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Field-induced reentrant superconductivity in thin films of nodal superconductors
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Previous work on nodal d-wave superconductors has shown that a Fulde-Ferrell-Larkin-Ovchinnikov- (FFLO-)
like superconducting (SC) state, which is modulated along the film plane, can be realized with no magnetic field
when quasiparticles acquire an additional linear term in the wave vector in their dispersion. In the present work,
the stability of such a modulated SC state in an artificial film against an applied magnetic field is studied. As a
reflection of the presence of two FFLO-like states of different origins, one close to zero field and the other at
the high-field end, in a single field vs temperature phase diagram of thin films, the conventional SC state, which
is uniform along the film plane, generally tends to appear as a reentrant ordered phase bounded by the normal
phase in lower fields.
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I. INTRODUCTION

The conventional superconducting (SC) phase is character-
ized by a spatially uniform SC order parameter as a reflection of
the Bose-Einstein condensation. In several situations, however,
a SC ground state can have a spatial modulation in the SC
order parameter even if quantized vortices are absent. Such a
modulated SC state is regarded as one of the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) states1,2 and is usually stabilized
by a population imbalance of up-spin and down-spin electrons
in the momentum space, i.e., by a momentum-independent
splitting between the two species of Fermi surfaces provided
by strong Pauli paramagnetic pair breaking. It is believed at
present through extensive studies that the high-field SC phase
in the heavy-fermion material CeCoIn5 is the above-mentioned
FFLO vortex state with a one-dimensional modulation parallel
to the applied magnetic field.3–5

It has been clarified recently in different contexts that
a similar spatially modulated SC state becomes possible in
nodal d-wave superconductors if the quasiparticle dispersion
εk includes an additional term linear in k of the type

εk = ε
(0)
k + V · k, (1)

where k is the wave vector, V is k independent, and ε
(0)
k is an

even function of k. Such contexts include (1) zero-field cases
in an external current,6 (2) thin films in zero field,7 and (3)
Rashba noncentrosymmetric superconductors in a magnetic
field parallel to a gap node direction.8,9 The vector V in Eq. (1)
is proportional to the strength of the external current in case
(1), the inverse of the film thickness in case (2), and the Zeeman
energy and the spin-orbit coupling in case (3). In all of these
cases, the interplay between the k dependence in the last term
of Eq. (1) and the corresponding dependence of the SC gap
function favors a spatial modulation parallel to a gap-node
direction in the SC state. We note that the only FFLO-like
state to be realized in these situations with no vortices is a
state accompanied only by a pure phase modulation.

In the present work, we focus on the above-mentioned case
(2), i.e., a SC film sample with anisotropic nodal pairing. In
Ref. 7, a tendency for formation of a modulated SC state in a
SC film with dx2−y2 -wave pairing has been pointed out in the
zero-field case.7 There, a dx2−y2 -wave paired SC film sample

is assumed to have a gap node parallel to the film plane and to
be obtained by cutting the bulk sample along the plane formed
by the nodal [e.g., (1,1,0)] and z directions, and, in addition,
the specular condition on the boundary surfaces is assumed.
The main point in Ref. 7 is that a combination of this boundary
condition and the d-wave pairing symmetry leads to a spatial
modulation of the SC order parameter parallel to the film plane
and a gap-node direction. In contrast, if the boundary surface
is not parallel to any gap-node direction but is parallel to an
antinode [e.g., (1,0,0)] direction in the dx2−y2 -pairing case,
no stable modulated SC state appears, and just the ordinary
uniform SC state10 is realized in zero field.

Then, it is natural to address whether this nontrivial
mechanism leading to a modulated SC state is affected by
applying a uniform magnetic field. Since, at least, the Zeeman
effect on the conduction electrons breaks a spin-singlet pair,
the modulated state in zero field would be suppressed with
increasing field. However, it is unclear whether, by increasing
the field, this state gives way to the normal state or other SC
states. In fact, the conventional FFLO state induced by the
momentum-independent Zeeman effect should be realized in
high fields and at low temperatures. The resulting field-induced
competition between these two modulated states of different
origins may lead to unusual field dependences of the phase
diagram in intermediate fields.

Hereafter, we investigate possible field vs temperature
phase diagrams of films of unconventional superconductors
in a magnetic field parallel to the film plane by assuming that
the material is close to the Pauli limit so that the presence
of vortices may be neglected. Even in film samples with
thickness of several times the zero-temperature coherence
length ξ0, field-induced vortices would be inevitably present.
Nevertheless, if the applied magnetic field, i.e., the straight
vortex axis, is parallel to the modulation direction of the phase-
modulated state occurring even in zero field, the vortex lattice
pattern in the plane perpendicular to the field is unaffected
by this phase modulation, implying that conclusions on
the (mean-field) transitions to the normal phase and to the
phase-modulated SC state obtained in the Pauli limit, i.e.,
without orbital pair breaking, are applicable to describing
real superconductors with large paramagnetic pair-breaking
effect. This argument is based on previous studies on the
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FIG. 1. (Color online) Geometry of superconducting film samples
with thickness D and the dx2−y2 pairing in which the gap nodes are
parallel to the film plane (the state in this setup with the dx2−y2

symmetry is called hereafter the Dxy state). The py-pairing case is
also indicated here for comparison. The flat film surfaces are in the z-x
plane. Due to the specular boundary condition on the quasiparticles
when the gap nodes are parallel to the film plane, the amplitude
of the SC gap function |�| is suppressed to zero on the sample
surfaces. The effects of a finite magnetic field applied in the gap-node
direction within the two-dimensional (2D) plane (the x direction) will
be considered in Sec. III.

corresponding bulk system.5,11 Of course, the spatially uniform
SC phase appearing in our calculation in the Pauli limit would
correspond to a vortex lattice in a thin film, which consists
of vortices running straight along the field parallel to the film
plane.

The geometry of the present system is illustrated in
Fig. 1. Although our focus is primarily on the nodal d-wave
superconductors, we also discuss a simpler nodal p-wave
pairing case in order to clarify that one origin of the present
phase-modulated state in zero field is a gap node parallel to the
film plane. It is found that, for a film thickness of several times
ξ0, applying a weak parallel magnetic field in the d-wave nodal
SC case changes the phase-modulated SC state in low fields to
the normal state, while the uniform SC and the conventional
FFLO states survive in higher fields. Consequently, reentrant

SC phases are expected to occur with increasing field for a
film thickness of several times ξ0. It is pointed out that such a
strange field dependence of the SC phases, in part, stems from
the nonmonotonic thickness dependence of the SC transition
temperature in zero field.7

The present paper is organized as follows. In Sec. II,
the theoretical formulation is explained, and thickness vs
temperature phase diagrams of a d-wave film taken at low
enough fields are discussed together with a p-wave case in zero
field in Sec. III. In Sec. IV, field vs temperature phase diagrams
in the d-wave case, which are our main focus in the present
work, are discussed. In Sec. V, this work is summarized.

II. FORMULATION

In the present work, the boundary condition for the SC
order parameter � on the film surface plays an important role
in obtaining a spatial modulation of the SC order parameter.
To explain how the boundary condition results in a modulated
SC phase, let us start by describing the quasiclassical approach
used.

Since we study not only the spin-singlet d-wave pair-
ing in magnetic fields but also a p-wave pairing case
in zero field, Eilenberger equations for the quasiclassi-
cal Green’s functions12–14 represented in the Nambu space
will be considered. Following Refs. 15 and 16, they are
expressed by

[iεnτ̂3 − �̂ − Î , ĝ] + ivF · ∇ĝ = 0, (2)

where the brackets denote the commutator, εn is a fermion
Matsubara frequency, and τ̂j (j = 1, 2, and 3) are the particle-
hole Pauli matrices. We largely follow Ref. 16 regarding the
notation of the gap function and the Green’s functions ĝ

satisfying (ĝ)2 = −π2. They will be parametrized in the form

�̂ =
(

0 i[�(r,p) + ∑
j=1,2,3 �j (r,p) · σj ]σ2

iσ2[�∗(r,p) + ∑
j=1,2,3 �∗

j (r,p) · σj ] 0

)
,

(3)

ĝ =
(

g + g · σ i(f + f · σ )σ2

iσ2(f ′ + f′ · σ ) −g + g · σ∗

)
.

The matrix Î expresses the Zeeman energy term. In the parallel
field configuration (H ⊥ ŷ) of interest to us in the following
sections, Î is diagonal, and its element gives the Zeeman
energy μH in the Nambu space. Further, r = (x,y,z) is the
center-of-mass coordinate of a Cooper pair. As mentioned in
Sec. I,11 the orbital pair-breaking effect inducing the vortices
can be safely neglected in the present geometry (see Fig. 1).
Thus, the strength of the magnetic field can be identified
hereafter with the dimensionless Zeeman energy

h ≡ 2

π
eγ μH

Tc(0)
, (4)

where γ is the Euler constant. The numerical factor 4eγ �
7.1 in the above expression results from the conventional

definition of the Maki parameter αM for an s-wave bulk
superconductor.17

As is well known, minimization of the free energy with
respect to the gap function � results in the so-called gap
equation, which, in the spin-singlet-pairing case, connects
�̂ with the scalar anomalous Green’s functions f (εn) and
f ′(εn) = [f (−εn)]∗ in the manner

�(r) ln

(
Tc0

T

)
= T

∑
n�0

〈
Y∗(p)

(
2π�(r)Y(p)

|εn|

− f (r,p; εn) − f ′ ∗(r,p; εn)

)〉
p
. (5)

Here, Tc0 is the SC transition temperature in zero field, and
〈 〉p is the angular average over the Fermi surface. Further,
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Y(p) denotes the normalized pairing function satisfying
〈|Y(p)|2〉p = 1. It appears through the factorization �(r,p) =
�(r)Y(p) and, in the case with gap nodes parallel to the x̂

direction, is proportional to p̂y .
The system geometry is reflected in the boundary condition

on f (r,p; ε) on the outer surface. As in Ref. 7 the specular
condition on a flat boundary surface in the z-x plane will be
used by assuming the surface roughness to be negligible (see
the geometry in Fig. 1). Then we have

f (r; p; εn) = f (r; p; εn) (6)

on the surface, where p = p − 2n̂(p · n̂), and n̂ is the unit
vector normal to the surface, which is in the y direction in
Fig. 1. It means that, if

Y(p) = −Y(p), (7)

the SC order parameter �(r) and f vanish on the surface.
Among pairing states satisfying Eq. (7), we will focus below
on the following:

Y(p) =
√

2p̂xp̂y, Y(p) =
√

2p̂y, (8)

both of which, in the x-y plane, have a gap node in
the direction parallel to the boundary surface. The former
case corresponds to a film sample prepared by cutting a
dx2−y2 -paired superconductor along, for instance, the (1,1,0)
direction. Hereafter, this situation, indicated in Fig. 1, with the
dx2−y2 -pairing symmetry will be called the Dxy state.

In addition, as a typical r dependence of �(r) vanishing on
y = ±D/2 (see Fig. 1), we choose the form

�(r) = �(x)
√

2cos(πy/D). (9)

For simplicity, the cylindrical Fermi surface with the symmetry
axis parallel to ẑ will be used throughout this paper.

As will be stressed in Sec. III, a continuous normal-to-
superconducting transition point can be found directly from
the O(|�|2) term of the free energy, or equivalently, from
Eq. (5) linearized with respect to �. To obtain a transition
occurring deep in the SC phase such as the onset of a FFLO
modulation, the following quasiclassical representation16 of
the SC contribution �Fsc to the Luttinger-Ward free energy
functional:

�Fsc =
∫

dxdy
T

2

∫ 1

0
dλN(0)

∑
εn

〈
Tr�̂

(
ĝλ − 1

2
ĝ

)〉
p

(10)

is more useful than the gap equation (5), where N (0) is the
density of states (per spin) at the Fermi level in the normal
state, and the auxiliary Green’s function ĝλ is the solution of
the Eilenberger equation with �̂ replaced by λ�̂. The transition
from the uniform SC state to a phase-modulated Fulde-Ferrell
(FF) SC state

�FF(x) = exp(iqxx)|�(0)| (11)

or to an amplitude-modulated Larkin-Ovchinnikov (LO) SC
state

�LO(x) =
√

2cos(qxx)|�(0)| (12)

is signaled by emergence of a finite equilibrium value of the
modulation wave number qx .

III. THICKNESS VS TEMPERATURE PHASE DIAGRAMS

In this section, we will discuss the zero-field case. By
comparing thickness-temperature phase diagrams for the spin-
triplet py-pairing state and the spin-singlet Dxy state7 cases to
each other, we stress that the presence of a gap node parallel
to the film plane induces a phase-modulated state at lower
temperatures and that a strange thickness dependence of the
SC transition temperature is commonly seen in those SC films.

To discuss the character of the normal-to-SC phase
transition in the mean-field (MF) approximation which is
signaled by vanishing of the SC energy gap, the form of the
Ginzburg-Landau (GL) free energy which can be obtained
from the gap equation (5) will be explained. By introducing
the Fourier-transformation �(x) = L

−1/2
x

∑
qx

�qx
exp(iqxx)

to incorporate the possibility of a spatially varying mean-field
solution of �(x), the quadratic [O(|�|2)] term of the GL free
energy is recovered in the form

FH=0

= N (0)
∑
qx

{
ln

(
T

Tc0

)
+

∫ ∞

0
dρ

2πT

sinh(2πTρ)

×
〈
|Y(p)|2

[
1− cos(ρvF p̂xqx)cos

(
ρπvF

p̂y

D

)]〉
φp

}
|�qx

|2

(13)

from the O(�) term of Eq. (5), where 〈 〉φp
denotes the

average over φp with px + ipy = pF exp(iφp) for the present
cylindrical Fermi surface. Here, by first assuming the transition
to be continuous, let us consider the situation under which
the coefficient of |�qx

|2 in Eq. (13) vanishes. In the cases of
interest to us, Y(p) ∝ py , i.e., when we have gap nodes in
the x̂ direction, the sign factor cos(ρπvF p̂y/D) in Eq. (13)
may contribute to the negative sign for a broad range of
ρ values. Then, inevitably, a state with a finite qx , i.e., a
state with a modulation parallel to a gap node, is favored in
order for cos(ρvF p̂xqx) to be also accompanied by a negative
sign so that a negative sign of the coefficient of the |�qx

|2
term, i.e., SC ordering, may become possible. This is like the
mechanism leading to the conventional FFLO state induced by
the Zeeman field: the dimensionless film thickness normalized
by the zero-temperature coherence length ξ0 = vF/(2πTc), i.e.,

d−1 = vF

2TcD
= π

ξ0

D
, (14)

in the present case plays the role of the Zeeman energy in the
familiar field-induced FFLO case.

Figure 2 shows the dependences of the normal-to-SC phase
boundary on assumed qx values in the d−1 vs temperature
phase diagram in the py-pairing case with zero field. The actual
mean-field SC transition line is defined as the envelope of
each curve giving the highest Tc and d−1 values among those
curves. The result of this is presented in Fig. 3(a) as the
solid black curve, which implies that, at lower temperatures
and/or for larger d−1, a SC phase with a nonzero qx leads to
a higher transition line and thus is favored as the ordered
state. The resulting stability region of the modulated FF
SC state has been determined by use of Eq. (10). We note
that, as pointed out in Ref. 7, the present phase-modulated
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FIG. 2. (Color online) Thickness dependences of the SC transi-
tion temperature Tc(d−1) of superconducting films with the pairing
symmetry Y(p) = √

2p̂y in zero field, which have been obtained
by assuming various qx values, where t = T/Tc(0). The envelope
of those Tc(d−1)-curves is nothing but the resulting mean-field SC
transition curve between a SC phase and the normal (N) phase and
is described as a solid curve in Fig. 3(a). At lower temperatures
where the boundary condition (a finite D) is more effective, the
Tc(d−1)-curve with finite qx tends to be realized. The SC transition is
always of second order (see Fig. 3).

FF state is always more stable than the LO state. This
phase-modulated state corresponds to the helical state in
the context of noncentrosymmetric superconductors with no
accompanying field-induced vortices.8,19

In addition, to clarify the character of this SC transition,
the sign of the quartic [O(|�|4)] term in the GL free energy
needs to be examined. In fact, in the case with a conventional
FFLO state induced by the momentum-independent Zeeman
effect, the overall coefficient b of the quartic term at lower
temperatures is negative near the line on which the quadratic
term changes its sign so that the corresponding SC transition
is of first order.5 However, in the present case where the
counterpart of the Zeeman energy, i.e., vFp̂y/D, is linear
in p, it is found that the coefficient b of the quartic term
remains positive even at lower temperatures [see Fig. 3(c)]
and thus the mean-field SC transition is truly of second
order. Again, this result is compatible with the closely related
result on the low-temperature Hc2(T ) transition in Rashba
noncentrosymmetric superconductors under a field parallel
to the basal plane9 (see the Introduction). On the other
hand, in the case of the present Fig. 2, the resulting SC
transition curve defined by a sign change of the quadratic
term shows a nonmonotonic temperature dependence. This
feature is in contrast to that in the conventional case with
the momentum-independent Zeeman effect, where such a
nonmonotonic temperature dependence of the curve on which
the quadratic term changes its sign indicates that the mean-field
SC transition occurs discontinuously on a different curve.5

Figure 4(a) shows the d−1 vs temperature phase diagram
of a film with the Dxy SC state in zero field, which coincides
with the result in Ref. 7. Just as in the case of py pairing in
Fig. 3, the uniform SC phase tends to be destabilized due to
formation of the FF state with decreasing film thickness. In
the Dxy state, there are also gap nodes perpendicular to the
film plane which may partially cover the formation of the FF
phase modulation stemming from the gap nodes parallel to
the plane. In fact, although a nonmonotonic behavior of the
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FIG. 3. (Color online) (a) Resulting thickness dependence of the
SC transition temperature Tc(d−1) (solid black curve) for the py

pairing obtained from the data in Fig. 2. Although the Tc vs d−1

curve at t < 0.4 becomes nonmonotonic upon cooling (see the text),
the transition at Tc(d−1) is of second order. The SC state at lower
temperatures and at smaller values of the film thickness is the phase-
modulated Fulde-Ferrell state which is separated from the uniform
SC (U) state (Ref. 10) via another second-order transition (solid
red) curve decreasing upon cooling. (b) Temperature dependences
of the squared order parameters |�|2 and q2

x at d−1 = 0.399, and
(c) the corresponding coefficient a of the GL quadratic term [thin
(red) curve] and the corresponding one b of the quartic term [thick
(blue) curve] (see the Appendix for their definition). Here, � and
qx are normalized by Tc(d−1 = 0) and ξ−1

0 , respectively, and hence
are dimensionless. The resulting SC and FF transitions are of second
order in character, as signaled by the linear vanishing of |�(t)|2 and
of [qx(t)]2, respectively.

second-order transition curve Tc(d−1) is present even in the
case of the Dxy state [see Fig. 4(b)], it is less remarkable than
in the py-pairing case (Fig. 3). Nevertheless, as the inset of
Fig. 4(a) shows, this low-temperature behavior of the Tc(d−1)
curve is robust against a weak magnetic field. In Sec. III, it
will be shown that this nearly flat but nonmonotonic feature
close to t = 0.35 of the Tc(d−1) curve results in a reentry of the
FF and normal phases in films with thickness of about 6ξ0. In
contrast, in sufficiently thick films with large d, the FF phase
is destabilized by such a weak magnetic field (see the inset of
Fig. 4).

For comparison, we will comment on the dx2−y2 -pairing
case in which an antinodal direction is parallel to the film
plane. In this case, the boundary condition (7) is not satisfied,
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FIG. 4. (Color online) (a) Thickness dependence of the SC
transition temperature, Tc(d−1), in the case with Dxy state. This
phase diagram at h = 0 quantitatively agrees with that in Ref. 7. The
inset shows the corresponding result in the small field h = 0.32. The
nonmonotonic behavior of the Tc(d−1) curve at low temperatures
is less remarkable, possibly because of the additional gap nodes
perpendicular to the film plane, but nevertheless visible close to
t = 0.35. (b) Temperature dependences of the GL coefficients a

[thin (red) curve] and b [thick (blue) curve] at d−1 = 0.517 in (a).
The positive b values where a changes sign on cooling imply that
the SC transition in (a) is of second order.

and not the FF state but the familiar SC state, which is spatially
uniform in any direction, is always favored. Thus, within the
approximation used here, disappearance of superconductivity
due to the size effect does not occur in this case.

IV. FIELD VS TEMPERATURE PHASE DIAGRAMS

Next, let us examine how the phase diagram in the case with
the Dxy state is changed by applying a uniform magnetic field.
For this purpose, the orbital pair-breaking effect of the mag-
netic field will be neglected. This assumption is reasonable for
describing thin films with thickness of several times ξ0. Further,
as argued in Sec. I, it is at least qualitatively valid even with
vortices as long as H ‖ x̂.11 Then a nonvanishing magnetic field
appears only through the Zeeman energy μH , and its effect
can be incorporated simply by replacing cos(ρπvF p̂y/D) with
cos(ρπvF p̂y/D) cos(ρ2μH ) in Eq. (13) (see Ref. 5 and the
Appendix for details). Then, the signs of the two cosine factors
compete in the ρ integral in Eq. (13). Physically, this implies
that the applied magnetic field frustrates and thus weakens the
size effect enhanced by the gap nodes. Since, on the other
hand, superconductivity in the present systems is suppressed
with decreasing film thickness, the applied magnetic field
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FIG. 5. (Color online) Thickness dependence of the h vs t phase
diagram in the case with the Dxy state. The used values of d [the
normalized thickness defined in Eq. (14)] are 3.33 in (a), 2.0 in (b),
1.95 in (c), 1.93 in (d), 1.92 in (e), and 1.79 in (f). The symbol “LO”
indicates the field-induced LO phase. All transitions indicated in the
figures are of second order (see Fig. 6). The field dependences of the
order parameters on the dotted vertical lines in (d) and (e) are shown
in Fig. 6.

competing with the size effect may enhance superconductivity.
Below, it will be explained that, in thin SC films with gap
nodes parallel to the film plane and with thickness of the order
of several times ξ0, rich behaviors reflecting the competition
between the magnetic field and the gap-node-induced size
effect can occur in the field vs temperature phase diagram,
such as coexistence of two spatially modulated FFLO states
of different origins and a field-induced reentry of the spatially
uniform superconductivity.

The thickness dependence of the h vs t phase diagrams
we have obtained is presented in Fig. 5. Although the
transition curves in the figures have been determined from
the quasiclassical formulation in Sec. II with Eq. (10), all the
SC transitions appearing in the present phase diagram can
be alternatively obtained from the GL free energy shown in
the Appendix because they are of second order in character.
As seen in Fig. 3 of Ref. 7 (see also Fig. 4 in the present
work), as long as the same boundary condition is used, the FF
phase of SC films with a gap node parallel to the film plane
under zero field inevitably appears even in sufficiently thick
films with d 
 1 at low enough temperatures.7,18 Reflecting
this fact, Fig. 5(a) includes this FF phase at low enough
temperatures if the applied field is sufficiently low. With
decreasing film thickness, however, the temperature regions
of the uniform10 and LO SC phases are narrower, while the
FF phase grows and begins to occupy a broader field and
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in Figs. 5(d) and 5(e) are presented in (a) and (b), respectively. The
linear vanishing of |�|2 and of q2

x at a finite |�| value ensure that
these transitions are of second order in character.

temperature region [see Fig. 5(b)]. In particular, it is notable
in Fig. 5(b) that, as the FF phase grows, the field-induced LO
phase shrinks and, together with the normal-to-SC transition
curve, is pushed up to higher fields. This competition between
these two modulated SC phases seems to result in extension of
the intermediate spatially uniform SC phase. For instance, the
point (t = 0.2, h = 1.4) in Fig. 5(b) is included in the uniform
SC phase, although the same point in Fig. 5(a) is in the normal
phase, suggestive of an extension of the uniform SC phase in
thinner films. More interestingly, for even thinner films with
thickness D < 6.13ξ0, the normal phase begins to intervene
between the FF and the uniform SC phases at low temperatures,
pushing the FF phase down to lower fields with decreasing
thickness [see Figs. 5(c) and 5(d)]. It is a remarkable feature
that the normal phase begins to enter along the boundary
between the FF and uniform phases with decreasing film
thickness so that the uniform SC phase at higher fields can
remain stable against the normal state [see Figs. 5(e) and 5(f)].
The above-mentioned competition between the size effect and
the finite magnetic field and the resulting reentrant survival
of the spatially uniform SC phase are nontrivial and the main
results in the present work.

As already mentioned, all the transitions appearing in these
phase diagrams are of second order. In Fig. 6, the field
dependences of the amplitudes of the SC order parameter �

and the FFLO order parameter qx taken on the dotted vertical
lines in Figs. 5(d) and 5(e) are shown. For instance, in Fig. 6(a),
the linear vanishing of |�|2 at three h values and that of q2

x in
the vicinity of h = 0.39 imply the second-order character of
these transitions. The q2

x curve has a physical meaning when
|�| is nonvanishing. For this reason, qx data are not shown in
Fig. 6 in the field regions of the normal state.

In contrast to the case of the Dxy state, the FF phase does not
occur if the film plane is parallel to an antinodal direction of the
dx2−y2 -pairing function. Then the resulting field vs temperature

SC phase diagram consists only of the uniform and LO SC
phases with no reentry of a low-field normal phase.

V. CONCLUSION

In this paper, we have studied the phase structure of a SC
film with an unconventional nodal pairing and, in particular,
have focused on its change due to an applied magnetic field
parallel to the film plane. It has been found that, when the
pairing state has a gap node parallel to the film plane, and
consequently the SC energy gap or the SC order parameter
is deformed along the film’s surface normal, a kind of Fulde-
Ferrell SC phase with a spatial modulation parallel to the film
plane of the phase of the SC order parameter is inevitably
induced upon cooling in zero field. When a magnetic field
parallel to the gap-node direction is applied, and the system is
close to the Pauli limit, this unconventional FF state and the
conventional Larkin-Ovchinnikov state in high fields coexist in
the same field vs temperature phase diagram. With decreasing
film thickness, these modulated SC states seem to repel each
other in the phase diagram while keeping intact the uniform SC
phase intervening between them. Consequently, the FF phase
in lower fields is replaced by the normal phase in thinner films
so that a field vs temperature phase diagram with a reentrant
uniform SC phase results.

As mentioned in Sec. I, vortices can be neglected in
discussing the thermodynamics and the static phase diagram
of superconductors close to the Pauli limit. Since, as seen in
Fig. 5, the main point in the present work is the reentry of the
normal phase in lower fields in thinner films, inclusion of the
field-induced vortices in the present theory is not expected to
lead to essential changes of our main results.

An intriguing point is an apparent competition between
the Fulde-Ferrell state in lower fields and the conventional
Larkin-Ovchinnikov state at the high-field end of the SC phase.
In fact, the FF phase arises from the anisotropic response to
an external field in momentum space [see Eq. (1)] and thus
is incompatible with the LO state which is realized even in
an isotropic system. Therefore, it may be expected that the
field-induced reentry of the uniform SC phase will also occur
in other systems with a zero-field FFLO phase, e.g., the cases
with a FFLO state induced by the multiband effect or by an
electric current.6 These issues will be considered elsewhere.
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APPENDIX

1. Derivation of the GL quadratic term

The Ginzburg-Landau quadratic term essentially corre-
sponds to the linearized gap equation, so that it can be obtained
by expanding Eq. (5) with respect to � and picking up
the leading-order contributions. In this appendix, we sketch
an alternative derivation5 of the GL free energy functional
based on the Gor’kov formalism which is equivalent to the
� expansion of Eq. (5). The GL quadratic term is formally
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given by

a|�(0)|2 = 1

N (0)

∫
dr
V

�∗(r)

×
(

1

|λ| − T

2

∑
εn,σ

∑
p

K̂2(−i∇r)

)
�(r),

(A1)
K̂2(−i∇r) = |Y(p)|2Gεn,σ (p)G−εn,−σ (−p − i∇r),

where λ denotes a coupling constant of a pairing interaction,
Gεn,σ (p) = [iεn − ξ (p) + σμH ]−1 is the Gor’kov Green’s
function expressing a quasiparticle in the normal state, εn

is a fermionic Matsubara frequency, and ∇r denotes the
gradient with respect to r. By using the replacement

∑
p →

N (0)
∫ ∞
−∞ dξ (p)〈〉φp

, we can carry out the summation over p,
and then we find∑

p

K̂2(−i∇r) = N (0)

〈
2πi sgn(εn)|Y(p)|2

2i εn + 2σμH + ivF · ∇r

〉
φp

= N (0)
∫ ∞

0
dρ 2πe−2|εn|ρ〈|Y(p)|2

× exp[i sgn(εn)(2σμH + ivF · ∇r)ρ]〉φp
,

(A2)

where the equation 1/α = ∫ ∞
0 dρ exp[−αρ] (Re[α] > 0)

has been used. The summation over εn and σ yields

T

2

∑
εn,σ,p

K̂2(−i∇r) = N (0)
∫ ∞

0
dρ

2πT cos(2μHρ)

sinh[2πTρ]

×〈|Y(p)|2 cos(−ivF · ∇r ρ)〉φp
.

(A3)

Since Tc0 is defined as the SC transition temperature at D =
∞(d−1 = 0) and H = 0, i.e.,

1

|λ| − N (0)Tc0

ωc/Tc0∑
εn>0

2π

|εn| = 0, (A4)

we have

1

|λ| � N (0)

[
ln

(
T

Tc0

)
+

∫ ∞

0
dρ

2πT

sinh[2πTρ]

]
. (A5)

Eventually, we obtain the GL quadratic term as

a =
∑

q

|Cq|2
[

ln

(
T

Tc0

)
+

∫ ∞

0
dρ

2πT

sinh[2πTρ]

×〈|Y(p)|2[1 − cos(2μHρ) cos(vF · q ρ)]〉φp

]
, (A6)

where Cq is the coefficient of the Fourier expansion �(r) =
|�(0)| ∑q Cq exp[i q · r]. For the film with thickness D, the
gap function takes the form of Eq. (9), so that it follows
that

|�(0)|Cq = �qx
[δqy,π/D + δqy,−π/D]/

√
2. (A7)

Substituting Eq. (A7) into Eq. (A6), we obtain Eq. (13). Note
that the coefficient a is given by the same expression for both
the FF and LO states.

2. Expression of the GL quartic term

The GL quartic term is given by

b|�(0)|4 = (2πTc)2

2N (0)

×
∫

dr
V

K̂4(∇i)�
∗(s1)�(s2)�∗(s3)�(s4)

∣∣
si→r,

K̂4(∇i) = T

2

∑
εn,σ

∑
p

|Y(p)|4 Gεn,σ (p)G−εn,−σ (−p + i∇1)

×G−εn,−σ (−p − i∇2)Gεn,σ [p + i(∇3 + ∇2)],

(A8)

where ∇i denoting the gradient with respect to si acts on �(si).5

The summation over p can be performed in the same manner
as that used in obtaining the quadratic term, and then we obtain

b = 2π2T 2
c

∑
Q1+Q3=Q2+Q4

C∗
Q1

CQ2C
∗
Q3

CQ4

×
3∏

j=1

∫ ∞

0
dρj

2πT cos
(
2μH

[ ∑3
i=1 ρi

])
sinh

[
2πT

( ∑3
i=1 ρi

)] 〈|Y(p)|4

×{cos[vF · Q1(ρ1+ρ2) − vF · Q2ρ2+vF · Q3(ρ2 + ρ3)]

+ cos(vF · Q1ρ1 + vF · Q2ρ2 + vF · Q3ρ3)}〉φp
, (A9)

where Qi = (Qx,i,Qy,i) and vF = 2πTcξ0( cos(φp), sin(φp)).
In Eq. (A9), the expression

CQi
= δQy,i ,π/D + δQy,i ,−π/D√

2

δQx,i ,qx
+ δQx,i ,−qx√

2
(A10)

is valid for the LO state with �(r) =
2 |�(0)| cos(yπ/D) cos(xqx), while

CQi
= δQy,i ,π/D + δQy,i ,−π/D√

2
δQx,i ,qx

(A11)

should be used for the FF state, in which �(r) =√
2 |�(0)| cos(yπ/D)ei xqx .
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H (i.e., H ‖ ẑ) in contrast to the geometry of Fig. 1, the FF phase
modulation is transformed to a change of the vortex pattern (Ref. 9)
so that the vortex-free assumption is invalid.

12G. Eilenberger, Z. Phys. 214, 195 (1968).
13A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 28, 1200

(1969).
14N. Schopohl and K. Maki, Phys. Rev. B 52, 490 (1995).
15J. W. Serene and D. Rainer, Phys. Rep. 101, 221

(1983).
16A. B. Vorontsov, J. A. Sauls, and M. J. Graf, Phys. Rev. B 72,

184501 (2005).
17K. Maki, Phys. Rev. 148, 362 (1966).
18If the higher harmonics cos(nπy/D) (n � 2) are incorporated to

describe the boundary condition (7), the appearance of this FF state
in the bulk limit seems to be suppressed.

19K. Aoyama and M. Sigrist, Phys. Rev. Lett. 109, 237007
(2012).

064519-8

http://dx.doi.org/10.1143/PTP.31.945
http://dx.doi.org/10.1007/BF01379803
http://dx.doi.org/10.1103/PhysRevB.52.490
http://dx.doi.org/10.1016/0370-1573(83)90051-0
http://dx.doi.org/10.1016/0370-1573(83)90051-0
http://dx.doi.org/10.1103/PhysRevB.72.184501
http://dx.doi.org/10.1103/PhysRevB.72.184501
http://dx.doi.org/10.1103/PhysRev.148.362
http://dx.doi.org/10.1103/PhysRevLett.109.237007
http://dx.doi.org/10.1103/PhysRevLett.109.237007



