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Nonadiabatic processes in Majorana qubit systems

M. S. Scheurer and A. Shnirman
Institute for Theory of Condensed Matter and DFG Center for Functional Nanostructures (CFN),

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
(Received 4 June 2013; published 30 August 2013)

We investigate the nonadiabatic processes occurring during the manipulations of Majorana qubits in
one-dimensional semiconducting wires with proximity-induced superconductivity. Majorana qubits are usually
protected by the excitation gap. Yet, manipulations performed at a finite pace can introduce both decoherence
and renormalization effects. Although exponentially small for slow manipulations, these effects are important as
they may constitute the ultimate decoherence mechanism. Moreover, as adiabatic topological manipulations fail
to produce a universal set of quantum gates, nonadiabatic manipulations might be necessary to perform quantum
computation.
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I. INTRODUCTION

Various realizations of zero-energy Majorana bound states
(MBS) are currently being intensively investigated.1 Initially
introduced in rather abstract models,2–4 they started to look
realistic after several heterostructures that might host such
modes were proposed.5–7 In all these heterostructures, su-
perconductivity is proximity induced into a semiconductor
with strong spin-orbit coupling6,7 or into a surface state of a
topological insulator.5

Two MBS form a regular (Dirac) fermion which can be
either occupied or nonoccupied. These states are of different
fermion parity and, thus, can not be used as a qubit. However,
setups with more MBS, e.g., two pairs of Majorana modes,
are already rich enough to encode qubits within the subspace
of a given parity. Topological manipulations of these qubits
require “braiding” of MBS. In the simplest realization, one
just “mechanically” moves one MBS around another. This
can be achieved by applying time-dependent gates.8 More
sophisticated braiding schemes have been suggested (see, e.g.,
Refs. 9 and 10).

In this paper, we study the nonadiabatic effects occurring
when the MBS are “mechanically” shifted. Yet, the formalism
introduced here is rather general and can be applied in more
involved setups. Decoherence effects in Majorana qubits have
already been addressed.11–16 Coupling to a gapless fermonic
bath is definitely detrimental.11 In Refs. 12–14, a general
framework of decoherence in situations when the gap is
preserved was introduced. In contrast to Refs. 12–14, we
perform the adiabatic perturbation expansion for a concrete
physical system calculating the nonadiabatic coupling matrix
(Berry matrix) explicitly. For the proximity-coupled nanowire
setup considered in this work, only numerical studies of
the dynamical formation of Majorana modes15 exist and
decoherence caused by fluctuating gates16 has been studied.

We distinguish two major effects. First, due to the motion
of the MBS, a quasiparticle in the continuum may be excited,
somewhat analogously to the Landau-Zener tunneling. The
probability of such an event is exponentially small, unless the
velocity of the MBS approaches a certain critical velocity. Such
a process changes the parity of the qubit subspace, thus giving
rise to decoherence. Second, the coupling between two remote
Majorana modes can get renormalized if both MBS are moved

simultaneously. This coupling lifts the degeneracy between
the empty and the occupied states of the corresponding Dirac
fermion. On the one hand, this renormalization effect has, thus,
to be accounted for, if we aim at performing quantum gates
with high accuracy. On the other hand, it may be generated
intentionally in order to induce nontopological phase gates.

This paper is organized as follows: In Sec. II, we first present
the formalism that is used in this work for treating nonadiabatic
effects and investigate a general time-dependent topological
superconductor of class BDI, D, or DIII. Furthermore, an
effective Hamiltonian for the qubit incorporating nonadiabatic
corrections is derived. Then, we focus on the quantum wire
proposal and discuss both the limitations arising from the
presence of the states above the gap of the system (see Sec. III)
as well as the possibility of creating a phase gate that is based
on nonadiabatic effects (see Sec. IV).

II. GENERAL EXPRESSIONS FOR
NONADIABATIC PROCESSES

In this section, nonadiabatic processes in systems hosting
MBS are analyzed from a generic point of view, i.e., without
referring to any of the specific realizations of Majorana modes
in condensed matter systems.

A. Formalism

Although a similar treatment of time-dependent
Bogoliubov–de Gennes (BdG) equations has already been
used in the context of Majorana fermions,13 we present our
own formulation best suited for the analysis in this paper.
Let us begin with the general time-dependent BCS mean-field
Hamiltonian

Ĥ(t) = 1

2

∫
d�r
∫

d�r ′ �̂†(�r)h(t)�̂(�r ′) (1)

written in the standard quadratic BdG form. For simplicity,
spinor indices have been skipped. The field operators �̂(�r) are
Nambu spinors satisfying the Majorana condition,

Cj,k�̂
†
k (�r) = �̂j (�r), (2)

where C is the (unitary) spinor part of the (antiunitary) charge
conjugation operator � = CK with K denoting complex
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FIG. 1. (Color online) (a) One example for the origin of the time
dependence of the BdG Hamiltonian in Eq. (1). The position of the
Majorana modes is modified via a “keyboard” of gates as suggested
in Ref. 8. Here, the situation is shown where only the MBS belonging
to the fermion d̂01 are in motion. This is the setup we will focus on
in Secs. III and IV. (b) Illustration of adiabatic (light green arrow)
and nonadiabatic (dark green) MBS-MBS as well as MBS-continuum
(blue) processes.

conjugation. Throughout this paper, we assume that �2 = +1.
Since, in addition, the system may or may not be invariant
under time reversal �, the analysis of this section applies to
superconductors of class17 D (no time-reversal symmetry),
DIII (�2 = −1), and BDI (�2 = 1). In Secs. III and IV, we
will consider an example of a superconductor of class BDI.

Due to its internal redundancy, �̂(�r) satisfies the Majorana
anticommutation relations

{�̂j (�r),�̂k(�r ′)} = Cj,kδ(�r − �r ′), (3a)

{�̂j (�r),�̂†
k (�r ′)} = δj,kδ(�r − �r ′), (3b)

as opposed to those of ordinary fermions. Additionally, charge
conjugation symmetry imposes the constraint {h(t),�} = 0
making the instantaneous spectrum symmetric about zero
energy.

Note that the ansatz (1) only allows for the coupling of
the system to a classical field. Apart from that, the time
dependence of Ĥ(t) is not further specified throughout this
section. To be concrete, one may imagine that vortices of a
two-dimensional px + ipy superconductor4 or domain walls
in a quantum wire are manipulated, e.g., by the local tuning
of external gates8 as illustrated in Fig. 1(a). Eventually, the
results of this section can be applied to any system supporting
MBS (see, e.g., Refs. 18–21).

Let us introduce the instantaneous eigenstates |φn(t)〉 of the
BdG Hamiltonian satisfying

h(t)|φn(t)〉 = En(t)|φn(t)〉, (4)

which are chosen to be continuous as a function of t . To fix
the relative phase of the instantaneous eigenstates at different
times, we impose the parallel transport condition

〈φn(t)|∂tφn(t)〉 = 0. (5)

This allows us to define the corresponding instantaneous BdG
operators

d̂n(t) :=
∫

d�r φ†
n(�r,t)�̂(�r). (6)

Both the field operators �̂(�r) and the eigenfunctions φn(�r,t)
have spinor structure and hence summation over spinor
components is implied. Physically, these operators correspond
to the annihilation of a particle in one of the instantaneous

eigenstates at a given time t . They constitute the central objects
of our analysis since all physical quantities to be calculated in
the following can be written in terms of d̂n(t) and d̂

†
n(t). It is

straightforward to show that d̂
†
n(t) = d̂n̄(t) and

{d̂n(t),d̂m(t)} = δn,m, {d̂n(t),d̂†
m(t)} = δn,m, (7)

where n̄ is a shorthand notation for the charge conjugate of
state n (En̄ = −En).

Suppose that diagonalizing h(t) yields M pairs of
quasi-zero-energy subgap states {|φ0j (t)〉,|φ 0j (t)〉} with j =
1,2, . . . ,M . Denoting the corresponding BdG operators by
d̂0j (t), we can define 2M time-dependent MBS operators

γ̂2j−1(t) := 1√
2

(d̂0j (t) + d̂
†
0j (t)), (8a)

γ̂2j (t) := 1√
2i

(d̂0j (t) − d̂
†
0j (t)), (8b)

which satisfy by construction

γ̂
†
j (t) = γ̂j (t) and {γ̂i(t),γ̂j (t)} = δi,j . (9)

The energies E0j typically scale exponentially with the
distance between different MBS (see, e.g., Refs. 22 and 23).
Equation (8) makes clear that a Majorana mode is, in contrast
to the ordinary fermions d̂n, generally24 not an exact eigenstate
of the Hamiltonian of a finite system. We emphasize that
for M > 1 one is left with the additional task of finding
the correct superpositions of the γ̂i such that the associated
Majorana wave functions are spatially localized. However, for
M = 1, Eq. (8) is already sufficient. Note that the parallel
transport condition (5) is automatically satisfied by the wave
functions |φγj

〉 of the MBS due to the self-conjugate property
�|φγj

〉 = |φγj
〉.

Using the anticommutation relations (7), it is easy to show
that the Heisenberg equations of motion for the instantaneous
BdG operators read as

i
d

dt
d̂H

n (t) =
∑
m

h′
n,m(t)d̂H

m (t), (10)

where

d̂H (t) = Û †(t)d̂n(t)Û(t), Û(t) = T e
−i
∫ t

t0
dt ′Ĥ(t ′) (11)

are the instantaneous BdG operators in the Heisenberg picture
and

h′
n,m(t) = En(t)δn,m − Mn,m(t) (12)

with Mn,m(t) = i〈φn(t)|∂tφm(t)〉 has been introduced. The
summation in Eq. (10) includes all instantaneous eigenstates
with both positive and negative energies. Note that h′ is the
“moving frame” Hamiltonian of h, which is well known25 from
the study of nonadiabatic quantum mechanics. Nonvanishing
values of Mn,m are due to the time dependence of the
basis states in Eq. (6). For the particularly important case
of n = 0j and m referring to a state above the gap (as well as
n ↔ m), these matrix elements give rise to transitions from the
ground-state manifold, i.e., the topological qubit(s), to excited
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states. These kinds of nonadiabatic processes represent the
major focus of our analysis.

The formal solution of the Heisenberg equation (10) is
given by

d̂H
n (t) =

∑
m

un,m(t)d̂m(t0), (13)

where the time-ordered matrix exponential

un,m(t) :=
[
T exp

(
−i

∫ t

t0

dt ′ h′(t ′)
)]

n,m

(14)

has been defined. In the following, we will use Eq. (13) to
express the nonadiabatic time evolution of a topological qubit
in terms of the matrix elements un,m(t).

B. Qubit quantities

For the remainder of this paper, the analysis is restricted to
a single logical qubit, i.e., four26 Majorana modes γ1, . . . ,γ4,
which we pair into ordinary fermions according to

d̂01(t) = 1√
2

(γ̂1(t) + iγ̂2(t)), (15a)

d̂02(t) = 1√
2

(γ̂3(t) + iγ̂4(t)). (15b)

Further MBS may be present in the sample, but are assumed
to be inert and sufficiently far away to be safely neglected. The
many-body ground-state wave functions are defined as usual,

|n1 n2 (t)〉 := (d̂†
01(t))n1 (d̂†

02(t))n2 |00(t)〉, (16)

where |00(t)〉 denotes the vacuum of the fermions d̂0j (t), j =
1,2. Note that, in the present case, the operators and hence
the states are time dependent. Without loss of generality, we
take the even fermion parity sector {|00(t)〉,|11(t)〉} to form
the logical basis of the qubit and assume that it was at the
initial time t0 prepared in a pure state within this subspace. In
addition, the initial density matrix ρ̂(t0) is taken to be diagonal
in the occupation number basis with respect to the fermions
d̂n of the continuum.

For simplicity, let us assume that the MBS γ3, γ4 are both
spatially fixed, decoupled from γ1, γ2 and from each other.
Thus, their role is reduced to providing the proper Hilbert

space for the qubit. This means

uγk,n(t) = δγk,n (17)

for k = 3,4 [see Fig. 1(a) for an illustration in the system of
locally gated nanowires]. Since only the Majorana modes γ1

and γ2 belonging to one and the same fermion contribute to
transitions, this situation will be referred to as “intrafermionic
motion” in the following. The analysis is readily generalized to
the situation, where all four MBS are moving simultaneously,
however, the results do not convey additional physical insights.

1. Single-fermion parity

The first quantity we use to describe the dynamics of the
topological qubit is the parity of the Dirac fermion d01 built
from γ1 and γ2, which is defined by

P̂01(t) := 1 − 2d̂
†
01(t)d̂01(t) = 2iγ̂2(t)γ̂1(t). (18)

The fermion parity constitutes a frequently used12,13 observ-
able to describe the fidelity of the topological memory. We
emphasize that, regarding the qubit, a change in the expectation
value of P̂01(t) can in general be due to two distinct processes,
namely, |00〉 ↔ |10〉 (leaving the subspace of the logical
two-level system and exciting a quasiparticle in the continuum)
and |00〉 ↔ |11〉 (bit-flip error within the logical subspace). In
the present case of intrafermionic motion (uncoupled γ3 and
γ4), only errors of the former type can occur.

Using Eq. (13), d̂
†
n = d̂n̄ and un,m = u∗

n,m due to charge
conjugation symmetry as well as the unitarity of u, one can
write

〈P̂01(t)〉t = 〈P̂01(t0)〉t0
[
uγ1,γ1 (t)uγ2,γ2 (t) − uγ1,γ2 (t)uγ2,γ1 (t)

]
+ 2

∑
n>0

〈P̂n(t0)〉t0 Im
[
u∗

γ2,n
(t) uγ1,n(t)

]
. (19)

Here, the notation n > 0 indicates that the summation is
restricted to positive-energy eigenstates of the continuum.

To restate this result in a more explicit form, we now
apply time-dependent perturbation theory treating the coupling
matrix M in Eq. (12) as the perturbation. For the moment, let
us additionally assume that γ1 and γ2 are sufficiently separated
such that the energy splitting E01 and the ground-state Berry
phases can be neglected. Then, second-order perturbation
theory yields

〈P̂01(t)〉t = 〈P̂01(t0)〉t0

⎛⎝1 −
∑
j=1,2

∑
n>0

∣∣∣∣∫ t

t0

dt ′Mγj ,n(t ′)e−i
∫ t ′
t0

dt1En(t1)
∣∣∣∣2
⎞⎠

+ 2
∑
n>0

〈P̂n(t0)〉t0 Im

[(∫ t

t0

dt ′Mγ1,n(t ′)e−i
∫ t ′
t0

dt1En(t1)
)

× (γ1 → γ2)∗
]

+ O(M3). (20)

In the first line, the negative-energy eigenstates have been
replaced by means of the relation Mn,m = −M∗

n,m.
As schematically shown in Fig. 1(b), one can in principle

distinguish between two types of processes contributing to
the time evolution of the topological qubit. The MBS can

either couple locally to the continuum states (blue arrows)
or communicate with each other. The latter type of processes
contains both direct MBS-MBS tunneling (light green arrows)
and nonadiabatic corrections involving virtual states in the
continuum as indicated by the dark green arrows.
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In the results presented above for the single-fermion parity,
we can identify both contributions. The first term in the first
line of Eq. (19) and the first line of Eq. (20) are (to leading
order) local, whereas all remaining contributions are purely
nonlocal and describe correlation effects between different
MBS. Note that, when neglecting the nonlocal terms, the
result (20) for the fermion parity reduces to the expression
obtained in Ref. 12.

2. Off-diagonal component of the density matrix

For a more refined picture of the time evolution of the qubit,
let us investigate the off-diagonal matrix element of its reduced
density matrix, i.e.,

ρ
Q
01(t) := 〈00(t)|ρ̂Q(t)|11(t)〉 = 〈d̂†

01(t)d̂†
02(t)〉

t
(21)

with ρ̂Q(t) = TrC [ρ̂(t)], where TrC [. . .] stands for the partial
trace taken over the continuum states above the gap. We
emphasize that ρ

Q
01(t) is relevant for two reasons: First, the

reduction of its magnitude describes decoherence. Note that,
in the case of intrafermionic motion, the main decoherence
mechanism is leaving the logical Hilbert space of the qubit.
Second, the change of the phase of ρ

Q
01(t) means that a phase

gate can be performed by mutual motion of the two MBS.
Generating a time-dependent phase of ρ

Q
01(t) by nonadiabatic

effects may provide alternative routes for implementing phase
gates, which are crucial27 for realizing universal quantum
computation (see Sec. IV).

Due to the assumption of intrafermionic motion, we
have u02,n = δ02,n and the calculation becomes particularly
straightforward:

ρ
Q
01(t) =

∑
n

u01,n(t)〈d̂n(t0)d̂†
02(t0)〉

t0
(22)

= ρ
Q
01(t0) × u01,01(t,t0). (23)

Despite its simplicity, it is instructive to restate Eq. (23) in the
Majorana basis in the form

ρ
Q
01(t) = ρ

Q
01(t0) × [c(t) + i s(t)] (24)

with the real-valued28 functions

c(t) = 1
2

[
uγ1,γ1 (t) + uγ2,γ2 (t)

]
, (25a)

s(t) = 1
2

[
uγ1,γ2 (t) − uγ2,γ1 (t)

]
. (25b)

This result reveals that nonvanishing matrix elements uγj ,γk

with j 
= k in Eq. (25b), i.e., nonlocal processes, are required
to have s(t) 
= 0 and are thus essential for generating a time-
dependent phase of ρ

Q
01(t). Without these processes, the system

can only experience decoherence due to the local terms in
Eq. (25a).

Again assuming well-separated MBS, one finds within
second-order perturbation theory in M

ρ
Q
01(t) = ρ

Q
01(t0) × exp[
(t) + iϕ(t)] + O(M3), (26)

where the decoherence function and the accumulated phase
are given by


(t) = −1

2

∑
j=1,2

∑
n>0

∣∣∣∣∫ t

t0

dt ′Mγj ,n(t ′)e−i
∫ t ′
t0

dt1En(t1)
∣∣∣∣2 (27a)

and

ϕ(t) =
∑
n>0

(∫ t

t0

dt ′
∫ t ′

t0

dt ′′ Re
[
Mγ2,n(t ′)M∗

γ1,n
(t ′′)e−i

∫ t ′
t ′′ dt1En(t1)

]− (γ1 ↔ γ2)

)
, (27b)

respectively. As anticipated by the exact expression (25), the
leading contribution to the decoherence is only due to the local
coupling of each of the MBS to the continuum and thus solely
depends on the motions of the Majorana modes separately.
On the contrary, the phase ϕ(t) generated by the process
crucially depends on the correlation of the motions of the
spatially separated Majorana modes and can only be present
if the coupling of both MBS to the continuum is nonzero. As
expected, the change of the fermion parity (leaving the logical
Hilbert space of the qubit) in Eq. (20) is directly related to
the decoherence function (27a), if only one of the Majorana
modes is in motion.

C. Effective theory for nearly adiabatic manipulation

In this section, an effective Hamiltonian governing the
dynamics within the ground-state manifold is derived. Since
nonadiabatic effects are treated in a perturbative manner, its
validity is limited to the regime of nearly adiabatic processes.

Here, we consider the general case of 2M Majorana modes and
account for finite overlaps between different localized states.

To integrate out the continuum states, a method taken from
Refs. 29 and 30 is applied which we generalize to the case
of time-dependent energies En(t). The basic idea is to find an
effective Hamiltonian heff(t) that reproduces the exact time-
evolution operator of h′(t) in Eq. (12) within the ground-state
subspace. In the interaction picture (again taking h′

1 = −M
as perturbation), we demand that

P0 T e
−i
∫ t

t0
dt ′ h̃′

1(t ′)
P0

!= T e
−i
∫ t

t0
dt ′ h̃eff,1(t ′)

, (28)

where P0 :=∑σ |φσ 〉〈φσ | is the projection operator onto the
ground-state manifold. In Fig. 2, a graphical representation of
the expansion of both sides of Eq. (28) and of the resulting
effective interaction Hamiltonian h̃eff,1 within second order in
M is shown. Since the second-order contribution in the last
line of Fig. 2 has two time arguments, further approximations
are required to obtain an effective Hamiltonian which is local
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FIG. 2. Schematic illustration of the procedure for determining
the effective ground-state Hamiltonian according to Eq. (28). Excited
states (dashed lines) are absorbed into an effective ground-state vertex
(circle). For slowly varying energies and coupling matrix elements
(crosses) the result in the last line is approximately local in time (see
main text).

in time. For this purpose, let us assume that both all coupling
matrix elements Mσ,n and the instantaneous energies En vary
slowly on the scale set by the gap Emin of the system or more
formally

∂tEn(t)

E2
min

� 1,
1

Emin

∂tBσ,n(t)

Bσ,n(t)
� 1. (29)

An expansion up to first order in these small quantities finally
yields

[heff(t)]σ,σ ′ � Eσδσ,σ ′ − Mσ,σ ′

−
∑
n
=0

[Mσ,nM∗
σ ′,n

En − Eσ,σ ′

(
1 − i∂t (Eσ − Eσ ′)

4(En − Eσ,σ ′)2

)

− i
Ṁσ,nM∗

σ ′,n − Mσ,nṀ∗
σ ′,n

2(En − Eσ,σ ′)2

]
, (30)

upon introducing Eσ,σ ′ := (Eσ + Eσ ′)/2. Here, the explicit
time dependence of the matrix elements and of the energies
has been omitted for notational convenience. The first-order
contributions [first line in Eq. (30)] are simply given by the
projection of h′(t) onto the ground-state manifold and thus
describe adiabatic processes only. The second-order terms
(second and third line), however, constitute nonadiabatic
corrections incorporating high-energy degrees of freedom
above the gap in the form of single virtual states. Note that
the effective Hamiltonian is Hermitian within the present
approximations and hence the total parity of the ground-state
subspace is conserved. Interestingly, the last line in Eq. (30)
is a sum of terms of the form i(xẏ − ẋy)/2, upon choosing
x = M∗

σ ′,n/(En − Eσ,σ ′) and y = Mσ,n/(En − Eσ,σ ′). Since
x,y → 0 for |t | → ∞, the time integral

∫∞
−∞ dt (xẏ − ẋy)/2

is given by the area enclosed by the trajectory (x(t),y(t)).
Consequently, the leading contribution of this term to the time
evolution has a purely geometric interpretation.

For future reference, let us investigate the simplest case with
only two MBS (M = 1). Taking the particle-hole symmetry
of heff into account, we know that (heff)σ̄ ,σ = − (heff)∗σ,σ̄ =
− (heff)σ̄ ,σ = 0. Therefore, the presence of the excited states
only leads to a renormalization of the energy splitting of
the MBS, i.e., the effective Hamiltonian written in the basis
{|φσ 〉,|φσ̄ 〉} assumes the simple form

heff(t) � [E01(t) + δE(t)]τz, (31)

where the energy correction is given by

δE(t) = −
∑
n
=0

[ |M01,n|2
En − E01

− i
Ṁ01,nM∗

01,n − M01,nṀ∗
01,n

2(En − E01)2

]
(32)

�
∑
n>0

[
2 Im

[
M∗

γ1,n
Mγ2,n

]
En

+ Re
[
Ṁ∗

γ1,n
Mγ2,n − M∗

γ1,n
Ṁγ2,n

]
E2

n

]
. (33)

To obtain Eq. (33), we have neglected all terms O (E01/Emin),
restated the matrix elements in the basis of the localized
Majorana wave functions, and exploited the charge conjuga-
tion symmetry one more time to reduce the summation to
continuum states with positive energy (n > 0).

III. NONADIABATIC LIMITATIONS FOR
A QUANTUM WIRE

To study the limitations on topological quantum computing
caused by nonadiabatic effects, we now apply the general
results (20) and (27) for intrafermionic processes to the
quantum wire proposal. Since γ3 and γ4 are assumed to
be irrelevant for the qubit dynamics, we can focus on the
single topological domain depicted in Fig. 3(a). Restricting
the analysis to the case where only the positions x1 and x2 of
the domain walls are varied and taking the localization length
ξ of the MBS wave functions to be much shorter than their
separation L = x2 − x1, one can write

Mγj ,n(t) � i ẋj (t) bγj ,n(L(t)), (34)

where the geometric matrix elements are defined by bγj ,n :=
〈φγj

|∂xj
φn〉. The time dependence of x1 and x2 may generally

be due to random gate fluctuations or the consequence of
intentional successive tuning of local gate voltages for the
purpose of information processing.

Focusing first on the simplest case ẋ1 = 0, Eqs. (20) and
(27) are solely determined by I2, where

Ij =
∑
n>0

∣∣∣∣∫ t

t0

dt ′ẋj (t ′) bγj ,n(L(t ′))e−i
∫ t ′
t0

dt1En(t1)
∣∣∣∣2 . (35)

The decoherence function reads as 
 = −I2/2 and I2 rep-
resents, at the same time, the probability of changing the
single-fermion parity. To evaluate I2, we first need to calculate
the geometric matrix elements for the specific setup under
discussion. A nanowire with spin-orbit coupling in proximity
to an s-wave superconductor can be described by the BdG
Hamiltonian6,7

hNW =
(

p2

2m
− μ(x) + up σy

)
τz + Bσz − �τx, (36)

where the Pauli matrices σj and τj act on spin and particle-hole
space, respectively. Here, m denotes the effective mass, u the
spin-orbit coupling strength, � the induced pairing potential,
and B the Zeeman energy. This system belongs to class BDI,17

since, apart from possessing a charge conjugation symmetry
with �2 = 1, the Hamiltonian commutes with the generalized
time-reversal operator � = K satisfying �2 = 1. Notice that
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the presence of the superconductor is only accounted for by the
effective pairing strength �. Consequently, additional energy
splitting effects caused by the quasiparticle degrees of freedom
in the s-wave superconductor23 are neglected in the following
analysis.

A. Large magnetic fields and infinite potential well

To obtain analytical results, we focus on the limit where
the magnetic field is the largest energy scale of the topological
segment, i.e., B � εso,� with εso = mu2/2 representing the
spin-orbit energy. Under these assumptions, one can project
Eq. (36) onto its lower band [green line in Fig. 3(b)] yielding8

FIG. 3. (Color online) Due to the assumption of intrafermionic
manipulation, it is sufficient to analyze an isolated topological
segment (a) of the wire surrounded by a trivial phase. In (b), the
excitation spectrum of the BdG Hamiltonian (36) for large magnetic
fields (B � εso,�) is shown. The lower band (green) is effectively
described by Kitaev’s spinless model (37). In (c) and (d), we show
the L dependence of the instantaneous energies of two different
states determined numerically from hNW for B/� = 5, B/εso = 20,
and taking μ = 0 in the topological segment. In (e), the analytical
expression (A1) for the geometric matrix elements is plotted as a
function of the length L of the topological domain and the energy E

of the excited state using the same parameters as in (c) and (d).

the (continuum limit of the) Kitaev model3

hKit =
(

p2

2m
− μe(x)

)
τz − vep τy (37)

as an effective low-energy theory, where μe = μ + B and ve =
u�/B.

Let us first consider an infinite potential well, i.e., we need
to find the eigenstates φ of Eq. (37) with μe(x) = μ1 > 0
subject to the constraint φ(x1) = φ(x2) = 0. One can derive
an analytical expression (see Appendix A) for the geometric
matrix elements taking the energies of the continuum states φn,
n > 0, as a continuous quantity E and considering the limit
L � ξ,λF , where λF = 2π/kF denotes the Fermi wavelength.
Here, we simply show a plot of the result as a function
of the system length L and energy E [see Fig. 3(e)] and
discuss its relevant properties. Most importantly, the matrix
elements exhibit an oscillatory behavior as a function of L

with periodicity of 2λF besides the expected slowly varying
envelope function ∝1/

√
L. The latter can hardly be seen in

Fig. 3(e). Directly above the gap [rightmost black curve in
Fig. 3(e)], the geometric matrix elements are nearly sinusoidal
functions of L. However, already at E/Emin = 2 (middle black
curve) the sinusoidal shape is significantly deformed. For
even higher energies (leftmost black line) smaller than but
comparable with μ1 the matrix elements exhibit a rather step-
function-like L dependence. By studying the four-component
model in Eq. (36) numerically, we have verified that this is not
an artifact of the low-energy Hamiltonian (37). The amplitude
of the L oscillations of the matrix elements approaches zero
in a nonanalytic way (∝√

E − Emin) as E → E+
min, reaches its

maximum at approximately E/Emin = 1.7 for the parameters
used in Fig. 3(e), and then decays monotonically for larger
energies.

In Figs. 3(c) and 3(d), the numerically determined L

dependence of the instantaneous energies of a state directly
above the gap and at a higher energy is shown. We again
encounter an oscillatory contribution on top of the usual 1/L2

decay (this time with periodicity λF ). The ratio of its amplitude
to the mean energy value increases with energy and decays as
∝1/L.

The oscillation of the energies, which on its own can
give rise to transitions,31 and the complicated functional
form of bγ2 (E,L) in Eq. (A1) make a quantitative analytical
evaluation of I2 in Eq. (35) very difficult. Nonetheless, we
can extract the qualitative behavior of the system from the
results presented above. This is achieved as follows. From
Eq. (35), it is immediately clear that nonadiabatic effects will
contribute significantly when the geometric matrix elements
have nonvanishing spectral weight for frequencies ω � Emin.
Due to the sinusoidal behavior of bγ2 (L) for low energies, we
conclude that

vc = 2Emin

kF

� 2ve � 2u
�

B
(38)

is the critical velocity scale separating the regimes of nearly
adiabatic manipulation (L̇ � vc) and L̇ � vc, where nonadi-
abatic effects render the qubit unstable. Except for the factor
of 2 in Eq. (38), the Landau criterion would yield the same
result for the critical velocity. Note, however, that Landau’s
argumentation can not be applied in the present case since only
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one bound state is moving. In Sec. IV A, we investigate the
situation where the two MBS move with the same velocity,
making the application of Landau’s criterion possible and
hence yielding a critical velocity without an additional factor
of 2 [see Eq. (57)].

Let us now estimate the practical relevance of the critical
velocity vc for topological quantum computation. For retaining
the topological protection during a braiding process, the MBS
have to be separated by a distance which is at least a few
times larger than their spatial decay length ξ � (mve)−1.
Consequently, the Majorana modes are to be transported over
a distance �x � α/(mve) with α � 10–100 depending on
the braiding operation to be realized. According to Eq. (38),
adiabaticity requires the braiding time Tb to satisfy

Tb � �x

vc

� α

2mv2
e

� α

4εso

(
B

�

)2

. (39)

We emphasize the difference to the “standard guess” of Tb �
1/Emin which is much less restrictive since �xkF � �x/ξ �
1 in the considered limit of large magnetic fields.

Applying recent experimental data32 and assuming an
order-of-magnitude difference between the critical braiding
time and the lower bound for Tb, one finds Tb > 10−8 s
for α � 50. Note that this is already of the same order as
the upper bound Tb < 10−7 − 10−8 s due to quasiparticle
poisoning for the system under discussion.33 We conclude that
nonadiabatic effects due to the presence of degrees of freedom
above the gap are not only irrelevant corrections of purely
academic interest, but may provide serious challenges for the
realizability of topological quantum computing. Note that the
authors of Ref. 33 came to a similar conclusion, however,
using Tb � 1/Emin and assuming a much smaller gap than
that reported in Ref. 32.

To discuss the typical scaling behavior of the nonadiabatic
corrections in the regime L̇ � vc, let us investigate the
prototypal trajectory

L(t) = L(0) + �x

π
arctan(t/τ ). (40)

Assuming that the physics is mainly described by the con-
tribution of the states directly above the gap, we can use
the sinusoidal matrix elements bγ2 (L). Furthermore, let us
neglect the L dependence of the instantaneous energies which
can always be justified by choosing L sufficiently large.
Upon defining β := �x/(2λF ), which measures the number
of oscillations of the geometric matrix elements during the
trajectory, and vμ := √

2μ1/m, one finds

I2 ∼ 1

4
√

2π

√
μ1τ

√
ve

vμ

(
�x/τ

ve

)2 ( (2Eminτ )β


(1 + β)

)2

e−2Eminτ ,

(41)

as Eminτ, vμ/ve → ∞, i.e., for adiabatically slow manipula-
tion and large magnetic fields. Note that the integral depends
on �x and τ independently, which physically stems from the
fact that the system not only has an intrinsic time scale 1/Emin,
but also a length scale λF .

Most importantly, we have found that the nonadiabatic
corrections decay exponentially as a function of Eminτ . How-
ever, in the adiabatic regime (β < Eminτ ), the β-dependent

prefactor in Eq. (41) is exponentially large in absolute terms
but subleading with respect to e−2Eminτ . We emphasize that
the exponential scaling behavior is directly related to the
realistic choice of an analytic protocol L(t). The nonadiabatic
corrections to the fermion parity reported in Ref. 13 vanish
only algebraically as the braiding velocity approaches zero
since the authors assumed a discontinuous velocity profile.

These results indicate that it may be favorable to keep the
length L of the topological domain constant during a braiding
process, i.e., ẋ1 = ẋ2. In this case, both I1 and I2 are required
to estimate the decoherence effects in Eqs. (20) and (27a).
Note that, although the second line of Eq. (20) is not directly
determined by I1 and I2, its magnitude is bound by 2

√
I1I2.

Consequently, Ij � 1 serves as a sufficient condition for
adiabatic manipulation. On top of that, the term in the second
line of Eq. (20) represents an interference effect between
two remote MBS and hence it is expected to be negligible34

compared to the first line for well-separated Majorana modes.
Since both the geometric matrix elements and the instanta-

neous energies are constant, the evaluation of Ij is now readily
performed analytically. We obtain for the trajectory (40) in the
limit vμ/ve → ∞

I1 = I2 ∼ 1

2
√

2π

√
μ1τ

√
ve

vμ

(
�x/τ

ve

)2

e−2Eminτ . (42)

Note that Eq. (42) is independent of L which is a consequence
of the summation over the different states of the continuum.
This result implies that parity errors and decoherence effects
due to nonadiabatic processes are exponentially suppressed as
e−2Eminτ and consequently lead to the weaker constraint τ �
τc = 1/Emin for adiabatic quantum computation, as compared
to the case of one moving MBS. The stark difference between
braiding with constant system length L and moving only
one Majorana mode physically stems from the fact that the
continuum states extend over the entire topological segment
of the wire. Although describing the local coupling of a MBS
to an excited mode, the geometric matrix elements can thus
depend on L. Naturally, this picture is only valid as long as
the wire is sufficiently clean such that the mean-free path is
larger than the wire length L, which is assumed throughout
this paper.

B. Large spin-orbit coupling

So far, we have analyzed the wire Hamiltonian (36) only in
the limit of strong magnetic fields (B � εso,�). However, also
the regime where the spin-orbit coupling at the Fermi level is
much larger than the magnetic field and the proximity pairing
strength, i.e., εso � B,�, is appropriate for engineering MBS.
For μ = 0 the gap at the Fermi wave vector kF � 2mu

is approximately given by �. Sufficiently far away from
the topological phase transition (explicitly for B > 2�) the
minimal gap in the system occurs at kF .

We have shown by diagonalizing hNW(L) numerically that,
also in this limit, the geometric matrix elements bγj ,n are
sinusoidal functions of L with periodicity 2λF in the vicinity of
the gap and become increasingly deformed for higher energies,
similarly to Fig. 3(e). The decay length of the Majorana
wave function is given by u/� in the present regime of
the nanowire35 and thus the critical velocity as well as the
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associated restriction on Tb read as

vc = 2Emin

kF

� u
�

2εso
, Tb � �x

vc

� 2α

εso

(
εso

�

)2

, (43)

respectively. Note that this result has the same structure as
Eq. (39) obtained in the limit of large B upon replacing the
ratio B/� by εso/� and hence the lower boundaries for Tb

are expected to be of the same order in both regimes of the
nanowire.

IV. QUANTUM COMPUTING USING
NONADIABATIC EFFECTS

In the previous section, nonadiabatic effects have been
treated solely as a drawback for topological quantum com-
puting. However, they may also be regarded as an opportunity
for constructing additional gate operations. In the following,
we analyze how nonadiabatic processes can be used to realize
a phase gate exp(iϕσz/2), and thus, as a special case, a π/8
gate (ϕ = π/4), the missing single qubit gate for universal
quantum computation.27

By combining Eqs. (23) and (31), we find that the phase
ϕ accumulated during a manipulation of the system can be
written as

ϕ =
∫ ∞

−∞
dt ′ [E01(t ′) + δE(t ′)] (44)

in the regime of nearly adiabatic manipulation defined by
Eq. (29). This is the limit of interest since a proper gate
operation conserves the fermion parity and the coherence of
the qubit. Note that, by construction, Eq. (44) can be retrieved
directly from the more general expression (27b) by a formal
expansion in the small parameters in Eq. (29).

The most obvious way for controllably generating a phase ϕ

would be to use the tunnel splitting E01, i.e., to bring the MBS
close together for a certain amount of time. This approach has
already been analyzed intensively in the past.36,37 Here, we ask
whether it is possible to use the nonadiabatic energy splitting
δE to accumulate a well-defined phase without having direct
overlap of the Majorana wave functions.

For this purpose, let us rewrite the leading term of the energy
correction (32) as

δE = −〈φ̇01(t)|G|φ̇01(t)〉 ×
[

1 + O
(

E01

Emin

)]
(45)

= Im
[〈
φ̇γ2 (t)

∣∣G∣∣φ̇γ1 (t)
〉]×

[
1 + O

(
E01

Emin

)]
, (46)

where we have introduced the Green’s function

G =
∑

n

|φn(t)〉〈φn(t)|
En

(47)

of the BdG Hamiltonian h(t). To obtain the summation over
all states in Eq. (47), we have used the parallel transport phase
convention (5) and 〈φ01|∂tφ 01〉 = 0. Since the nonadiabatic
accumulation of a phase is a correlation effect between
spatially separated MBS (see Sec. II B), the appearance of
a Green’s function is quite natural. By calculating the Green’s
function G for the case of the infinite potential well described
by the Kitaev model (37), we have shown that the energy

correction δE in Eq. (46) is exponentially small (e−L/ξ ) in
the separation L of the MBS. This was to be expected since G

describes the (zero-frequency) propagation in a gapped system
and thus decays exponentially in space. Taking into account the
zero-energy boundary modes does not change this conclusion.
Note that Mγ1,nM∗

γ2,n
∈ i for the Kitaev model and hence

the second line of Eq. (33) vanishes entirely. Consequently,
also the next-order contribution to the nonadiabatic energy
splitting [second term in Eq. (32)] is at least of linear order in
E01/Emin ∝ e−L/ξ .

We have seen that the topological protection of the qubit,
due to the separation of the MBS, also holds for the virtual
processes in the regime of nearly adiabatic manipulation.
Therefore, in order to implement a phase gate according to
Eq. (44), one has to either bring the Majorana modes close
together such that L is of order ξ or use sufficiently high
velocities, where the perturbative approach inM breaks down.
In this paper, we study the latter option.

A. Parallel translation of two MBS

From Sec. III we know that the coherence and the fermion
parity of the topological qubit are most stable against large
braiding velocities, if the system length L is held constant. For
this reason, let us now focus on the case ẋ1(t) = ẋ2(t) =: v(t),
which, in addition, provides an alternative way of treating
nonadiabatic effects.

1. Next adiabatic iteration

To see this, let us introduce the spatial displacement
operator

W(t) = 1 e
−ip

∫ t

t0
dt ′v(t ′)

, (48)

where 1 denotes the identity matrix both in spin and particle-
hole space. This enables us to write

h(t) = W(t)h(t0)W†(t) (49)

and, consequently, the instantaneous eigenstates satisfy
|φn(t)〉 = W(t)|φn(t0)〉. Therefore, the corresponding “mov-
ing frame” BdG Hamiltonian is simply given by

h′(v(t)) = h(t0) − i W†(t)Ẇ(t) (50)

= h(t0) − 1 v(t) p, (51)

which determines the entire dynamics of the system by means
of Eq. (14). Note that we have found an explicit form of h′
without having to calculate entries of the coupling matrix M
explicitly.

Instead of applying perturbation theory in the second term
in Eq. (51), i.e., in the velocity v, let us follow an approach
which essentially goes back to Ref. 38 and diagonalize h′(v)
for every v:

h′(v)|φ′
n(v)〉 = E′

n(v)|φ′
n(v)〉. (52)

Since v is only a one-dimensional parameter, we can use again
the parallel transport condition 〈φ′

n|∂vφ
′
n〉 = 0 to remove the

phase ambiguity between the (single-valued) superadiabatic
eigenfunctions |φ′

n(v)〉 at different values of v. Similar to
Eq. (12), the Hamiltonian governing the time evolution in the
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superadiabatic basis is given by

h′′
n,m(t) = E′

n(v(t))δn,m − M′
n,m(t), (53)

where the new coupling matrix elements read as

M′
n,m(t) = i v̇(t)〈φ′

n(v(t))|∂vφ
′
m(v(t))〉. (54)

For any realistic translation process, we have v(t) → 0 as
|t | → ∞. Under this assumption, it is easily seen that the
matrix exponential defined in Eq. (14) obeys for t0 → −∞
and t → ∞:

un,m =
[
T exp

(
−i

∫ ∞

−∞
dt ′ h′′(t ′)

)]
n,m

. (55)

In straightforward analogy, the perturbative analysis of
Secs. II B and II C can now be repeated in the superadiabatic
basis. Since M′ ∝ v̇, this yields results which are perturbative
in the acceleration but contain v to arbitrary order making the
regime of large velocities accessible.

2. Quantum wire at strong magnetic fields

Again, let us focus on the regime of large magnetic fields
B � εso,�, where the system can be effectively described
by Kitaev’s model (37) and hence the “moving frame”
Hamiltonian reads as

h′
Kit(v) =

(
p2

2m
− μe(x)

)
τz − vep τy − 1 v p. (56)

The resulting excitation spectrum E′(k) is illustrated in
Fig. 4(a). We observe that the presence of the additional term
vp in the BdG Hamiltonian tilts the dispersion and drives the
system into a gapless phase for

v > v∗ � ve � u�

B
. (57)

The system is very sensitive to small accelerations when the
velocity v∗ is reached since the superadiabatic gap E′

min(v)
closes for v → v∗. Therefore, we recover the concept of a
critical velocity scale also for the entirely translated system.
In the present case, however, the qubit will still be protected
from decoherence for sufficiently small v̇, even if v becomes
comparable with v∗.

To understand how the superadiabatic MBS behave when
the velocity v is increased, let us investigate the four possible
wave vectors {±q ′

+,±q ′
−} of the Majorana wave functions. For

constant μe(x) = μ1 > 0, one finds from Eq. (56)

q ′
σ (v) � mve

√
1 − (v/ve)2 + σ i

√
2m μ1 (58)

for vanishing tunnel splitting E′
01(v) = 0, i.e., assuming an

infinitely long topological domain. Since Re[q ′
σ (v)] decreases

with v, the MBS wave functions broaden when the system is
accelerated. The tunnel splitting becomes significant above a
certain velocity v < v∗ for any finite length L of the topologi-
cal domain because Re[q ′

σ (v)] approaches 0 as v → v∗. Thus,
we expect that the associated ground-state eigenfunctions |φ′

01〉
and |φ′

01
〉 finally merge into the continuum for v � v∗.

For a more quantitative picture, the moving frame
Hamiltonian h′(v) in Eq. (51) is diagonalized numerically
using the full four-component BdG Hamiltonian (36) of
the nanowire. We again take a piecewise constant chemical

FIG. 4. (Color online) (a) Excitation spectrum of the “moving
frame” Kitaev model (56) for v = 0 (black dashed line) and right at the
critical velocity v∗ (green line) at which the system becomes gapless.
In (b), numerical results for the energy splitting (green) and for the
energies of the first states above the gap (black) as a function of the
velocity v are shown. Here, we used the moving frame Hamiltonian of
the wire Hamiltonian (36) with B/� = 4, B/εso = 25, muL = 40,
and μ2 = −10B. Part (c) illustrates the suggested velocity profile
for realizing a nonadiabatic phase gate. In (d), we show numerical
results for the energies of the ground-state fermions as a function of
the velocity v for two different system lengths and as a function of
L for a fixed value of v (inset). Here, the same parameters as in (b)
have been used. The black dashed lines correspond to the expected
scaling behavior in Eq. (61).

potential to describe the domain walls between the topo-
logical (μ = 0) and trivial (μ = μ2 < −√

B2 − �2) phases
illustrated in Fig. 3(a).

Figure 4(b) shows the resulting energies of the first excited
states above the gap and the tunnel splitting E′

01 as a function of
the velocity v. As expected, the energies of the excited states
are reduced with increasing v (with a slope approximately
given by kF in the linear regime) and the fermionic ground-
state solutions of h′(0) smoothly connect to the ordinary states
of the quasicontinuum at v � v∗.

For a concrete implementation of a phase gate, let us
investigate the protocol illustrated in Fig. 4(c), which is
characterized by the two time scales τ and T representing
the acceleration time and the time during which the maximum
velocity vmax < v∗ is held constant.

In analogy to Eq. (44), the phase ϕ accumulated during the
processes can be written as ϕ = ϕ1 + ϕ2, where

ϕ1 =
∫ ∞

−∞
dt1 E′

01(v(t1)) (59)

is the dynamical phase in the superadiabatic basis and ϕ2 the
acceleration correction. Applying the approximative projec-
tion procedure presented in Sec. II C to the superadiabatic
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Hamiltonian (53), one finds

ϕ2 � −
∑
n
=0

∫ ∞

−∞
dt v̇2 |〈φ′

01(v)|∂vφ
′
n(v)〉|2

E′
n(v) − E′

01(v)
(60)

valid for small v̇.
To begin with the dynamical phase ϕ1, numerical results

for the tunnel splitting E′
01(v) as a function of the velocity

are shown in Fig. 4(d) for two different values of the system
length L. As expected from the analysis of the virtual
energy correction (45) in the adiabatic basis, large velocities
comparable with v∗ are to be applied to generate a significant
increase in E′

01(v). Since the gate operation time has to be much
shorter than the time scale 1/E′

01(0) on which the phase of
ρ

Q
01 is modified due to the tunnel splitting at v = 0, we require

E′
01(vmax)/E′

01(0) � 1. Focusing on muL = 60, the numerical
data in Fig. 4(d) imply that one has to choose vmax/v

∗ = 0.8
such that E′

01(vmax)/E′
01(0) is of order 102–103.

At least for sufficiently small E′
01(v), the envelope function

of E′
01 is expected to scale as exp {−Re[q ′

σ (v)]L}, where q ′
σ (v)

is given by Eq. (58). Fitting the prefactor to the numerical data
yields good agreement for the scaling behavior of E′

01 as a
function of both v and L as can be seen from the black dashed
lines in Fig. 4(d). For that reason,

E′
01(vmax)

E′
01(0)

∝ e(Re[q ′
σ (0)]−Re[q ′

σ (vmax)])L (61)

is to be expected and hence the enhancement of the energy
splitting can be easily enlarged by increasing the system
length L.

To avoid decoherence and parity errors, τ has to be chosen
much larger than the time scale τc = 1/E′

min(vmax). Assuming
that vmax/v

∗ = 0.8, we find τc � 5/E′
min(0) from Fig. 4(b). In

order to investigate the relevance of the contribution of ϕ2,
we have calculated the scalar products and the summation
in Eq. (60) numerically. Again, referring to vmax/v

∗ = 0.8
and muL = 60, one finds ϕ2/(2π ) < 10−2 for τ � 102τc.
Consequently, with these parameters not only the coherence
and the parity of the qubit are expected to be unaffected, but
also ϕ � E′

01(vmax)T with corrections due to the acceleration
which are smaller by a factor of order 10−2. In principle,
however, one could also take the acceleration corrections into
account by properly calibrating the phase gate.

The inset in Fig. 4(d) shows the energies E′
σ (v), σ = 01,01,

for v = 0.4 v∗ as a function of L. We observe that the superadi-
abatic tunnel splitting is sinusoidal in L with periodicity given
by the Fermi wavelength λF as is well known for the adiabatic
tunnel splitting.22,36 This means that L has to be stabilized
with an accuracy on the length scale λF for a controllable
manipulation of the phase of ρ

Q
01. Note that this problem can

be overcome in the scheme based on the direct overlap of the
MBS wave functions by using their monotonically decaying
behavior in the nontopological domains of the wire.36 Unfor-
tunately, this solution of the problem is not readily transferred
to our proposal. Nevertheless, we believe that the notion of a
nonadiabatic phase gate may not only be of theoretical interest
because it represents an alternative that might be helpful for
making potential quantum computation schemes to work more
efficiently. Furthermore, the approach presented here may be
seen as a starting point for the search of more sophisticated pro-

cedures of constructing gate operations based on nonadiabatic
effects. In the following section, we present a first example of
a proposal that is easier accessible experimentally.

B. Manipulations by supercurrent

The analysis presented above has shown that a phase gate
which does not require bringing the MBS close to each other
is in principle possible by taking advantage of nonadiabatic
effects. Although the error threshold is very large (14%) due to
a correction scheme known as “magic-state distillation,”26,39

the experimental implementation may be complicated since
high velocities of order v∗ are required, while L has to be fixed
with high accuracy (δL � λF ). Therefore, let us investigate a
related setup, first studied in Ref. 40, where instead of moving
the MBS relative to the s-wave superconductor, a supercurrent
J (t) is driven through the proximity-inducing superconductor
along the nanowire.

The presence of the current induces a gradient ∂xϕ(x,t)
in the phase of the superconducting order parameter � in
Eq. (36) according to J (t) ∝ ∂xϕ(x,t). Focusing on the case
where J (t) is spatially uniform and applying a suitable gauge
transformation,40 the Hamiltonian can be written as

h̃NW(∂xϕ)

=
{

1

2m

[
p2 +

(
∂xϕ

2

)2
]

− μ + u

(
p − τz

∂xϕ

2

)
σy

}
τz

+Bσz − �τx − ∂xϕ

2m
p. (62)

For a derivation of the resulting phase diagram for time-
independent currents, we refer the reader to Ref. 40. Here,
we will only discuss the applicability of this system for
implementing a phase gate.

1. Limit of large magnetic fields

As before, we first analyze the regime of strong magnetic
fields. It is instructive to compare Eq. (62) with the moving
frame Hamiltonian

h′
NW(v) =

(
p2

2m
− μ + up σy

)
τz + Bσz − �τx − v p (63)

for the spatially displaced topological domain. We observe
that the last terms in Eqs. (62) and (63) are identical upon
identifying v = ∂xϕ/(2m). For low energies E � B and
v < v∗, the momenta of the excited states of h′

NW(v) are of
order of the Fermi wave vector kF � √

2mB [see Fig. 4(a)].
Since |q ′

σ (v)| � kF , the Hamiltonians in Eqs. (62) and (63) are
identical for low energies as long as ∂xϕ � kF . According to
the identification v = ∂xϕ/(2m) and using Eq. (57), the critical
phase gradient is given by

(∂xϕ)∗ = 2mv∗ � 2mu�

B
, (64)

which indeed satisfies (∂xϕ)∗ � kF . For this reason, h̃NW(∂xϕ)
and h′

NW(v) with v = ∂xϕ/(2m) exhibit the identical low-
energy behavior for the entire topological regime. Therefore,
we know that the system undergoes a transition at (∂xϕ)∗ from
a topological phase into a gapless phase in accordance with
the results of Ref. 40. Moreover, the numerical data shown in
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FIG. 5. (Color online) (a) Excitation energies of Eq. (62) for
different values of the phase gradient ∂xϕ obtained numerically
using B/� = 0.9, εso/� = 0.5, muL = 80, and taking μ = 0 in the
topological segment of the wire. The trivial and gapless phases are
highlighted in green and blue, respectively. Emin is defined as the
maximum gap in the topological phase. In (b), the tunnel splitting is
shown again on a logarithmic scale.

Fig. 4 and the resulting estimates in Sec. IV A also hold for this
setup upon replacing v/v∗ by ∂xϕ/(∂xϕ)∗. As a consequence,
supercurrents can be used similar to the translation of the
topological domain for realizing a phase gate without bringing
MBS closer together.

On top of that, we believe that driving supercurrents along
the nanowire may be easier to implement experimentally since
no local gate tuning is required. Furthermore, the stabilization
of the length of the topological domain is expected to be less
problematic, if the position of both MBS is fixed.

2. Current-induced topological phase

By applying a supercurrent along the nanowire, it is even
possible to stabilize a topological phase when B < �, for
which the system would reside in the trivial phase, if no
current was present. Clearly, this can not be achieved by simply
translating the system since the additional term vp in Eq. (51)
leaves the topological gap at k = 0 unaffected.

In Fig. 5(a), numerical results for the excitation energies of
the BdG Hamiltonian (62) with B/� = 0.9 and εso/� = 0.5
are shown as a function of the gradient ∂xϕ. We know from
Ref. 40 that for these parameters one can realize a trivial
[∂xϕ < (∂xϕ)∗1], a topological [(∂xϕ)∗1 < ∂xϕ < (∂xϕ)∗2], and
a gapless phase [∂xϕ > (∂xϕ)∗2] by tuning the strength of the
phase gradient. As expected, the quasi-zero-energy modes of
the topological domain merge into the continuum for ∂xϕ �
(∂xϕ)∗1 and ∂xϕ � (∂xϕ)∗2. On the one hand, the transition to
the gapless phase at (∂xϕ)∗2 is similar to the behavior found
in Fig. 4(b) for the system displaced with velocity v � v∗.
The gap is strongly reduced for ∂xϕ → (∂xϕ)∗2 compared to its
maximum value Emin at ∂xϕ � 1.5(∂xϕ)∗1. On the other hand,
when ∂xϕ approaches (∂xϕ)∗1 from above, the gap is reduced
only by a factor of 2, making the qubit much less sensitive to
parity errors and decoherence effects. Clearly, this is a finite-
size effect and reflects the fact that the density of states of the
nontopological phase is much smaller than that of the gapless
phase. However, as far as the topological protection of the qubit
is concerned, the system length only has to be sufficiently large
compared to the localization length of the MBS such that the
tunnel splitting E01 is negligible. From Fig. 5(b), we can see

that E01 assumes a minimum value of order 10−8Emin slightly
below ∂xϕ = 1.6(∂xϕ)∗1. By tuning the supercurrent to this
minimum, the topological memory can be stored on a time
scale which is 7–8 orders of magnitude larger than the scale
1/E((∂xϕ)∗1) � 4/Emin associated with adiabaticity during a
phase gate operation based on approaching the boundary
(∂xϕ)∗1 to the nontopological phase.

V. CONCLUSIONS

In this work, we have studied the nonadiabatic dynamics of
a topological qubit due to the presence of a quasicontinuum
of degrees of freedom above the gap of the system. To
characterize the qubit, the off-diagonal component ρ

Q
01 of

its reduced density matrix as well as the parity P̂01 of the
fermion associated with γ1 and γ2 have been considered. We
discussed both aspects of nonadiabatic effects, the limitations
they impose on topological quantum computation, and the op-
portunities they provide for creating additional gate operations.

First, a general topological superconductor of class BDI,
D, or DIII coupled to a time-dependent classical field has been
investigated and perturbative expressions for 〈P̂01〉 and ρ

Q
01

have been derived. Our results show that correlation effects
between remote Majorana modes, mediated by the extended
states of the continuum, can lead to the accumulation of a
phase by the qubit, even if the overlap of their wave functions is
small. The derivation of an effective ground-state Hamiltonian
for the regime of nearly adiabatic manipulation makes it clear
that this phase can be seen as the result of the nonadiabatic
renormalization of the tunnel splitting.

In the remainder of the paper, these generic results have
been applied to the spin-orbit-coupled nanowire in proximity
to an s-wave superconductor assuming that the MBS are
transported by varying the chemical potential profile. Focusing
on the limit of large magnetic fields, we used Kitaev’s model
to calculate the relevant coupling matrix elements which
turned out to be oscillatory as a function of the length
L of the topological domain (with periodicity 2λF ). This
implies a critical velocity scale vc � 2Emin/kF for moving
one edge of the topological segment of the wire. Our analysis
reveals that the resulting lower bound on the braiding time
is expected to be of the same order as the upper bound
imposed by single-electron tunneling.33 By taking a prototypal
analytic trajectory L(t), we have shown that the nonadiabatic
corrections are exponentially suppressed [∝ exp(−2Eminτ )]
for small velocities L̇ � vc. In the regime of strong spin-orbit
coupling, we found a similar oscillatory behavior of the
coupling matrix elements, and the resulting lower bound on
the braiding time turned out to be of the same order as in the
case of strong magnetic fields.

We then investigated, in detail, the possibility of con-
structing a nonadiabatic phase gate. Our findings show that a
perturbative treatment of the braiding velocities ẋj of the MBS
only leads to nonadiabatic corrections to the tunnel splitting
that are exponentially small [exp(−L/ξ )] in the distance L

between the Majorana modes. In order to investigate larger
braiding velocities, we assumed that the entire topological
domain is translated, making a perturbative calculation with
respect to the acceleration possible. We found a critical
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velocity v∗, of the same order as vc above, where the effective
“moving frame” Hamiltonian becomes gapless. A trajectory
is presented where the relative error of the accumulated phase
due to the acceleration parts of the protocol and decoherence
effects as well as parity errors are expected to be negligible.
However, engineering a nonadiabatic phase gate by translation
of the entire topological domain may be difficult in practice
since the distance between the MBS has to be well stabilized
on the length scale λF . This is why we analyzed a different
setup,40 where the position of the MBS is fixed and, instead,
a supercurrent is applied along the nanowire. In the regime
of strong magnetic fields, the two systems are essentially
identical and hence supercurrents can be used similar to the
translation of the topological domain for implementing a phase
gate. On top of that, supercurrents reveal additional ways for
accumulating a phase. For example, in the parameter regime
where a topological phase can be stabilized by a current even
if B < �, we found that finite-size effects can be exploited for
efficiently protecting the qubit from decoherence. This shows
already that there are various possibilities to improve the most
straightforward approach of just translating MBS in order to
construct nonadiabatic gate operations. In fact, we believe that
this paper might pave the way for the development of more
elaborate schemes for the implementation of nonadiabatic
phase gates or even of nontrivial two-qubit gates.

Note added. Recently, we became aware of Ref. 41, which
shows considerable overlap with our work.
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APPENDIX: GEOMETRIC MATRIX ELEMENTS

In this appendix, we present the analytical result for the
geometric coupling matrix elements bγ2,n = 〈φγ2 |∂x2φn〉 using
the Kitaev model (37) and an infinite potential well.

We introduce the pseudo-parity-operator � = τzP , where
P denotes the spatial inversion with respect to the center of the
topological domain, and take advantage of �2 = 1 as well as
the fact that � commutes with the Hamiltonian. Within each of
the two eigenspaces of � associated with eigenvalues λ = ±1,
there is a sequence of continuum states with nondegenerate
energies Eλ

s , s ∈ +. Let us choose the sequence Eλ
s to be

monotonically increasing and define the auxiliary quantum
number σ = (−1)sλ, which turns out to be central in the
calculation of bγ2,n. Since it is not possible to find an analytical
expression for the discrete energies Eλ

s , we treat the energy of
the continuum states as a continuous variable E and calculate
a smooth interpolating function bγ2 (E). In the limit L � ξ,λF ,
we obtain

bγ2 (E,L) �
√

2veμ1√
L[1 + R2(E,L)] E

[
k−(E) sin

(
[kF − δk(E,L)]

L

2
+ ϕ−(E)

)
+R(E,L) k+(E) sin

(
[kF + δk(E,L)]

L

2
+ ϕ+(E)

)]
, (A1)

where

ϕ±(E) := θ [k±(E)]

2
+ arctan

(
4m2v2

e + �2 − k2
±(E)

4mvek±(E)

)
(A2)

and

δk(E,L) := π

L
δσ,−1 + 2 sgn(σ )

L
arctan

⎛⎝ 1

2(1 − g) tan
(
kF

L
2

)
⎧⎨⎩(1 + g)

[
1 + tan2

(
kF

L

2

)]

−
√

(1 + g)2

[
1 + tan2

(
kF

L

2

)]2

− 4(1 − g)2 tan2

(
kF

L

2

)⎫⎬⎭
⎞⎠ . (A3)

In Eqs. (A1)–(A3), the following conventions are being used:
The angle θ (k) ∈ [0,π ) is defined via

cos[θ (k)] = μ1 − k2

2m

ε(k)
, (A4)

where

ε(k) =
√(

k2

2m
− μ1

)2

+ v2
e k

2 (A5)

is the spectrum of Eq. (37). The Fermi wave vector is given by

kF =
√

2m
(
μ1 − mv2

e

)
(A6)

and coincides with the real part � of the wave vectors of the
MBS in the physically relevant limit of large magnetic fields
(μ1 � mv2

e ). Furthermore,

k±(E) =
√

k2
F ± 2m

√
E2 − E2

min (A7)
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are the absolute values of the four possible momenta
{±k+,±k−} of a continuum state with energy E < μ1. In
addition, we defined

R = −cos
(

θ(kF −δk)
2

)

cos
(

θ(kF +δk)
2

)
sin
[
(kF − δk)L

2

]
sin
[
(kF + δk)L

2

] (A8)

and

g(E) = tan{θ [k−(E)]/2}
tan{θ [k+(E)]/2} . (A9)

In Fig. 3(e), this result is shown for σ = +1. In the second
case, σ = −1, the geometric matrix elements are identical
except for a shift by λF /2 in their functional dependence
on L.

Exploiting again the pseudoinversion symmetry of the
problem, one can easily show that the coupling matrix
elements involving the left MBS γ1 are simply given by
bγ1,n = ±iλbγ2,n, where the constant sign ± depends on how
the relative sign between the wave functions φγ1 and φγ2 is
chosen.
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