
already for noninteracting electrons, when the second term in
Eq. (4.25) is absent. Physically, this difference comes about
because, in the SU2S case, the induced magnetic moments
of almost all spin-up and spin-down states cancel each other,
except for the states with momenta between the Zeeman-split
FSs, where the spin-down states are empty but the spin-up
states are occupied. In a weak magnetic field, the width
of this region is proportional to the field, and this is why
only the states at the FS matter in the H → 0 limit. In the
chiral case, SO splitting is present even at zero magnetic
field, and the whole interval p+ < p < p− contributes to
magnetization. This property becomes especially clear in the
Kubo-formula approach, which gives for the spin susceptibility
in the noninteracting case29

χf
zz = g2μ2

B

8πα

∫ ∞

0
dp[n−(p) − n+(p)], (4.26a)

χf
xx = χf

yy = 1

2
χf

zz − g2μ2
B

8

∫
d2p

(2π )2

(
∂n+
∂ε

p,f
+

+ ∂n−
∂ε

p,f
−

)
,

(4.26b)

where n± are the occupation numbers of the Rashba subbands.
The difference between Eqs. (4.26a) and (4.26b) can be
traced back to the difference between the corresponding Pauli
matrices in the chiral basis [Eq. (3.14)]. Indeed, since σ̂z is
off diagonal, χ

f
zz comes only from intersubband transitions,

while σ̂x and σ̂y contain both diagonal and off-diagonal
parts, and hence χ

f
xx and χ

f
yy come from both intra- and

intersubband transitions. At T = 0, the integrand in χ
f
zz is

nonzero only in the interval p
f
+ � p � p

f
−. The second term

in Eq. (4.26b) is the FS contribution. Note that, despite the
difference in the intermediate formulas, the finite results for
the in- and out-of-plane components at T = 0 are the same,
χ

f
xx = χ

f
yy = χ

f
zz = g2μ2

B/4π ; i.e., not only the noninteracting
spin susceptibility is fully isotropic but it also coincides
with the spin susceptibility in the absence of SO coupling.29

This is another special property of a linear-in-momentum SO
interaction. [In Appendix B, we show how Eq. (4.26a) can be
obtained via a thermodynamic approach.]

To apply Eq. (4.25) to the FL case, one needs to know
the renormalized quasiparticle spectrum and f a,⊥ component
of the Landau function in the entire interval of momenta
between the FSs. If SO coupling is not weak, one needs to
know the properties of chiral quasiparticles far away from
their respective FSs, which is outside the scope of the FL
theory. This problem is not merely technical but fundamental
because quasiparticles decay away from their FSs, and one
thus cannot formulate the FL theory as a theory of well-defined
quasiparticles. This does not mean that a chiral electron system
is a non-FL; on the contrary, all microscopic calculations
(cited in Sec. I) as well as experimental evidence point to
the FL nature of chiral electron systems. However, they are
FLs with the spin sector that cannot be described in the
framework of the FL theory. This conclusion is not restricted
to the case of a FL with the Rashba SO interaction but is also
true for any non-SU2S FL, e.g., ferromagnetic and partially
spin-polarized FLs.47,48,57 Nevertheless, we show in Sec. VI C
that Eq. (4.25) reproduces correctly both limiting cases of a
weak ee interaction and a weak SO coupling.

Notice that the integral in Eq. (4.26a) can be re-written
as

∫ ∞
0 dpp(∂pn+ − ∂pn−), which makes it look like as a FS

contribution.72 This is yet another manifestation of an anomaly
typical for free Fermi systems: The same quantity can be
viewed either as a FS- or a non-FS contribution.73 In the
interacting case, however, such a freedom is no longer there;
for example, Eq. (4.24) for the g-factor cannot be re-written
in terms of the derivatives of the Fermi functions.

We should also point out that the states with momenta
in the interval p < p+, where both Rashba subbands are
occupied, do not contribute to the spin susceptibility, which
implies that the induced magnetic moments of the occupied
Rashba subbands cancel each other. This cancellation is
not accidental but follows from a nontrivial time-reversal
symmetry at a fixed magnetic field. Indeed, a contribution to
the total spin susceptibility from the occupied electron states
of both chiralities and with given momentum p can be written
as

χii(p) = lim
Hi→0

1

Hi

gμB

2

∑
s

〈s,p; H|σ̂i |s,p; H〉, (4.27)
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where |s,p; H〉 are the basis states in the presence of the
field. To linear order in the out-of-plane magnetic field, the
eigenenergies do not change, while the basis vector in Eq. (2.2)
changes to

|s,p,H〉 = 1√
2

(
1

−is
[
1 − s

gμBHz

2αp

]
eiθp

)
. (4.28)

If the field is in the plane, e.g., along the x axis, the
energies acquire a linear-in-H correction ε

p,f
s = p2/2m +

sαp + s sin θpgμBHx/2, while the basis vector becomes

|s,p,H〉 = 1√
2

(
1

−is
[
1 + i cos θp

gμBHx

2αp

]
eiθp

)
. (4.29)

(To find the induced magnetization, one does not need to take
into account the corresponding changes in the normalization
coefficients.) For both orientations of the field, the states
|s,p; H〉 and |s,−p,−H〉 are the components of the Kramers
doublet which correspond to the same energy. Indeed, applying
the time-reversal operator, K̂ = σ̂yĈ, where Ĉ is a complex
conjugation operator, to spinor (4.28), we obtain

K̂|s,p,H〉 =
(

1

is
[
1 + s

gμBHz

2αp

]
eiθp

)
= | − s,p; H〉

=
(

1

−is
[
1 + s

gμBHz

2αp

]
eiθ−p

)
= |s, − p; −H〉,

(4.30)

up to an unessential overall phase factor, and similarly for
spinor (4.29). The second line in Eq. (4.30) expresses full
time-reversal symmetry, which involves not only acting by the
operator K̂ but also reversing the direction of the magnetic
field. However, the first line of the same equation says that
the spinors also satisfy another symmetry: Specifically, the
operator K̂ reverses the chirality of the state (s → −s) at fixed
H. The spin susceptibility should be even under time reversal.
Applying K̂ (at fixed H) to Eq. (4.27), and taking into account
that K̂σ̂iK̂−1 = −σ̂i , we obtain

χii(p) = lim
Hi→0

gμB

Hi

∑
s

〈s,p; H|K̂−1K̂σ̂iK̂−1K̂|s,p; H〉

= − lim
H→0

gμB

Hi

∑
s

〈−s,p; H|σ̂i |−s,p,H〉 = −χii(p),

(4.31)

which proves that χii(p) = 0. This is the physical reason for
the cancellation of the contributions from the occupied states
with opposite chiralities.

For noninteracting electrons, one can certainly check this
result explicitly. Indeed, the induced polarization carried by a
state with chirality s and momentum p is given by

〈s,p,Hzez|σ̂z|s,p,Hzez〉 = s
gμBHz

αp,
(4.32a)

〈s,p,Hxex |σ̂x |s,p,Hxex〉 − 〈s,p,0|σ̂x |s,p,0〉
= s

gμB

2
sin(2θp)Hx (4.32b)

for the cases of out- and in-plane fields, correspondingly.
Summing over s, we get zero polarization in both cases. We

argue, however, that since property (4.31) is guaranteed by
time-reversal symmetry, it remains valid also in the presence
of the ee interaction, as long as this interaction does not
lead to spontaneous breaking of this symmetry via, e.g., a
ferromagnetic instability.

V. CORRESPONDENCE BETWEEN THE MICROSCOPIC
AND PHENOMENOLOGICAL THEORIES

The purpose of this section is to establish the connection
between the Landau function and interaction vertices of the
microscopic theory. As in the theory of a SU2S FL, the relation
between the Landau function and microscopic interaction
vertices is established by deriving the equations of motion
for zero-sound modes. Without loss of generality, we ignore
the effect of impurities and complications arising from the
electric charge of the electrons.

To study the collective modes within the framework of a
phenomenological FL theory, we start with the (collisionless)
quantum Boltzmann equation for the nonequilibrium part of
the occupation number,

∂tδn̂
p + i[n̂p,ε̂p]− + v · ∇rδn̂

p − 1
2 [∇rδε̂

p,∂pn̂
0p]+ = 0,

(5.1)

where [Â,B̂]± denotes (anti)commutator of Â and B̂. (For
brevity, the dependences of δn̂p and ε̂p on r and t are not
displayed.) We are interested in zero-sound modes in the
charge sector which correspond to variations in the diagonal
elements of δn̂p. In the chiral basis,

δnp
s (r,t) ≡ δnp

ss(r,t) = δ
(
εp
s − μ

)
as(θp)ei(q·r−�t), (5.2)

where as(θp) describes the angular dependence of δnp. Hence,
Eq. (5.1) reduces to

∂tδn
p
s + vs · ∇rδn

p
s + δ

(
εp
s − μ

)
vs · ∇rδε

p
s = 0, (5.3)

where vs = ∂pε
p
s and

∇rδε
p
s =

∑
s ′

∫
fss ′ (p,p′)∇rδn

p′
s ′ (dp′). (5.4)

Using Eq. (5.2), we obtain instead of Eq. (5.3)

As =
∑
s ′

∫
Fss ′�s ′As ′

dθ ′

2π
, (5.5)

where

As = as�
−1
s (5.6)

and

�s = vs · q
� − vs · q

. (5.7)

Next we derive Eq. (5.5) from the microscopic theory. Using
the Dyson equation for the interaction vertex—see Fig. 1—we
arrive at

�s,r;s ′,r ′ (P,K; Q) = ��
s,r;s ′,r ′ (P,K) +

∑
t,t ′=±1

∫
P ′

��
s,t ;s ′,t ′(P,P ′)

×�tt ′(P
′; Q)�t ′,r;t,r ′ (P ′,K; Q), (5.8)

where the (2 + 1) momenta are defined as P = (p,ω),
P ′ = (p′,ω′), etc., and

∫
P

is a shorthand notation for
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(2π )−3
∫

dω
∫

d2p · · · . Furthermore, �s,r ′;s,r ′ (P,K; Q) is an
exact vertex which contains the poles corresponding to the
collective modes, ��

s,r ′;s,r ′ (P,K) is a regular vertex, obtained
from � in the limit of q/� → 0 and � → 0,18 and �ss ′ is
the particle-hole correlator at fixed direction of the center-of-
mass momentum of the particle-hole pair. The off-diagonal
components of �ss ′ are gapped by SO splitting, while the
diagonal ones contain singular parts given by

�ss(P,Q) = (
2πiZ2

s

/
vs

)
δ(ω)δ(p − ps)�s, (5.9)

where Zs is the Z factor of the subband s. The Landau function
is related to the vertex ��

s,r;s,r . Since Eq. (5.9) must hold for any
K , the vertex can be written as a product of two independent
contributions:

�s,r;s,r (P,K; Q) = ηs(P ; Q)ηr (K; Q). (5.10)

Near the poles of �s,r;s,r , we have

ηs =
∑

t

Z2
t νt

∫
��

s,t ;s,t (θ,θ ′)�tηt

dθ ′

2π
. (5.11)

Comparing the kernels in Eqs. (5.11) and (5.5) and recalling
definition (3.10), we identify the Landau function as

fss ′ = νs ′

νs

Z2
s ′�

�
s,s ′;s,s ′ . (5.12)

We see that, except for the ratio of the densities of states, the
relation between the vertex and Landau function is the same
as in the SU2S theory.

VI. SPECIFIC EXAMPLES

A. Landau function from the perturbation theory

Having established a relation between the Landau function
and microscopic interaction vertex, we now show how the
various components of the phenomenological Landau function
in Eq. (2.5) are reproduced by the perturbation theory for
the interaction vertex. In this section, we consider a second-
order perturbation theory in a (spin-independent) finite-range
interaction with Fourier transform Uq . The only constraint
imposed on Uq is that it is finite for any q, including q = 0.

According to Eq. (5.12), the Landau function is proportional
to the (antisymmetrized) interaction vertex ��. In the spin
basis,

��
α,β;γ,δ(p,p′) = lim

�→0
lim
q

�
→0

�α,β;γ,δ(P,P ′; Q)|ω=ω′=0. (6.1)

To first order in the interaction,74 we have

��
α,β;γ,δ =

(
U0 − U|p−p′|

2

)
δαγ δβδ − U|p−p′|

2
σ̂ αγ · σ̂ βδ,

(6.2)

FIG. 1. The Dyson equation for the scattering vertex
�s,r;s′,r ′ (P,K; Q) (solid squares). The open squares represent the
regular vertex ��

s,r;s′,r ′ (P,K).

L L’− − L L’

p ,s

p ,s

p ,sp ,s

p ,s p ,s

p ,s
/ /

p ,s
/ /

p ,s
/ / p ,s

/ /

p ,s
/ /

, r , t, r , t

−

(a)

(b)

(c) (d)

L

L

p ,s p ,s

p ,s
/

/ p ,s
/

/

r,

, t

L

L+P+P’

p ,s

p ,sp ,s
/

/

p ,s
/

/r,

, t

−

L

L’

p ,s p ,s

p ,s
/

/ p ,s
/

/

r,

, tp ,s
/ /

FIG. 2. All second-order diagrams for the �� vertex related to
the Landau function. The rest of the second-order diagrams for �

vanish in the q/� → 0 limit. The internal (2 + 1) momentum L′

is L′ = L + P ′ − P . Exchange diagrams enter with a minus sign,
shown explicitly in the figure. Both diagrams in (b) are the exchange
ones.

which is the same as in the SU2S case. To see the non-SU2S
terms, one needs to go beyond the first order.

We start with a particle-particle diagram in Fig. 2(a), the
direct (left) and exchange (right) parts of which are given by

�
�,a1
α,β;γ,δ(p,p′) = −

∫
L

U 2
|p−l|G

f
αγ (L)Gf

βδ(L′), (6.3a)

�
�,a2
α,β;γ,δ(p,p′) =

∫
L

U|p−l|U|p′−l|G
f

αδ(L)Gf

βγ (L′), (6.3b)

correspondingly. Here, integration goes over L = (l,ω), L′ =
−L + K with K = (k,0) = (p + p′,0), and the free Green’s
function in the spin basis reads

Ĝf (P ) =
∑

s

1

2
(1 + sσ̂ × ep · ez)gs(P ), (6.4)

where gs(P ) is the same as in Eq. (3.20).
First, we focus on the direct part of the vertex, given by

Eq. (6.3a). The cross product of two unity matrices merely
renormalizes the 11 term in the Landau function of an SU2S
FL [Eq. (1.1)]. Consider now the terms involving one unity
matrix and one Pauli matrix:

(
�

�,a1
α,β;γ,δ

)
g

= −1

4

[
1αγ σ̂ βδ ×

∑
s,s ′

s ′A′
ss ′ (k) · ez

+ 1βδσ̂ αγ ×
∑
s,s ′

sAss ′ (k) · ez

]
, (6.5)

where

Ass ′ (k) =
∫

L

lU 2
|p−l|g

f
s (L)gf

s ′ (L′), (6.6a)

A′
ss ′ (k) =

∫
L

l ′U 2
|p−l|g

f
s (L)gf

s ′ (L′). (6.6b)
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Since the Green’s function depends only on the magnitude of
the electron momentum, the vectors in Eqs. (6.6a) and (6.6b)
are related to each other by

Ass ′ (k) = A′
s ′s(k). (6.7)

For the same reason, the directions of both vectors must
coincide with that of k. Using these two properties, we obtain∑

s,s ′
sAss ′ =

∑
s,s ′

s ′A′
ss ′ = kA1(k), (6.8)

where A1(k) is some scalar function of k, whose precise form
depends on the choice of Uq . Using the last result, we finally
arrive at(

�
�,a1
α,β;γ,δ

)
g

= − 1
4A1(|p + p′|)

× [1αγ σ̂ βδ + 1βδσ̂ αγ ] × (p + p′) · ez

≡ [1αγ σ̂ βδ + 1βδσ̂ αγ ] × C1 · ez, (6.9)

which coincides with the tensorial form of the gpp term in
Eq. (2.5).

Likewise, the exchange part of diagram (a) gives(
�

�,a2
α,β;γ,δ

)
g

= 1
4A2(|p + p′|)
× [1αδσ̂ βγ + 1βγ σ̂ αδ] × (p + p′) · ez

≡ [1αδσ̂ βγ + 1βγ σ̂ αδ] × C2 · ez, (6.10)

where A2 is defined by the same relations as (6.6a) and (6.8),
except for a replacement,

U 2
|p−l| → U|p−l|U|p′−l|. (6.11)

Although the tensorial form of the exchange vertex seems to
be different from that of the direct one, it is, in fact, the same.
To see this, it is convenient to transform the vertex into the
chiral basis using

��
s,s ′;s,s ′ (p,p′) =

∑
αβγ δ

��
α,β;γ,δ(p,p′)〈α|s,p〉〈β|s ′,p′〉

×〈s,p|γ 〉〈s ′,p′|δ〉, (6.12)

where |s,p〉 is the Rashba spinor defined by Eq. (2.2). Applying
(6.12) to Eqs. (6.9) and (6.10), we obtain for the direct and
exchange contributions, correspondingly,

�
�,a1
s,s ′;s,s ′ = (〈s,p|σ̂ |s,p〉 + 〈s ′,p′|σ̂ |s ′,p′〉) × C1 · ez,

(6.13a)

�
�,a2
s,s ′;s,s ′ = 1

2 [1 + ss ′ei(θp−θp′ )]〈s,p|σ̂ |s ′,p′〉 × C2 · ez

+ 1
2 [1 + ss ′ei(θ ′

p−θp)]〈s ′,p′|σ̂ |s,p〉 × C2 · ez.

(6.13b)

Calculating the matrix elements of the Pauli matrices, it can
be readily shown that the vectors to the left from C1 in (6.13a)
and from C2 in (6.13b) are the same. Therefore, the tensorial
forms of the direct and exchange vertices are the same also
in the spin basis. So far, we have reproduced the gpp term of
Eq. (2.5).

Now, we consider the product of two Pauli matrices in
Eq. (6.3a),(

�
�,a1
α,β;γ,δ

)
h

= − 1
4 (ez × σ̂ αγ )i(ez × σ̂ βδ)j S

(1)
ij (p,p′), (6.14)

where S
(1)
ij is a second-rank tensor

S
(1)
ij (p,p′) =

∑
s,s ′

ss ′
∫

L

l̂ i l̂
′
jU

2
|p−l|g

f
s (L)gf

s ′ (L′). (6.15)

This tensor depends only on k = p + p′ and can be formed
only from the components of k as

S
(1)
ij (k) = kikjS (1)(k). (6.16)

Hence,(
�

�,a1
α,β;γ,δ

)
h

= − 1
4S

(1)(|p + p′|)[σ̂ αγ × (p + p′) · ez]

× [σ̂ βδ × (p + p′) · ez], (6.17)

which reproduces the tensorial structure of the h terms in
Eq. (2.5) (with h(1) = h(2) = h/2 to this order of the perturba-
tion theory). As before, the exchange diagram produces same
type of terms.

Since the tensorial structures of the direct and exchange
particle-particle diagrams are the same, the non-SU2S part of
the total particle-particle vertex �

�,a
α,β;γ,δ = �

�,a1
α,β;γ,δ + �

�,a2
α,β;γ,δ

vanishes for a contact interaction, U = const. Therefore, the
gpp term of the Landau function is absent in this case,
whereas the h terms come only from the particle-hole channel,
considered below.

Next, we show that the crossed particle-hole diagram
[Fig. 2(d)] produces both the gph and the h terms in Eq. (2.5).
A product of the unity and Pauli matrices is processed in
the same way as the analogous term in the particle-particle
diagram. The only difference is that the vectors Ass ′ and A′

ss ′
are now replaced with

Bss ′ (k) =
∫

L

lU 2
|p−l|g

f
s (L)gf

s ′ (L′′), (6.18a)

B′
ss ′ (k) =

∫
L

l ′U 2
|p−l|g

f
s (L)gf

s ′ (L′′), (6.18b)

where L′′ = L + P ′ − P , and B and B′ are related by

Bss ′ (k) = −B′
s ′s(k). (6.19)

Defining a scalar function B(k) via∑
s,s ′

sBss ′ = −
∑
s,s ′

s ′B′
ss ′ = kB(k), (6.20)

we obtain(
�

�,d
α,β;γ,δ

)
g

= − 1
4B(|p − p′|)[1αγ σ̂ βδ × (p′ − p) · ez

−1βδ σ̂ αγ × (p′ − p) · ez], (6.21)

which coincides with the tensorial form of the gph term in
Eq. (2.5). The term involving two Pauli matrices is cast into a
form similar to Eq. (6.17)(

�
�,d
α,β;γ,δ

)
h

= − 1
4T (|p − p′|)[σ̂ αγ × (p − p′) · ez)]

× [σ̂ βδ × (p − p′) · ez], (6.22)

where T (k) is defined similarly to Eqs. (6.15) and (6.16),
except that L′ is replaced with L′′ = L + P ′ − P . The last
expression reproduces again the tensorial structure of the h(1,2)

and h terms, except for now h(1) = h(2) = −h/2. Since there
is no symmetry-based equivalence between h(1) and h(2), their
degeneracy at this level is likely to be accidental, i.e., specific
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to the second-order perturbation theory. It is quite possible
that degeneracy is lifted by higher-order terms, but we have
not attempted to verify this conjecture.

Both diagrams (b) either produce the non-SU2S terms
we have encountered before or renormalize the SU2S terms.
Finally, diagram (c) only renormalizes the SU2S terms. We
have thus shown that the second-order perturbation theory
accounts for all terms in the phenomenological Landau
function [Eq. (2.5)].

B. Mass renormalization

In this section, we apply the formalism developed in
previous sections to a calculation of mass renormalization for
Rashba fermions within the FL formalism. We consider the
case of a weak contact ee interaction (U = const) and assume
also that the SO interaction is weak as well, i.e., α � vF .
(An assumption about the contact nature of the interaction is
unessential; at the end of this section we comment on how the
results are to be generalized for an arbitrary interaction.)

Our focus is on the leading, O(U 2α2), corrections to
the effective masses of Rashba fermions. Although such a
correction seems to be perfectly analytic, in fact, it is not: It is
shown that the correction to the effective mass of the subband
s comes as sU 2α2. Since the eigenenergies contain s and α

only as a combination sα, the second-order term of the regular
expansion in sα is the same for s = ±1. In this sense, the
sU 2α2 correction is nonanalytic and are shown to come from
the Kohn anomalies of the various vertices.

To simplify notations, we suppress the superscript � in
the vertices because all the vertices considered in this section
are of the �� type. Also, we suppress the superscript f

labeling the quantities pertinent to the interaction-free system:
In a straightforward perturbation theory, considered here, the
interaction enters only as the U 2 prefactor.

A nonanalytic part of the Landau function comes from
particle-hole diagrams for �� in Fig. 2, i.e., from diagrams
(b)–(d). To maximize the effect of the Kohn anomaly, one
needs to select such initial and final states that correspond to
the minimal number of small matrix elements for intraband
backscattering.

Detailed calculations of the diagrams are presented in
Appendix D; here, we show only how an O(U 2α2) correction
is obtained from diagram c. Explicitly, diagram c reads

�c
ss ′ (ps ,p′

s) = −U 2

2
[1 + ss ′ cos(θp′ − θp)]�(|ps − p′

s ′ |),
(6.23)

where �(q) is the polarization bubble of noninteracting
Rashba fermions. Without the SO interaction, the Kohn
anomaly of �(q) is located at q = 2pF , where pF is the
Fermi momentum at α = 0. In 2D, �(q) is independent of q

for q � 2pF and exhibits a characteristic square-root anomaly
for q > 2pF . SO coupling splits the spectrum into two Rashba
subbands with Fermi momenta p± given by Eq. (2.4a). �(q)
still does not depend on q for q � 2p+ in the presence of
SO coupling.23 In the region 2p+ � q � 2p−, �(q) exhibits
a nonanalytic dependence on q. At small α, all three Fermi
momenta are close to each other: p+ ≈ p− ≈ pF . In this case,

the singular parts of �(q) can be written as (see Appendix C):

�(q) = −ν + �++(q) + �+−(q), (6.24a)

�++(q) = −ν

6
�(q − 2p+)

(
q − 2p+

pF

)3/2

, (6.24b)

�+−(q) = ν

2
�(q − 2pF )

(
q − 2pF

pF

)1/2

. (6.24c)

The Kohn anomalies of � affect the amplitudes of backscat-
tering processes with p′ ≈ −p; hence, θp′ − θp = π − θ with
|θ | � 1. Accordingly, the vertex in Eq. (6.24c) reduces to

�c
ss ′ = −U 2

2

(
1 + ss ′ − ss ′ 1

2
θ2

)
�(|ps − p′

s ′ |). (6.25)

Furthermore, the Kohn anomaly in �++(q) affects
scattering processes with momentum transfer in the
interval 2p+ � q � 2p−. Since �++(q) already contains an
extra (compared to �+−) factor of (q − 2p+), which reflects
suppression of intraband backscattering, the nonanalytic
contribution from �++(q) is maximal for interband processes
(s = −s ′), when the angular factor in (6.25) is almost equal
to 1. The only vertex of this type is

�c
+− = −U 2�++(q)

= νU 2

6
�(q − 2p+)

(
q − 2p+

pF

)3/2

. (6.26)

The Kohn anomaly of �+− gives an effect of the same order
as in (6.26) but for intraband processes:

�c
−− = −U 2 θ2

2
�+−(q). (6.27)

For a backscattering process, one can approximate q as

q = |ps − p′
s ′ | ≈ ps + ps ′ − pF θ2/4, (6.28)

where the dependence of the prefactor of the θ2 term on α can
be and was neglected. For �c

−−, we have q = 2p− − pF θ2/4.
Expressing θ2 in terms of q, we arrive at

�c
−− = −νU 2�(q − 2pF )

(q − 2p−)(q − 2pF )1/2

p
3/2
F

. (6.29)

Now it is obvious that �c
+− and �c

−− are of the same order.
The remaining diagrams are evaluated in Appendix D with

the following results:

�b
−− = 0, (6.30a)

�b
+− = −�c

+− = U 2�(q − 2pF )

(
q − 2pF

pF

)3/2

, (6.30b)

�d
−− = U 2ν

12
�(q − 2pF )

(
q − 2pF

pF

)3/2

, (6.30c)

�d
+− = U 2ν

24
�(q − 2p+)

(
q − 2p+

pF

)3/2

, (6.30d)

�
b,c,d
++ = 0. (6.30e)
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One should substitute q = |p− − p′
−| in Eqs. (6.29), (6.30a),

and (6.30c) and q = |p+ − p′
−| in Eqs. (6.26), (6.30b), and

(6.30d).
We can now calculate angular harmonics of the vertices.

Combining the vertices in the (−−) channel and transforming
back from q to θ , we obtain for the nth harmonic of the total
vertex in this channel

�
,n
−− = �

c,n
−− + �

d,n
−−

= −(−1)n
U 2ν

4

∫ 2
√

2mα
pF

0

dθ

π
θ2

(
2mα

pF

− θ2

4

)1/2

+ (−1)n
U 2ν

12

∫ 2
√

2mα
pF

0

dθ

π

(
2mα

pF

− θ2

4

)3/2

= −3

8
(−1)nU 2ν

(
mα

pF

)2

. (6.31)

Equation (6.31) is valid for 1 � n � √
pF /8mα. Likewise,

we find for the +− channel

�
,n
+− = �

d,n
+− = 1

16
(−1)nU 2ν

(
mα

pF

)2

. (6.32)

Harmonics of the Landau function are related to those of
vertices via Eq. (5.12), in which the proportionality coefficient
νs ′Z2

s ′/νs is taken to be equal to one to lowest order in U and
α.

As mentioned in Sec. III, the formula for the effective mass,
Eq. (3.16), contains not only the components of the Landau
function but also the ratio of the subband Fermi momenta,
which, in general, are renormalized by the interaction. How-
ever, combining previous results from Refs. 21,31, and 68,
one can show that this effect occurs only to higher orders in
α and U . Indeed, an analytic part of the ground-state energy
of an electron system with the Rashba SO interaction can
be written as Ean = C(δN/N − 2α/vF )2, where C = const,
δN = N− − N+ is the difference in the number of electrons
occupying the two Rashba subbands, and vF is the bare
Fermi velocity.68 This result is valid to all orders in the ee

interaction of arbitrary type and to lowest order in α. Therefore,
the minimum of Ean corresponds to the same value of δN

as for a noninteracting electron gas, which means that the
Fermi momenta are not renormalized. Renormalization of δN

occurs only because of nonanalytic terms in the ground-state
energy.21,31 For a contact interaction, the first nonanalytic
correction occurs to fourth order in U : Ena ∝ U 4|α|3 ln2 |α|.
(A cubic dependence on |α| is due to the fact that a nonanalytic
part of the ground-state energy scales in 2D as a cube of the
parameter controlling nonanalyticity which, in our case, is α;75

an additional factor of ln2 |α| comes from renormalization of
the interaction in the Cooper channel.) Then the minimum of
Ean + Ena corresponds to a change in the Fermi momenta
p− − p+ ∝ δN ∝ U 4α2 ln2 |α|, which is beyond the order
of the perturbation theory considered here. Therefore, the
Fermi momenta entering Eq. (3.16) are to be considered as
unrenormalized. In addition, to lowest order in α, we can take
p+ to be equal to p−, so that the ratio of the Fermi momenta
drops out from Eq. (3.16).

Finally, substituting Eqs. (6.31) and (6.32) into Eq. (3.16),
we obtain for the renormalized masses

m∗
+ − m+
m+

= F
,1
++ + F

,1
+− = − 1

16

(
νUmα

pF

)2

, (6.33a)

m∗
− − m−
m−

= F
,1
−− + F

,1
−+ = 5

16

(
νUmα

pF

)2

. (6.33b)

We see that the masses of fermions with opposite chiralities are
renormalized differently. Since we have already established
that the Fermi momenta are not renormalized to this order,
there is no cancellation between renormalizations of masses
and that of Fermi momenta. Therefore, degeneracy of the
Fermi velocities of the Rashba subbands is lifted by the
interaction

v∗
+ − v∗

− = p+
m∗+

− p−
m∗−

= 3

8
vF

(
νUmα

pF

)2

, (6.34)

where vF = √
2μ/m.

For a momentum-dependent interaction, Uq , one can
simply replace U in Eq. (6.34) with U2pF

because mass
renormalization comes from backscattering processes. In par-
ticular, U2pF

= ν−1rs/
√

2 for the screened Coulomb potential,
Eq. (3.18), in the large-rs limit. In this case, Eq. (6.34) reduces
to

v∗
+ − v∗

−
vF

= 3

16
r2
s

(
α

vF

)2

. (6.35)

As mentioned in Sec. III, degeneracy of the subbands’
Fermi velocities survives to an arbitrary order in the ee

interaction, provided that the SO interaction is treated to first
order.68 Reference 21 finds that, within the small-q scattering
approximation for the screened Coulomb potential, velocity
splitting occurs because of a nonanalytic, rs |α|3 ln |α|, term
in the electron self-energy. (In Appendix A, we reproduce
the result of Ref. 21.) Our result, Eq. (6.34), differs from
that of Ref. 21 because it comes from backscattering rather
than small-q scattering and corresponds to order r2

s of the
perturbation theory, one order higher than order rs considered
in Ref. 21. In reality, both the rs |α|3 ln |α| and the r2

s α2 terms
are present, and the competition between the two is controlled
by the ratio |α| ln |α|/rs of the two small parameters of the
model, α and rs .

At the same time, we do not reproduce a rather surprising
result of Ref. 22, which finds velocity splitting already to order
Uα for U = const. While such a term contradicts the general
results of Refs. 19 and 68, we also found that, to first order in
U , the Landau function is the same as for an SU2S FL; see
Eq. (6.2). For U = const, this Landau function reduces to a
constant and thus cannot produce mass renormalization.

C. Limiting forms of the spin susceptibility

In this section, we show that Eq. (4.25) reproduces the
known results for χzz in the limiting cases of a weak ee

interaction or weak SO coupling.

1. Weak electron-electron interaction

First, we examine the limit of a weak, contact ee interaction;
i.e., we work to first order in the interaction amplitude U
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p,s k,s’ p,s p,s p,s

(a) (b)

FIG. 3. Self-energy of chiral fermions to first order in the
interaction.

without making any assumption about the strength of SO
coupling. It follows from Eq. (6.2) that f a⊥ = −U/2 to first
order in the interaction. We also need the self-energy of the
quasiparticles to first order in the interaction given by (see
Fig. 3)

�s(P ) = �a
s (P ) + �b

s (P ),

�a
s (P ) = −U

2

∑
s ′

∫
K

[1 + ss ′ cos (θk − θp)]gs(K)

= −U

2
N, (6.36)

and similarly �b
s (P ) = UN , where N is the total number

density of electrons. Therefore, the self-energies of both
Rashba branches are constant and equal to each other. Since the
shift in the energy of quasiparticles with opposite chiralities
is the same, we have ε

p
+ − ε

p
− = 2αp and p− − p+ = 2mα,

which are the same relations as for an interaction-free system.
Substituting these results into Eq. (4.25), we find that to first
order in U

χzz = χ0

(
1 + mU

2π

)
. (6.37)

As is to be expected, this result coincides with that of the
first-order ladder diagram of the perturbation theory.29

Notice that χzz in Eq. (6.37) does not depend on α. This
property survives to all orders in U within the ladder approxi-
mation. Beyond the ladder approximation, the leading depen-
dence on α occurs to order U 2 as a nonanalytic in α correction:
δχzz = (2/3)χ0(mU/4π )2|α|pF /εF (Refs. 29 and 31).

2. Weak spin-orbit coupling

Next we consider the opposite limit of an arbitrary ee

interactions but infinitesimally small SO coupling. In this limit,
one must recover the result of a SU2S FL. To obtain χzz in this
limit, one needs to evaluate integrals of the type∫ p−

p+

dp′p′

2π

f a⊥,0(p,p′)g∗(p′)

ε
p′
+ − ε

p′
−

(6.38)

to zeroth order in α. Infinitesimal SO coupling implies that the
region of integration is infinitesimally small compared to the
Fermi momentum, and it suffices to consider only the linear
part of the dispersion near the FS ε

p
s = vs(p − ps), where

vs = ∂pε
p
s |p=ps

. Note that in the presence of the interaction,
in general, v+ �= v−. However, to obtain χzz to zeroth order in
α, one can keep SO coupling only in the Fermi momenta of
the two subbands and set α to zero everywhere else, including
f a⊥,0, which reduces to f a,0 of an SU2S FL. As a result, vs

can be set to equal to vF , the Fermi velocity in the absence of

SO coupling. Therefore,∫ p−

p+

dp′p′

2π

f a⊥,0(p,p′)g∗(p′)

ε
p′
+ − ε

p′
−

= pF

2πvF

f a,0(pF ,pF )g∗(pF ).

(6.39)

Substituting this result into Eq. (4.24) and solving for g∗(pF ),
we reproduce the result for an SU2S FL,

g∗(pF ) = g

1 + νf a,0(pF ,pF )
, (6.40)

where

χzz ≈ g2μ2
B

2

∫ p−

p+

dppF

2π

g∗(pF )

ε
p
+ − ε

p
−

= g2μ2
B

4

ν

1 + νf a,0
.

(6.41)

In both Eq. (6.40) and Eq. (6.41), ν is the renormalized
density of states. Notice that SO coupling is eliminated from
Eqs. (6.39) and (6.41) as an anomaly, i.e., as a cancellation be-
tween a small denominator (εp

+ − ε
p
−) and a narrow integration

range (p− − p+).

VII. CONCLUSIONS

We considered a 2D FL in the presence of the Rashba
SO interaction, which breaks the SU(2) symmetry of the sys-
tem. We constructed the phenomenological Landau function
[Eq. (2.5)], satisfying all the symmetries (C∞v , permutation
of particles, and time reversal). In Sec. VI A, this form of
the Landau function was also obtained by a second-order
perturbation theory in the ee interaction. The key result of
this paper is that while the charge sector of a chiral FL can be
fully described by the Landau function projected on the two
spin-split FSs, any quantity pertaining to the spin sector must
involve the Landau function with momenta between the two
FSs. This feature is most explicitly demonstrated for the case
of the static, out-of-plane spin susceptibility. Therefore, there
is no conventional FL theory, i.e., a theory operating solely
with free quasiparticles, for the spin sector of a chiral FL. This
does not mean that we are dealing here with a non-FL, because
chiral quasiparticles are still well-defined near their respective
FSs. However, the spin sector of a chiral FL does not allow
for a FL-type description. In other words, we are dealing here
with a special class of FLs (“non-Landau FLs”), which are FLs
without a full-fledged FL theory. Not only a chiral but also any
FL with broken SU(2) symmetry, e.g., a 3D FL in the presence
of the magnetic field, belongs to this class.47,48,57

The charge sector of a chiral FL is similar to any
two-band FL. One interesting effect of the ee interaction in
a system with either Rashba or Dresselhaus SO coupling
is that it lifts degeneracy of Fermi velocities of fermions
with opposite chiralities, which is apparent already from
the phenomenological formula for the effective masses
[Eq. (3.12)]. However, due to an exact property19,68 no
spin-splitting of the velocities occurs to first order in SO
coupling. We obtained an expression for splitting for the
Coloumb-interaction case in the limit of strong SO coupling.
In Appendix A, we reproduced the leading term of the analytic
expansion of the effective masses in the SO coupling constant.
In addition, there are nonanalytic corrections to the splitting,
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which we found by evaluating the nonanalytic corrections to
the Landau function, and showed that velocity splitting occurs
due to terms of order sU 2α2, where s = ±1 is the helicity.

All the results of this paper also hold for a system with the
linear Dresselhaus rather than Rashba SO coupling. However,
if both Rashba and Dresselhaus couplings are present, the
in-plane rotational symmetry of the FS is broken, and the FL
becomes not only a chiral but also anisotropic. A theory of
such a FL can be constructed along the lines presented in this
paper but we did not attempt such a construction here.

The formalism developed in this paper can also be
generalized to chiral systems with a cubic-in-momentum

SO coupling,76 e.g., heavy holes in III-V semiconduc-
tor heterostructures, surface state of SrTiO3, and possibly
LaAlO3/SrTiO3 interfaces.54,55 In case of the C∞v symmetry,
the Rashba-type Hamiltonian for noninteracting particles with
pseudospin jz = ±3/2 reads53

Ĥj=3/2 = p2

2m
1 + iγ

2
(σ̂+p3

− − σ̂−p3
+), (7.1)

where σ̂± = σx ± iσy , p± = px ± ipy , and γ is real. Selecting
the invariants in the same way as for linear-in-momentum
coupling, the Landau function corresponding to Hamiltonian
(7.1) is constructed as

f̂j=3/2 = f s11′ + f a‖(σ̂x σ̂
′
x + σ̂y σ̂

′
y) + f a⊥σ̂zσ̂

′
z + i

2
gph[(1σ̂ ′

+ − 1′σ̂+)(p′3
− − p3

−) − (1σ̂ ′
− − 1′σ̂−)(p′3

+ − p3
+)]

+ i

2
gpp[(1σ̂ ′

+ + 1′σ̂+)(p′3
− + p3

−) − (1σ̂ ′
− + 1′σ̂−)(p′3

+ + p3
+)] + h(1)(σ̂+p3

− − σ̂−p3
+)(σ̂ ′

+p′3
− − σ̂ ′

−p′3
+)

+h(2)(σ̂ ′
+p3

− − σ̂ ′
−p3

+)(σ̂+p′3
− − σ̂−p′3

+) + 1

2
h[(σ̂+p3

− − σ̂−p3
+)(σ̂ ′

+p3
− − σ̂ ′

−p3
+)

+ (σ̂+p′3
− − σ̂−p′3

+)(σ̂ ′
+p′3

− − σ̂ ′
−p′3

+)], (7.2)

where all the scalar functions (f s · · ·h) are real. The charge
sector of the chiral FL with cubic-in-momentum SO coupling
is qualitatively similar to that of a chiral FL with linear-in-
momentum coupling, except for spin-splitting of the velocities
now occurs already to the lowest order in the SO coupling, γ .21

The major difference with the case of linear-in-momentum
SO coupling is in how an in-plane magnetic field enters the
Hamiltonian. To linear order in field, the only form of coupling
consistent with the C∞v symmetry is σ̂+p2

−H− + σ̂−p2
+H+,

with H± = Hx ± iHy .26,53 However, the structure of the theory
remains qualitatively the same in that one still has to deal
with off-diagonal components of the occupation number and
damped quasiparticles.
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APPENDIX A: MASS RENORMALIZATION VIA
THE SELF-ENERGY

In Sec. III, we analyzed mass renormalization of Rashba
fermions to logarithmic accuracy in the parameter pTF/p±,
which controls the random phase approximation for the
Coulomb interaction, and showed that degeneracy of the
subbands’ Fermi velocities is lifted by the ee interaction, at
least when SO coupling is so strong that p+ � p− (but still
both subbands are occupied). In this appendix, we derive the
result for mass renormalization still to leading order in the

ee interaction but for an arbitrarily strong SO interaction. For
the time being, we assume that the interaction is described by
a nonretarded and spin-independent, but otherwise arbitrary,
potential Uq . To obtain the result beyond the logarithmic
accuracy, one needs to keep the matrix elements in Eq. (3.20)
and relax the assumption of small momentum transfers.
The only small parameter will now be the quasiparticle
energy, ε

p,f
s = ε

p,f
s − μ. From this point on, we suppress the

superscript f since all dispersions considered below are for
noninteracting electrons, i.e., ε

p,f
s → ε

p
s . The leading-order

renormalization is logarithmic; therefore, the potential can
be taken as static since the dynamic part does not produce
logarithmic integrals. Subtracting from Eq. (3.20) the self-
energy, evaluated on the FS, we obtain for the remainder

��s = −
∑
s ′

∫
d2q

(2π )2

∫
d�

2π

Uq

2

[
(1 + ss ′ cos θp+q)

× gs ′ (p + q,ω + �) − (
1 + ss ′ cos θps+q

)
× gs ′ (ps + q,�)

]
. (A1)

Because of the in-plane rotational symmetry, it is convenient to
measure all angles from the direction of p which, by definition,
coincides with the direction of ps . Using an exact result

ε
p+q
s ′ = |p + q|2

2m
+ s ′α|p + q|

= p2

2m
+ pq

m
cos θ + q2

2m
+ s ′α|p + q|, (A2)

where θ is the angle between p and q, and expanding |p + q|
to linear order in ε

p
s as

|p + q| =
∣∣∣∣
(

ps + ε
p
s

v0

)
ep + q

∣∣∣∣
= |ps + q| + ε

p
s

v
cos

(
θps+q

)
, (A3)
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where v0 is given by Eq. (2.4b), we get

ε
p+q
s ′ = εp

s

(
1 + q

mv0
cos θ − sα

v0
+ s ′α cos θps+q

)

+ psq

m
cos θ + q2

2m
+ s ′α|ps + q| − sαps, (A4)

and

cos θp+q = cos θps+q + mε
p
s

ps |ps + q| sin2 θps+q. (A5)

One can decompose ��s into two parts as �� = ��1
s +

��2
s with

��1
s = −

∑
s ′

∫
d2q

(2π )2

∫
d�

2π

Uq

2

(
1 + ss ′ cos θps+q

)
× [gs ′ (p + q,ω + �) − gs ′ (ps + q,�)], (A6a)

��2
s = −mε

p
s

ps

∑
s ′

ss ′
∫

d2q

(2π )2

∫
d�

2π

Uq

2

sin2 θps+q

|ps + q| gs ′

× (ps + q,ω + �), (A6b)

where the first part comes from only the immediate vicinity
of the FS, while the second one comes from the entire band.
Integrating over � in Eq. (A6a), we obtain the difference of
two Fermi functions of the s ′ subband. Expanding the first
Fermi function with the help of Eq. (A4), we get

�s
1 = εp

s

∑
s ′

∫
d2q

(2π )2

U (q)

2

(
1 + ss ′ cos θps+q

)

×
(

1 + q

mv0
cos θ − sα

v
+ s ′α cos θps+q

)

× δ

(
psq

m
cos θ + q2

2m
+ s ′α|ps + q| − sαps

)
. (A7)

The δ function in (A7) enforces the mass-shell condition
|ps + q| = ps ′ , from which we find

cos θ = − q

2ps

+ (s − s ′)
mα

q

(
1 + s

mα

ps

)
, (A8)

cos θps+q = 1 − q2

2psps ′
+ |s − s ′| (mα)2

psps ′
, (A9)

where we used that cos θp+q = (p + q cos θ )/|p + q| for
arbitrary p and q. Integrating over θ , we arrive at

��1
s = ε

p
s

2π2v0

{∫ 2ps

0
dqUq

√
1 − q2

4p2
s

(
1 − q2

2psmv0
− sα

v

q2

2p2
s

)

+
∫ 2mv0

2mα

dqUq

[
q2

4p2
F

− (
mα
pF

)2
](

1 − q2

2psmv0
+ s α

v0

q2

2p2
F

+ 2mα2

v0ps
− s 2m2α3

v0p
2
F

)
[
1 − sα

v0

(
1 + ps

p−s

)]√
1 − [

q

2ps
− s 2mα

q

(
1 + smα

ps

)]2

⎫⎬
⎭ , (A10)

where the first (second) term is a result of intraband (interband)
transitions. Equation (A10) is exact in α. If Uq is replaced with
the screened Coulomb potential from Eq. (3.18), the first term
in Eq. (A10) produces, in the small-rs limit, the rs ln rs result
of Eq. (3.22):

��1
s = ε

p
s

2π2v0

∫ 2ps

0
dqUTF

q

= ε
p
s

πvF

e2

[
ln

2ps

pTF
+ O

(
pTF

ps

)]
. (A11)

Note that, in contrast to Eq. (3.22), where ps occurs as an upper
cutoff a logarithmically divergent integral, the upper limit of
the integral in Eq. (A11) is defined uniquely.

Equation (A10) also allows one to study the dependence
of the self-energy on α at small α, without assuming that this
dependence is analytic. To first order in α, the integrand can
be expanded as

��1
s = − ε

p
s

π2vF

sα

vF

∫ 2pF

0
dqUq

q2

2p2
F

√
1 − q2

4p2
F

. (A12)

where pF and vF are the Fermi momentum and Fermi velocity
at α = 0, correspondingly. On the other hand, integration over

� in Eq. (A6b) gives

��2
s = −mε

p
s

ps

∑
s ′

ss ′ ∑
q

Uq

2

sin2 θps+q

|ps + q| �
(−ε

ps+q
s ′

)

= −mε
p
s

ps

∑
s ′

ss ′ ∑
q

Uq

2

sin2 θps+q

|ps + q|

×�

(
−psq

m
cos θ − q2

2m
− s ′α|ps + q| + sαps

)
.

(A13)

A term of order α can be obtained by expanding the � function
with respect to α,

��2
s = m2ε

p
s

p2
s

αs
∑
s ′

∑
q

Uq

2

q2 sin2 θ

|ps + q|2 δ

(
pF q

m
cos θ + q2

2m

)

= ε
p
s

π2vF

sα

vF

∫ 2pF

0
dqUq

q2

2p2
F

√
1 − q2

4p2
F

. (A14)

Comparing Eqs. (A12) and (A14), we see that ��s = ��1
s +

��2
s = 0 to order α, which is an agreement with the previous

results.19,68
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In the Coulomb case, Refs. 19 and 21 also find an rsα
2 ln α

correction to the mass, which is the same for two Rashba
subbands. This correction is produced by the second term in
Eq. (A10). To see this, one can keep only the logarithmic
integrals in (A10). Differentiating (A10) twice with respect to
α, we obtain

∂2��s

∂α2
= −e2ε

p
s

πv3
F

∫ 2mvF

2m|α|

dq

q
= −e2ε

p
s

πv3
F

ln
vF

α
. (A15)

Integrating Eq. (A15) over α, we reproduce the result of
Refs. 19 and 21. In addition, Ref. 21 obtains velocity splitting
as srsα

3 ln α. Such a term is produced by both �1
s and

�2
s . Indeed, keeping again only logarithmic integrals and

differentiating (A10) three times with respect to α gives

∂3��1
s

∂α3
= −s

3e2ε
p
s

πv4
F

∫ 2mvF

2mα

dq

q
= −s

3e2ε
p
s

πv4
F

ln
vF

α
. (A16)

There is also another contribution of the same order coming
from ��2

s . It follows from Eq. (A13) that

��2
s = − mε

p
s

8π2ps

[∫ 2ps

0
dqqUq

∫ − q

2ps

−1
d(cos θ )

× q2 sin θ(
p2

s + q2 + 2qps cos θ
)3/2 −

∫ 2p−s

4m|α|
qdqU (q)

×
∫ − q

2ps
+ 4msα

q

−1
d(cos θ )

q2 sin θ(
p2

s + q2 + 2qps cos θ
)3/2

]
.

(A17)

Keeping again only logarithmic integrals, we find

��2
s = mε

p
s

16π2ps

∫ 2p−s

4m|α|
dq

q3

p3
s

Uq

×
√

1 −
(

q

2ps

− 4msα

q

)2 (
4msα

q
− q

2ps

)
.

(A18)

Differentiating (A18) three times with respect to α gives

∂3��2
s

∂α3
= −s

4e2ε
p
s

πv4
F

∫ 2pF

4mα

dq

q
= −s

4e2ε
p
s

πv4
F

ln
vF

α
. (A19)

Combining Eqs. (A16) and (A19), we obtain

∂3��s

∂α3
= −s

7e2ε
p
s

πv4
F

ln
vF

α
, (A20)

which, after integration over α, reproduces the leading loga-
rithmic term in the result of Ref. 21. [We believe that a constant
inside the logarithm, also obtained in Ref. 21, exceeds the
overall accuracy of the calculation.] Note that the velocity
splitting from both contributions in Eqs. (A16) and (A19) is a
result of interband transitions only.

APPENDIX B: OUT-OF-PLANE SPIN SUSCEPTIBILITY OF
NONINTERACTING RASHBA ELECTRONS—A

THERMODYNAMIC CALCULATION

In this appendix, we show that the out-of-plane spin
susceptibility, χzz, of a noninteracting electron gas with Rashba

SO coupling is determined by the states in between from the
two spin-split FSs. Since we are dealing only with free states
here, the index f is suppressed while quantities in the absence
of the magnetic field are denoted by the superscript 0.

In the presence of a weak magnetic field H in the z direction,
the electron spectrum changes to

εs(p) = ε0
s (p) + s

�2

2αp
, (B1)

where ε0
s (p) coincides with Eq. (2.3) and � = gμBH/2. The

ground-state energy is given by

E =
∑

s

∫
dpp

2π
εs(p)�(ps − p), (B2)

where the Fermi momenta of the subbands are found from

εs(ps) = εF . (B3)

It is easy to check that, at fixed number density, εF is not
affected by the magnetic field. One can thus replace εF with
ε0
s (p0

s ) in Eq. (B3), which gives for the corrections to the Fermi
momenta

ps = p0
s + δps = p0

s − s
�2

2αv0p0
s

, (B4)

where v0 is the Fermi velocity of each of the subbands, given
by Eq. (2.4b). It is convenient to subtract the field-independent
part from E and split the remainder into two parts as

E − E0 = Eon + Eoff, (B5)

where Eon is the contribution from the states near the FSs,

Eon = 1

2π

∑
s

∫ p0
s +δps

p0
s

dppε0
s (p), (B6)

and Eoff is the contribution from the states away from the FSs,

Eoff = 1

2π

∑
s

∫ p0
s

0
dpp

(
s

�2

2αp

)
. (B7)

The FS contribution vanishes to order �2

Eon = 1

2π

∑
s

psδpsε
0
s (ps) = 0. (B8)

On the other hand, the off-FS contribution becomes

Eoff = 1

2π

∫ p0
−

p0+
dpp

(
− �2

2αp

)
= −m�2

2π
, (B9)

which gives a correct result χ0
zz = g2μ2

Bm/4π (Ref. 29).
Therefore, the out-of-plane spin susceptibility of noninteract-
ing Rashba fermions comes entirely from the states between
the two FSs.

APPENDIX C: KOHN ANOMALY IN A FREE ELECTRON
GAS WITH RASHBA SPIN-ORBIT COUPLING

In this appendix, we derive Eqs. (6.24a)–(6.24c) for the
Kohn anomalies in the polarization bubble of noninteracting
Rashba fermions (Fig. 4):

�(Q) =
∑
s,s ′

�ss ′ (Q), (C1)
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P+Q

P

FIG. 4. Polarization bubble, given by Eq. (C1), with (2 + 1)
momentum transfer Q.

where

�ss ′ (Q) = 1

2

∫
P

[1 + ss ′ cos(θp − θp+q)]gs(P )gs ′ (P + Q)

= 1

2

∫
d2p

(2π )2
[1 + ss ′ cos(θp − θp+q)]�(−εs,p)

×
[

1

i� − εs ′,p+q + εs,k

− 1

i� + εs,p−q − εs ′,p

]
.

(C2)

(As in Appendices A and B, we suppress the superscript f

denoting the properties of an interaction-free system.) For
q near 2pF , we expand the difference of the quasiparticle
energies as

εp+q
s − εp

s = −2εp
s + vF q ′ + vF pF θ2, (C3)

where q ′ = q − 2ps and the angle θ = ∠(−p,q) is taken to be
small. To leading order in SO, the prefactors in the q ′ and θ2

terms can be and were replaced with their values in the absence
of SO. [For the second term in Eq. (C2), the angle θ = ∠(p,q)
is taken to be small.] Using Eq. (C3), replacing [1 + cos(θp −
θp+q)] with 2θ2, and integrating over εp in Eq. (C2), we obtain
for � = 0 and s = s ′

�ss(q) = ν

2π

∫ θc

0
θ2 ln

(
θ2 + q ′

pF

)
dθ, (C4)

where θc is a cutoff whose particular choice does not affect the
singular part of the q dependence. To extract the singular part,
we differentiate �ss(q) twice with respect to q, which makes
the integral to converge in the limit of θc → ∞, and obtain

�ss(q) = �ss(q = 2ps) − ν

6
�(q − 2ps)

(
q − 2ps

pF

)3/2

.

(C5)

The (q ′)3/2 anomaly in �ss(q) is weaker than the square-root
anomaly in the absence of SO. This is a consequence of the
fact that backscattering within the same Rashba subband is
forbidden, which is manifested by a small factor of θ2 in
the integrand of Eq. (C4). A similar procedure is applied to
�s,−s , which results from backscattering between different
subbands and hence does not have a small factor of θ2. With q ′
replaced now with q − 2pF , we obtain the usual square-root
Kohn anomaly,

�s,−s(q) = �s,−s(q = 2pF ) + ν

2
�(q − 2pF )

(
q − 2pF

pF

)1/2

.

(C6)

Note that when the bubble is inserted into the interaction
vertex, as in Fig. 2, the maximum momentum entering the

bubble is 2p− (when both the incoming electrons are the −
subband). Therefore, the singularity in �−−, present only for
q > 2p−, is outside the range of allowed momenta. With this
in mind, the nonanalytic part of �, relevant for the calculation
of the Landau function in Sec. VI B, can be written as in
Eqs. (6.24a)–(6.24c) of the main text.

APPENDIX D: NONANALYTIC CONTRIBUTIONS
TO THE LANDAU FUNCTION

In this appendix, we calculate O(sα2U 2) terms in the
Landau function produced by diagrams (b) and (d) in Fig. 2.
A contribution from diagram (c) is calculated in the main text
of Sec. VI B.

Diagram (d) in Fig. 2 reads

�d
ss ′ = −U 2

4

∑
r,t,L

[1 + sr cos(θp − θl)][1 + s ′t cos(θp′ − θl′)]

× gr (L)gt (L
′), (D1)

where L′ = (l + p′ − p,ωl). A nonanalytic part of �d
ss ′ comes

from backscattering processes with p ≈ −p′. Therefore, inter-
nal momenta must be chosen such that l ≈ p and l′ ≈ p′ ≈ −p,
and both cosine terms in Eq. (D1) are near +1. (The
magnitudes of the internal momenta may differ from external
ones, but taking this effect into account is not necessary to
lowest order in α.) The s = s ′ = +1 channel does not contain
a singularity, because the maximum momentum transfer in
this channel is 2p+, while any convolution of two Green’s
functions does not depend on the difference of their momenta
for q � 2p+ (cf. Appendix C). We thus focus on the s =
s ′ = −1 and s = −s ′ channels. In the s = s ′ = −1 channel,
the angular-dependent factors are maximal for r = t = −1;
however, the singularity in the convolution of two g− functions
is outside the allowed momentum transfer range. The next
best choice is r = −t , when one of angular-dependent factors
is small but the second one is large. The choice t = r = 1
makes both angular-dependent factors to be small and is
discarded. With all angles measured from p (θp = 0), we
denote θ ′

p = π − θ , θl = φ, and θl′ = π − φ′ and take θ , φ, and
φ′ to be small. After some elementary geometry, we find that
φ′ = φ + θ , which implies that the angular-dependent factors
in front of the g+g− and g−g+ combinations are the same.
Therefore,

�d
−− = −U 2

2

∫
L

φ2g+(L)g−(L′), (D2)

and similarly,

�d
+− = −U 2

4

∫
L

φ2g+(L)g+(L′). (D3)

The integrals in the equations above are the same as for the
�++ component of the polarization bubble [cf. Eq. (C4)],
except for that the momentum transfer in �d

−− is measured
from 2pF rather than from 2p+. With this difference taken into
account, we obtain the results for �d

−− and �d
+− in Eqs. (6.30c)

and (6.30d) of the main text.

075115-18



THEORY OF A CHIRAL FERMI LIQUID: GENERAL . . . PHYSICAL REVIEW B 88, 075115 (2013)

The two “wine-glass” diagrams (b) are equal to each other,
and their sum is given by

�b
ss ′ = U 2

8

∑
r,t

∫
L

[1 − ss ′ei(θp′ −θp)][1 + rtei(θl−θl′ )]

× [1 + srei(θp−θl)][1 + s ′tei(θl′ −θp′ )]gr (L)gt (L
′).
(D4)

Again, we have l ≈ p and l′ ≈ p′ ≈ −p, so that r = −t for
the s = s ′ = −1 channel. Using the definitions of small angles
above, we obtain

�b
−− = U 2

2
(1 − e−iθ )

∫
L

(1 + ei(2φ+θ))(1 − e−2iφ)

× [g+(L)g−(L′) + g−(L)g+(L′)]. (D5)

Expanding the internal angular-dependent factors to first order
in φ and θ , we obtain an integral that vanishes by parity. The φ2

term is finite but still comes with a small factor of θ from the
external matrix element. Therefore, �b

−− does not contribute
to order α2.

For the s = −s ′ channel, only the combination r = t = +1
contributes. Following the same steps as for �b

−−, we arrive
at

�b
+− = U 2

8
(1 + e−iθ )

∫
L

(1 − ei(2φ+θ))(1 − e−2iφ)

× g+(L)g+(L′). (D6)

Expanding the angular factors to lowest order, we obtain

�b
+− = U 2

∫
L

φ2g+(L)g+(L′), (D7)

which coincides with the integral for �ss in Eq. (C4).
Combining everything together, we obtain the vertices in
Eqs. (6.30a) and (6.30b) of the main text.
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