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Entanglement entropies in conformal systems with boundaries

L. Taddia,1,2 J. C. Xavier,3 F. C. Alcaraz,4 and G. Sierra2
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We study the entanglement entropies in one-dimensional open critical systems, whose effective description
is given by a conformal field theory with boundaries. We show that, for pure-state systems formed by the
ground state or by the excited states associated to primary fields, the entanglement entropies have a finite-size
behavior that depends on the correlation of the underlying field theory. The analytical results are checked
numerically, finding excellent agreement for the quantum chains ruled by the theories with central charge c = 1/2
and 1.
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In recent years there has been a flurry of activity devoted to
characterize quantum many-body systems and quantum field
theories using the concept of entanglement (see Ref. 1 and
references therein for a review). Under certain conditions, the
low-energy states of local Hamiltonians satisfy an entropic
area law, according to which the entanglement entropy (EE)
of a subsystem is proportional to the area of its boundary.2

In one spatial dimension, violations to this area law appear
if the system is gapless and described by a conformal field
theory (CFT):3,4 in this case, the ground-state (GS) EE grows
with the log of the subsystem size.5–7 On the other hand, it is
well known that the dominant finite-size correction to the GS
energy of critical systems is related to the central charge c.8 A
similar correspondence also exists between the central charge
and the Rényi entanglement entropies (REE’s) of the GS.5–7

In the same vein, we would expect that the scaling dimensions
of the primary operators are related with the REE’s of the
excited states (ES’s), since the finite mass gaps of critical lattice
Hamiltonians are also related with them.8 Indeed, this latter
correspondence was proven recently for conformal systems
with periodic boundary conditions.9,10 The main result of these
works is that the nth REE is given in terms of the 2n-point
correlator of the corresponding primary field placed at special
positions depending on the subsystem size.

In this letter we shall generalize this result to open lattice
Hamiltonians, effectively described by boundary conformal
field theory (BCFT).11 BCFT has a wide range of applications
to impurity problems,12 string theory,13 etc., which justifies
the generalization pursued here. Moreover, the generalization
is, as we shall see, nontrivial, since BCFT has a very rich
mathematical structure, which is worth analyzing from the
entanglement point of view. Apart from these many reasons
of interest, it is worth citing that the problem is quite long
standing,14,15 and our work represents its final solution.

We shall start with some basic definitions. The REE’s are
defined as follows:

Sn ≡ 1

1 − n
ln TrAρn

A, (1)

where n is a positive real, ρA is the reduced density matrix of
a subsystem A, and the trace is over the A’s Hilbert space. If
ρA is constructed from the GS of a CFT, one has7

SCFT
n (l,L) = cη

n + c

3η

(
1 + 1

n

)
ln

[
ηL

π
sin

πl

L

]
, (2)

where l is the size of A, L is the total-system size, and η = 1,2
for periodic boundary conditions (PBC’s) or free boundary
conditions (FBC’s); c is the central charge and c

η
n is a constant

that depends on the BC’s.4 For open systems, l is measured
from the left edge. Equation (2) may have significant cor-
rections which carry useful information about the underlying
CFT.16–18 A different kind of corrections arises when, instead
of considering the GS, one looks at the ES’s,9,10,19,20 or when
the system satisfies general BC’s preserving its conformal
invariance (FBC’s are just one of them).14,15 In particular, the
corrections in this last case have, up to now, not been derived
analytically, and their knowledge would be a great advance,
both from a practical and a conceptual point of view. In the
following, we present the general CFT framework allowing
the analytical computation of such corrections. These results
are then verified with density-matrix renormalization group
(DMRG) calculations in two examples: the c = 1/2 minimal
CFT and the c = 1 massless compactified free boson.

Let us consider a one-dimensional (1D) conformal system,
defined on a strip of width L. Cardy11 showed the existence of
BC’s, denoted as {α̃}, that preserve the conformal invariance,
and such that the partition function takes the form

Zα̃β̃(q) =
∑

h

N h

α̃β̃
χh(q), (3)

where q ≡ e−πβ/L (being β the inverse temperature), h are
the conformal dimensions of the primary fields, and χh are
the associated characters. The integers N h

αβ are the fusion
coefficients of the theory.3,4 The derivation of the REE’s
of ES’s, originating from the primary operator ϒ(w) for
open conformal systems, follows closely the one of periodic
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boundary conditions given in Ref. 9. The REE’s are given by

Sn(l,L) = SCFT
n (l,L) + 1

1 − n
ln F

(n)
ϒ ,

(4)

F
(n)
ϒ (x) = TrA ρn

A,ϒ

TrA ρn
A,GS

,

where ρA,ϒ and ρA,GS are the reduced density matrices
obtained from the ES produced by the primary field ϒ and
from the GS, respectively. The ratio F

(n)
ϒ can be computed

using path-integral methods.9 We explain below the main steps
of the derivation.

Let us first split the strip into the subsystems A =
[0,l],B = [l,L]. This strip is parameterized by the complex
coordinate w = σ + iτ , σ ∈ [0,L], τ ∈ (−∞,∞). We make
the conformal transformation

ζ = sin π(w−l)
2L

sin π(w+l)
2L

, (5)

which maps the strip into the unit disk D = {ζ,|ζ | � 1}. The
intervals A and B are mapped into the segments (−1,0) and
(0,1), respectively. The boundaries of the strip, σ = 0,L, are
mapped into the boundary of the disk (|ζ | = 1), and the infinite
past (w−

∞ = −i∞) and infinite future (w+
∞ = i∞) are mapped

into

w−
∞ → ζ−

∞ = e−iπx, w+
∞ → ζ+

∞ = eiπx, x ≡ l

L
. (6)

Next, we make n copies of the unit disk and sew them along the
cut (−1,0), obtaining the Riemann surface Rn, which can also
be mapped into the unit disk by the conformal transformation

z = ζ 1/n =
(

sin π(w−l)
2L

sin π(w+l)
2L

)1/n

. (7)

The points ζ±
∞ give rise to 2n points on Rn:

z±
k,n = e

iπ
n

(±x+2k), k = 0,1, . . . ,n − 1, (8)

where the primary field ϒ and its conjugate ϒ† are inserted.
Repeating the same steps as in Ref. 9, we arrive at an expression
for Eq. (4):

F
(n)
ϒ (x) = ei2π(n−1)h

n2nh

〈 ∏n−1
k=0 ϒ(z−

n,k)ϒ†(z+
n,k)

〉
〈ϒ(z−

1,0)ϒ†(z+
1,0)〉n , (9)

where we have assumed that ϒ is a chiral primary field with
conformal dimension h. A similar formula holds for nonchiral
fields. The correlators in Eq. (9) are computed on the unit disk
for fields inserted at its boundary. These primary fields change
the boundary conditions a and b on each edge of the strip: ϒ

changes them from a to b, while ϒ† changes them from b to a.
Hence the numerator of Eq. (9) is proportional to the partition
function of a disk with 2n segments where the boundary
conditions a and b alternate.4 Equation (9) constitutes the
main result of the work, which we shall verify below for two
models.

(1) The first model is the c = 1/2 minimal CFT. This
CFT contains three primary fields: the identity I (hI =
0), a Majorana fermion χ (hχ = 1/2), and a spin field

σ (hσ = 1/16), whose fusion rules are

N h
00 = N h

1
2

1
2

= δh
0 , N h

0 1
2

= δh
1
2
,

(10)
N h

0 1
16

= N h
1

16
1
2

= δh
1
16

, N h
1
16

1
16

= δh
0 + δh

1
2
.

This CFT describes the long-distance properties of the critical
Ising model in a transverse field whose lattice Hamiltonian is

HI = −1

2

L−1∑
j=1

σx
j σ x

j+1 − 1

2

L∑
j=1

σ z
j , (11)

where σx,y,z are the Pauli matrices. The correspondence
between the conformal BC’s {α̃} and the lattice BC’s is the
following: 0̃ ( 1̃

2 ) corresponds to fix σx
1,L to +1 (−1), while 1̃

16
corresponds to free BC’s.11,14 For simplicity, we shall denote
0̃, 1̃

2 , 1̃
16 by +, − ,F .

We begin by considering the REE’s of the GS with FF

BC’s (the two F ’s refer to free BC’s on both edges). The
spin Hamiltonian Eq. (11) can be mapped into a free fermion
Hamiltonian,21 which we use to compute, by using the method
of Ref. 22, the von Neumann entropy, i.e., the n = 1 REE, for
chains with lengths 60–180 in multiples of 20 (these will be
the sizes considered in the rest of the work).

Using Eq. (2), and finite-size scaling (FSS) techniques, we
obtain the asymptotic values c = 0.499 and c

η=2
1 = 0.241. The

value of c agrees to high precision with the central charge of
the critical Ising model.

Moreover, the value of c
η=2
1 is very close to c

η=1
1 /2, that can

be obtained with PBC’s. The relation c
η=2
1 − c

η=1
1 /2 = ln g7,14

is satisfied in this case, because the boundary entropy (BE) ln g

vanishes for FF BC’s.23 Moreover, as a different reliability
check, we verified that the REE’s in this case are exactly one
half of the ones of a spin-1/2 XX chain with FF BC’s (see
below), according to Ref. 24.

We next study the ++BC’s case (that is equivalent to
−−BC’s). The fusion rule N h

00 = δh
0 leads us to consider only

the case in which h = 0, for which no corrections arise (apart,
as we shall see, from constant BE contributions). We compute
the REE’s for the Hamiltonian Eq. (11) using the DMRG
method25 with up to 800 states per block, and three sweeps,
which yields a truncation error of 10−12 or less. Figures 1(a)
and 1(b) display the results for n = 2, 3 REE’s: the data
progressively flatten to the theoretical value − 1

2 ln 2.14,26 The
convergence to the CFT predictions is of order 10−3 or less, as
confirmed by a FSS analysis [Fig. 1(i)]. This behavior can be
ascribed to the presence of a slowly L-depending finite-size
correction,24 previously observed, for the Ising model, in
Ref. 10.

We now consider the FFBC’s case. The fusion ruleN χ
σ,σ =

1 implies that the first ES is generated by the primary field χ .
The associated F function is given by F (n)

χ =
√

F
(n)
i∂φ , where φ

is a massless free boson with c = 1.10

Quite interestingly, F
(n)
i∂φ has a general expression valid for

any value of n > 0:27

F
(n)
i∂φ(x) =

{[
2 sin(πx)

n

]n �
( 1+n+n csc(πx)

2

)
�

( 1−n+n csc(πx)
2

)
}2

. (12)
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FIG. 1. (Color online) REE’s in the 1D critical Ising model.
(a)–(h) Black to turquoise (dotted lines), L = 60–180 numerical
data; purple (solid line) + arrow, CFT predictions (the BE’s are
added to the CFT formulas when necessary). (i), (j) FSS relative
to panels (a) and (e) (best fits use the five-parameters formula
y = a0 + a1x

a2 + a3x
a4 ; dots are numerical data; solid lines are best

fits; squares are the CFT predictions).

Figures 1(c) and 1(d) show the convergence of the numer-
ical results to the CFT prediction obtained with Eq. (12),
for n = 1, 2.

We then consider the +FBC’s case. The fusion ruleN σ
I,σ =

1 implies that the spectrum contains just the conformal tower
of the σ field, so the F function must be F (n)

σ . The nontrivial
fusion rule of the field σ yields different chiral correlators,
which were computed for general n in Ref. 28. In our case,
though, only a combination of them yields the appropriate

F functions, which for n = 2,3 are given by

F (2)
σ (x) = cos

πx

4
, F (3)

σ (x) = cos
πx

3
. (13)

Figures 1(e) and 1(f) [also see Fig. 1(j)] display the DMRG
results and the CFT predictions: the agreement, for L → ∞ is
excellent, up to the constant term − 1

2 ln 2.
Finally, we consider the +−BC case (equivalent to the

−+BC case). The spectrum contains just the conformal tower
of the χ operator, and therefore the REE’s of the GS shall
be the same as the ones of the first ES in the FFBC case
[see Figs. 1(g) and 1(h)]. To conclude, we have shown that
the CFT predictions for the Ising model with all possible
conformal BC’s agree with the numerical results, up to the
constant contribution due to the BE.

(2) The second model is the c = 1 compactified free boson.
We shall next consider a massless free boson with a compact-
ification radius R = 1. This CFT is rational, meaning that the
chiral symmetry is enhanced in such a way that the number of
primary fields is finite, and they have conformal dimensions
h = 0,1/8,1/2,1/8.4 The corresponding conformal characters
are given by setting λ = 0, 1, 2, 3 mod 4 (hλ = λ2/8) in

Kλ(q) ≡ 1

η(q)

∑
n∈Z

q
1
8 (4n+λ)2

, (14)

where η(q) is the Dedekind function. The conformal BC’s
are Dirichlet (D) and Neumann (N ), and the corresponding
boundary entropies are 0 and − 1

2 ln 2.12

The lattice realization of this CFT is given by a spin-1/2
XX chain, with boundary couplings:29

HB = −
L−1∑
j=1

(
σx

j σ x
j+1+ σx

j σ x
j+1

) − 1

2

(
α−σ−

1 + α+σ+
1 + αzσ

z
1

+β−σ−
L + β+σ+

L + βzσ
z
L

)
, (15)

where the DBC, on a given edge, is realized by setting all
the boundary couplings to zero, while the NBC is realized,
say on the left side, by choosing αz = 0 and α+ = α− = 2
(moreover, in the sermonic picture of the DDBC’s case, one
has to work in the half-filled sector). The operator content of
the various models described by the Hamiltonian Eq. (15) can
be expressed in terms of the partition functions of a free boson
with different BC’s.12,29 The DD and NN partition functions
can be written in terms of the characters in Eq. (14):

ZDD(q) = K0(q) + K2(q), (16)

ZNN (q) = K0(q). (17)

The absence of corrections for the GS in the DDBC’s case,
with the exception of the usual oscillating ones,18 has already
been observed30 and we confirm it numerically. We expect
the same feature for the GS in the NNBC’s case, which we
analyze with DMRG for system size L = 100, keeping up to
1100 states, using three sweeps and achieving a truncation
error of 10−10. The results are shown in Figs. 2(a) and 2(b),
for n = 2,3: up to oscillating corrections, typical of c = 1
systems, and the BE − 1

2 ln 2, as expected from Eq. (9), we do
not see any nonconstant correction.

We then consider the first ES with DDBC’s which,
according to Eq. (16), is generated by a vertex operator
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FIG. 2. (Color online) REE’s in the model Eq. (15), part 1. Black
dotted lines, L = 100 numerical data; red solid line, CFT predictions
(the BE’s are added to the CFT formulas when necessary).

with conformal dimension 1/2. The F
(n)
ϒ functions of vertex

operators ϒ are equal to 1, for all n, so the REE’s receive no
corrections.9 We verify this result by identifying this excitation
in the fermionic version of the Hamiltonian Eq. (15) with the
addition (or subtraction) of a fermion at half filling. Figures
2(c) and 2(d) show the n = 1, 2 REE’s for these states, which
confirmed the absence of corrections.

For DD and NNBC’s, there is another ES, with conformal
weight h = 1, associated to the primary field i∂φ. For
DDBC’s it corresponds to the lowest particle-hole state cre-
ated from the half-filled ground state;9,10 in the NNBC’s case,
there is no particle number conservation, so it is simply the first
ES. In the former case, we use the method of Ref. 22, and in the
latter we use the multitarget DMRG,31 to compute the relative
REE’s, shown in Figs. 2(e)–2(h). Up to oscillations (and the
BE in the NN case), we find excellent agreement with Eq. (12).

FIG. 3. (Color online) REE’s in the model Eq. (15), part 2. See
the caption of Fig. 2.

Finally, we study the NDBC’s case, whose partition
function12 cannot be written in terms of the characters (14).
However, it can be shown that

ZND(q) = χ1/16(q)[χ0(q) + χ1/2(q)], (18)

where χ0,1/2,1/16 are the characters of the primary fields of the
Ising model. Equation (18) implies that the operator content
corresponding to NDBC’s is given by the tensor product of
two Ising models. In particular, the GS is associated with
the operator I ⊗ σ , resulting in the correction F (n)

σ , and the
first ES with σ ⊗ χ , resulting in the correction F (n)

σ F (n)
χ (plus

a BE contribution − 1
2 ln 2): we show in Fig. 3 the results

for the n = 2, 3, obtained with multitarget DMRG, finding,
even in this case, a remarkable agreement between CFT and
numerics.

We conclude that, for the critical Ising and XX quantum spin
chains under any conformal BC’s, the REE’s of the low-lying
states are obtained, apart from the BE’s and the oscillations,
from the correlators of the primary operators of the underlying
CFT: the finite-size behavior of the REE’s of quantum chains
with open boundaries identifies the primary operators in
the CFT, providing, in principle, a tool for deepening the
understanding of the operator content of a CFT.

We thank M. I. Berganza, P. Calabrese, M. Dalmonte, and
E. Ercolessi for helpful discussions. L.T. thanks F. Ortolani for
his unvaluable help with the DMRG code. L.T. acknowledges
financial support from Istituto Nazionale di Fisica Nucleare
COM4 Grant No. NA41. J.C.X. and F.C.A. acknowledge
financial support from the Brazilian agencies FAPEMIG,
FAPESP, and CNPq. G.S. acknowledges financial support
from Grant No. FIS2012-33642, QUITEMAD, and the Severo
Ochoa Program.

1P. Calabrese, J. Cardy, and B. Doyon, J. Phys. A.: Math. Theor. 42,
500301 (2009).

2J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277
(2010).

075112-4

http://dx.doi.org/10.1088/1751-8121/42/50/500301
http://dx.doi.org/10.1088/1751-8121/42/50/500301
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277


ENTANGLEMENT ENTROPIES IN CONFORMAL SYSTEMS . . . PHYSICAL REVIEW B 88, 075112 (2013)

3A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Nucl.
Phys. B 241, 333 (1984).

4P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory
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