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We study the static and dynamic behavior of charge ordering within a d-wave pair pseudogap (pg) scenario.
This is addressed using a density-density correlation function derived from the standard pg self-energy �

and compatible with the longitudinal and transverse sum rules. The broadening factor γ in � reflects the
breaking of pairs into constituent fermions. We apply this form for � (derived elsewhere for high fields) to
demonstrate the existence of quantum oscillations in a non-Fermi liquid pg state. Our conclusion is that the
pseudogap-induced pair breaking, via γ , allows the underlying fermiology to be revealed; d-wave (as distinct
from s-wave) pairing in YBCO, with finite ω and γ enables antinodal fluctuations, despite their competition in
the static and superconducting limits.
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I. INTRODUCTON

One of the most exciting developments in the field of high
temperature superconductivity has arisen from the growing
evidence for charge ordered states1–8 found for a range of
hole concentrations in the underdoped regime. Some of the
earliest indications for this charge ordering were associated
with reconstructed Fermi surfaces inferred from quantum
oscillations.6 While static charge ordering signatures appear
most clearly at these high magnetic fields,7,8 there is evidence
that even in zero field there is (only9) a fluctuating or dynamic
propensity1 for the same charge ordering. Central to these
observations is the uncertainty over the charge ordering wave
vector in different cuprate families. There are claims that it is
associated with both nodal nesting (NN) as well as antinodal
(AN) nesting.6,10,11 It could be argued that a discovery of
this form of order in the cuprates presents evidence against
a preformed pair interpretation of the mysterious12 and
controversial pseudogap phase.13 Problematic for a preformed
pair scenario is the evidence3,11 that the charge ordering is
antinodal, since the same k states participate in the d-wave
pseudogap and the AN ordering.

In this paper we look more deeply into charge ordering
within a scenario in which the pseudogap derives from
d-wave preformed pairs. Our work begins with the widely
accepted14,15 form of zero field self-energy which gives rise
to Fermi arcs16 [with band structure ξk and 4-momentum
K = (iωn,k)]:

�(K) = −iγ ′ − �2
pgG

γ

0 (−K) ≡ −iγ ′ + �2
pg

iε + ξk + iγ
. (1)

Here �pg is a real parameter representing the amplitude
of the pseudogap and γ,γ ′ represent damping coefficients.
Using �(K) we compute the associated density-density
correlation functions Pρ,ρ(q,ω) and demonstrate how dynamic
charge ordering fluctuations are a reflection of the underlying
fermiology in the presence of a gap.

A key contribution of this paper is the demonstration
that this density-density correlation function is analytically
consistent with the longitudinal and transverse sum rules.
Using this we investigate the zero field H = 0 possible

instabilities (dynamic and static) in the presence of a d-wave
pseudogap. We have compared these calculations with the
s-wave case and found that due to the absence of nodes, all
notable effects reported here are absent or negligibly small in
this case, emphasizing the special role of d-wave symmetry in
the cuprates.

Within the d-wave system, depending on the fermiology,
we find both nodal and antinodal dynamic charge ordering
tendencies. Our work emphasizes the latter. Coexistence of
(albeit, dynamic) antinodal charge ordering and the pseudogap
is shown to derive from the “pair breaking” contribution
[associated with γ in Eq. (1)] to the density-density correlation
function. This pair breaking dominates the quasiparticle
scattering (or nesting) contribution to the spectral weight
at low T . Stated alternatively, pairs need to be broken
into their composite fermions in order to contribute to the
charge correlation function. Finite frequency enables this pair
breaking. Since γ is absent in the superconducting self-energy
where the condensate pairs are infinitely long lived, we
conclude that the pseudogap (with γ �= 0) plays an important
role in enabling antinodal charge fluctuations.

We secondarily address the implications of this self-energy
[Eq. (1)] for quantum oscillation experiments. We show that
oscillatory behavior is found in thermodynamics for this
non-Fermi liquid pseudogap phase, due primarily to the pair
breaking associated with γ . In this paper we include this study
because of its relevance to charge ordering and to counter
the belief that such oscillations imply Fermi liquid behavior.
It should be stressed, however, that this paper is otherwise
devoted to H = 0 behavior. In earlier work we have shown17

using Gor’kov theory that the same self-energy applies to the
very high field limit.

Our approach can be compared with others in the
literature,18,19 where it is claimed that quantum oscillations are
a signature of a high field Fermi liquid state, arguing instead
for a three peaked spectral function.20

II. THEORY

To arrive at an expression for the current current correlation
function, we first use Eq. (1) to rewrite the diamagnetic current
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n
↔

m
via integration by parts

n
↔

m
= 2

∑
K

1
↔

m
G(K) = 2

∑
K

∂2ξk

∂k∂k
G(K)

= −2
∑
K

G2(K)
∂ξk

∂k
∂ξk

∂k

[
1 − �2

pg

(
G

γ

0

)2
(−K)

]
. (2)

From this one can infer an ansatz for the density-density
correlation function in the pseudogap phase and establish
analytic consistency with the transverse and longitudinal sum
rules. This is based on the fact that there is no Meissner effect in
the normal state which yields

↔
P JJ (0) = −↔

n
m

. As a reasonable
inference from Eq. (2), the current-current correlation function
is then

↔
P JJ (Q) = 2

∑
K

∂ξk+q/2

∂k

∂ξk+q/2

∂k

[
GKGK+Q

−�2
pgG

γ

0,−K−QG
γ

0,−KGK+QGK

]
≡ 2

∑
K

∂ξk+q/2

∂k

∂ξk+q/2

∂k
(GKGK+Q

−Fpg,KFpg,K+Q), (3)

with Fpg,K ≡ �pg,kG
γ

0,−KGK and where
∑

K = T
∑

n

∑
k.

Interestingly, we have found a similar result for the local
density of states in an STM-based experiment,21 but with
a different sign in front of the pg contribution. Moreover
the transverse P T

JJ (ω,q) yields a reasonable behavior for the
conductivity and diamagnetism.22

Thus far we have discussed the current-current correlation
function. The density-density correlation function should
necessarily have the same electromagnetic-vertex function
structure which leads to a generalized particle-hole suscep-
tibility

Pρρ(ω,q) =
∑

k

∫
dε1dε2

2π2

f (ε2) − f (ε1)

ω − (ε1 − ε2) + iδ

× [AG(k + q,ε1)AG(k,ε2)

+AF (k + q,ε1)AF (k,ε2)]. (4)

Here AG and AF are the spectral functions for G and Fpg.
This expression for Pρ,ρ can only be generalized below Tc

by including the contribution from collective modes, often
omitted.23 Above Tc it is complete.

The sum rules on the longitudinal (L) and transverse (T )
components of the current-current correlation function are a
central constraint on our ansatz:∫ +∞

−∞

dω

π

(
− ImP L

JJ (ω,q)

ω

)
= n

m
,

(5)

lim
q→0

∫ +∞

−∞

dω

π

(
− ImP T

JJ (ω,q)

ω

)
= n

m
.

Importantly, these sum rules can be analytically proved
using Eqs. (1) and (3). The second of these is the weaker
condition, as above Tc it can be thought of as an equivalent
constraint to the requirement that there is no Meissner effect.
The more stringent longitudinal sum rule is equivalent to
proving a current conservation condition.

To see this,24 note that the electromagnetic vertex function
can be extracted from the ansatz in Eq. (3). This vertex
satisfies �μ(K + Q,K) − γ μ(K + Q,K) = �2

pgγ
μ(−K −

Q,−K)Gγ

0 (−K − Q)Gγ

0 (−K), which is consistent24 with the
Ward identity qμ�μ(K + Q,K) = G−1(K + Q) − G−1(K).
With this full vertex and Ward identity, one can verify that
the correlation functions satisfy the current conservation
condition qμQμν = 0, so that, for example,

�QρJ − q · ↔
QJJ = 0. (6)

Here
↔
QJJ ≡ ↔

P + n
↔

m
, and QρJ ≡ 2

∑
K

∂ξk+q/2

∂k G(K +
Q)G(K). Using Eq. (6), with � = 0, we find
q·↔QJJ (0,q)·q

q2 = P L
JJ (0,q) + n

m
= 0. It follows that P L

JJ (0,q) =∫ +∞
−∞

dω
π

ImP L
JJ (ω,q)
ω

= − n
m

. which proves Eq. (3) satisfies the
longitudinal sum rule.

III. QUANTUM OSCILLATIONS

Henceforward, in order not to have too many distinct
parameters we take γ ′ = γ , although our qualitative findings
are robust for general γ ′. To address the theory of quantum
oscillations, we make use of the fact that specific heat data10

suggest that even in the high magnetic fields the pseudogap
persists. Moreover, we have earlier shown17 from Gor’kov
theory that at high fields, when there is only intra-Landau
level pairing,25 a BCS-like dispersion persists. Notably, the
gap or pseudogap parameter is inhomogeneous, but for some
purposes,26 this inhomogeneity can be averaged over in
a vortex liquid or a pseudogap phase. A major effect of
nonzero field is to replace the dispersion ξk by the appropriate
Landau level quantization. With this replacement, one can
compute an extension of the usual Lifshitz-Kosevich (LK)
formula [based on Eq. (1)] to arrive at an analytic formula
for the density of states as a function of magnetic field.
The density of states at the Fermi energy is then given
by N (0) = H

(2π)2

∑
n,kz

γ

π(E2
n,kz

+γ 2)
, with En,kz

= √
ξn,kz

2 + �2

and ξn,kz
= (n + 1

2 )ωc + k2
z

2m
− μ, with ωc = eH/m. Using the

Poisson summation formula, one finds a simple (for the s-wave
case) analytic expression for the oscillatory contribution which
depends on nonzero γ . A similar analysis follows for the
d-wave case, although the result is less compact.

IV. NUMERICAL RESULTS

One can gain analytical intuition by first considering the
limit in which γ = 0,

Pρ,ρ(q,ω)

=
∑

k

[(
1 − ξ+ξ− + �2

pg

E+E−

)
(E+ + E−)(1 − f+ − f−)

ω2 − (E+ + E−)2

−
(

1 + ξ+ξ− + �2
pg

E+E−

)
(E+ − E−)(f+ − f−)

ω2 − (E+ − E−)2

]
. (7)

Here E± = Ek±q/2, ξ± = ξk±q/2, and f± = f (E±). Impor-
tantly, this density response consists of a scattering term in
the third line and (in the second line) a pair breaking or pair
forming term involving 1 − 2f . At the lowest temperatures,
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FIG. 1. (Color online) Fermi surfaces for YBCO and LSCO with
arrows indicating the dominant nesting vectors. The lower panel
shows quantum oscillations persist in a non-Fermi liquid pseudogap
state, due to the finite pair lifetime reflected in γ −1. Their amplitude
is reduced by a factor of about 5 from the standard Lifshitz-Kosevich
theory in the d-wave case. In contrast, s-wave pairing (not shown)
reduces the amplitude by a factor of at least 100.

the pair breaking term dominates the spectral weight. Thus the
particle-hole response of a low T system with a pseudogap is
only possible when pairs are broken.

In Figs. 2 and 3 we plot the real and imagi-
nary parts of the susceptibility Pρ,ρ(ω,q) with the band
structure ξk = t0 + t1(cos kx + cos ky)/2 + t2 cos kx cos ky +
t3(cos 2kx + cos 2ky)/2. We make use of ARPES27 and elec-
tronic structure28–30 studies to consider the following different
parameter sets. For YBCO we take t0 = 160 meV, t1 =
−600 meV, t2 = 200 meV, and t3 = −80 meV. For LSCO we
take t0 = 130 meV, t1 = −600 meV, t2 = 160 meV, and t3 =
0 meV. This yields a square shaped Fermi surface for YBCO
and a rounded shape Fermi surface for LSCO. We assume
the d-wave pairing gap is �k = �0(cos kx − cos ky)/2, with
�0 = 35 meV, for definiteness.

In Fig. 1 we plot (from left to right) the Fermi surfaces of a
normal state YBCO and normal state LSCO system. It should
be clear that the preferred nesting is more antinodal in YBCO,
while more nodal in LSCO. The lower figure shows quantum
oscillations in YBCO via a plot of the density of states at
the Fermi energy as a function of frequency in the pseudogap
phase. Important here is the fact that nonzero γ (representing
the dynamic equilibrium between pairs and fermions) enables
these oscillations in the presence of a pseudogap.

Figure 2 presents a study of the real part of the density-
density correlation function in the static limit. The maxima
in this function are generally associated with a static, i.e.,
true, instability of the charge disordered phase. These plots
represent varying q along the vertical (left column) as well as
diagonal (right column) directions in RePρ,ρ(q,ω = 0). The
upper panel corresponds to YBCO and the lower to LSCO.
Going from top to bottom (black, red, and green) indicates
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FIG. 2. (Color online) Static studies: Vertical and diagonal cuts
plotting RePρ,ρ(ω = 0) vs q for YBCO and LSCO. The black, red,
and green lines are for normal gas, d-wave, and s-wave pseudogaps,
respectively. The d-wave gap is compatible with nodal peaks but
suppresses antinodal peaks, while there is a more severe suppression
of all peaks in the s-wave case. Here γ ≈ 0.

the behavior for the gapless normal phase, and for the d-
and s-wave paired states. The peaks for the gapless normal
phase in the left panels represent the antinodal nestings and
they are more apparent for YBCO. The peaks in the gapless
normal phase on the right result from nodal nesting and this
tends to dominate in LSCO. An important observation is
that static d-wave (or s-wave) pairing is highly destructive
to the antinodal peak, whereas the nodal peak (particularly
in YBCO) is affected very little by the d-wave pairing gap
(in contrast to the s-wave case). In some respects this seems
rather straightforward, and such competition between pairing
and charge ordering in the same regime of k space has been
discussed much earlier.31 Nevertheless, this underlines the
strong competition9 between a d-wave pseudogap and static
antinodal charge ordering.

In Fig. 3 plots are presented for the behavior of the dynamic
charge susceptibility in the presence of a d-wave pseudogap,
for diagonal cuts and a range of frequencies. The figure on
the left represents YBCO (with γ ≈ 0), in the center, LSCO,
while the figure on the right shows the effect of variable γ in
the YBCO case. In YBCO, the antinodal (AN) peak appears
somewhere between ω = 10 meV and ω = 35 meV = �0,
becoming more apparent as frequency increases. [The broad
feature below the nodal maximum (N) in LSCO is not a true
antinodal peak.] At intermediate ω, over a narrow range, a new
peak appears, midway between, and reflecting a mixture of the
nodal and antinodal peaks.

Important to the physical picture are the plots in the
rightmost panel showing ImPρ,ρ vs q at ω = 30 meV with
varying γ , up to a maximum constrained by the size of
Fermi arcs.16 The figure demonstrates that as γ increases the
antinodal peak becomes relatively more important. Physically,
bigger γ can be interpreted as reflecting shorter lived pairs.
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FIG. 3. (Color online) Dynamical studies: Left and central figures show diagonal cuts of ImPρ,ρ vs q for d wave with YBCO and LSCO
band structure, and γ ≈ 0. The peaks located at qx = qy ≈ 0.75π and qx = qy ≈ 0.4π become visible between 10 and 35 meV, and correspond
to the nodal (N) and antinodal (AN) peaks we observed in RePρ,ρ of the (gapless) normal gas. There is also a small peak which appears at
qx = qy ≈ 0.6π in the d-wave curves for ω ≈ �. The plot on the right shows the effect (for YBCO) of varying γ at fixed frequency where one
sees that larger γ enhances the antinodal qx ≈ 0.4π peak, while decreasing the relative height of the nodal qx ≈ 0.75π peak. An upper limit
of γ /�o ≈ 1/2 is assumed to match the Fermi arc size.16

That is, the size of γ reflects the ease with which the finite-lived
pairs break up into their separate fermionic components. We
see in this figure that increasing ω also assists in breaking
pairs, thus enabling coexistence of dynamic antinodal charge
ordering with a d-wave pseudogap.

V. CONCLUSIONS

The starting point for this paper is Eq. (1), which was
derived from a microscopic t-matrix scheme14 independent of
later ARPES phenomenological arguments.15 Using Gor’kov
theory, we find17 Eq. (1) is valid in the presence of a pseudogap
in a very high magnetic field (albeit with γ and �pg dependent
on H ). Our microscopic model14 was based on a particular
form for the t matrix (naturally associated with Gor’kov theory,
which involves one bare and one dressed Green’s function).
Importantly, because of a gap in the fermionic spectrum, this
form leads to long lived pairs and a two-peaked spectral
function, thereby distinguishing it from other (three-peaked)
models in the literature.18–20

We conclude quite generally that the pseudogap-phase-
derived pair breaking through the parameter γ , enables the
underlying LDA-based fermiology to be revealed. Importantly,
at finite ω, coexistence of antinodal fluctuating order and
a d-wave pseudogap becomes possible. That is, the nesting
vectors seen in Fig. 1 are evident in the pseudogap state with
nonzero ω and γ . This underlying fermiology was seen in
Fermi arcs32 and we have found it here for charge fluctuations
and quantum oscillations. For the former we have shown that
static nodal order coexists more readily with d-wave pairing,
while antinodal ordering is more problematic. We speculate
that finite, large H plays a similar role as ω and γ in enabling,
through the breaking of metastable pairs, the coexistence of
(in this case) a static antinodal charge ordering and a d-wave
pseudogap, as observed.7,8
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