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Majorana fermions on the Abrikosov flux lattice in a px + i py superconductor
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We show that a periodic lattice of Abrikosov vortices in the type-II superconductor can support fermionic
states with zero energy. Zero modes appear at the intersection of electronic Bloch bands with the Fermi level.
In a chiral px + ipy wave superconductor the spectrum contains Majorana states at the center of an effective
Brillouin zone. The Bloch bands formed by the overlapping vortex core states can transmit energy flow across
the lattice. The hallmark of zero modes in electronic heat conductivity is discussed.
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I. INTRODUCTION

Exotic properties of fermionic spectrum in chiral px + ipy

wave superconductors and Fermi superfluids are determined
by nontrivial topology of the ground state.1 Such pairing
symmetry was found in a superfluid A phase of 3He films2

with chiral px + ipy structure of the superfluid order parameter
corresponding to the Cooper pairing with angular momentum
Lz = ±1. The same state is suggested to be realized in layered
triplet p wave superconductor Sr2RuO4.3

In particular, fermionic sectors of 3He-A and Sr2RuO4

contain zero energy states localized near domain walls and
solitons,4 boundaries,5 and quantized vortices.6 The zero
energy fermionic modes can be described in terms of the
self-conjugated Majorana fermions which were theoretically
predicted to appear in several other two-dimensional systems
such as the fractional quantum Hall liquid at filling 5/2,7 het-
erostructures of topological insulators and superconductors,8

and possibly certain Iridates which effectively realize the
Kitaev honeycomb model.9

An appealing possibility offered by the nontrivial structure
of fermionic spectrum in the vortex phase of chiral px + ipy

superconductors is the realization of quantum matter with
exotic non-Abelian quasiparticle statistics.10,11 In this case,
the non-Abelian anyons are presented by vortex excitations
supporting zero-energy Majorana fermions residing inside
their cores. That is the spectrum of vortex core fermions is
given by

ε = ω(n + γ ), (1)

where n is integer number, γ = 1/2 for s wave,12 and
γ = 0 for px + ipy wave6 superconductors. Thus in topo-
logically nontrivial superconductors the spectrum of vortex
core fermions (1) contains zero-energy modes with n = 0
which can be conveniently described in terms of the Majorana
self-conjugated fermionic field.11 Such a possibility provides
an extra motivation for the study of vortices in px + ipy su-
perconductors due to their potential application in topological
quantum computing.13

Vortex core Majorana fermions have an important property
of being stable with respect to the impurity scattering6 and
order parameter perturbations.11 However, the spectrum of
vortex core states is extremely sensitive to the intervortex
quasiparticle tunneling. The corresponding spectrum modifi-
cation in finite clusters of vortices was investigated first by
Mel’nikov and Silaev.14,15 It was shown that in a pair of

vortices the intervortex quasiparticle tunneling removes the
twofold degeneracy of vortex core states. Such splitting of zero
energy levels opens the gap in the fermionic spectrum. Later
the arguments were advanced that it can break the quantum
coherence during the vortex permutation which is important
for the fault tolerance of topological quantum computations.16

Generalization of the two-vortex problem for M-vortex
clusters is straightforward and was discussed in detail.14,15

Based on these results it is easy to demonstrate that a cluster
consisting of an odd number of vortices in px + ipy supercon-
ductor always has at least one zero energy state irrespective of
the vortex positions. Thus the splitting of Majorana fermions
is not a generic effect and depends on the parity of the total
number of vortices M . On the other hand, in clean type-II
superconductors without disorder and pinning centers vortices
in a finite magnetic field form a periodic Abrikosov flux lattice.
Therefore, the natural question considered in the present paper
is whether the spectrum of fermions on the vortex lattice in
chiral px + ipy superconductor is gapped or contains zero
energy Majorana states.

Previously, various types of spectral problems for
two-dimensional lattices of Majorana fermions were
considered.17–21 These models take into account only the
tunneling between lowest energy states in the vortex cores.
As shown in Refs. 14 and 15 for the generic problem of two
vortices the shift of vortex core energy levels becomes larger
than the interlevel energy already in small magnetic fields
H � 0.1Hc2. Therefore, the one level approximation of lattice
models is not applicable for intermediate vortex densities.
Instead in the present paper we consider the eigenvalue
problem of genuine Bogoliubov–de Gennes equations with gap
potential corresponding to the periodic Abrikosov flux lattice.
To treat this problem we generalize the original approach
developed earlier.14,15 This approach allows one to calculate
the spectrum when the intervortex distance is larger than the
superconducting coherence length.

II. MODEL

In general, the problem of identifying the quasiparticle
energies in superconductors is to solve the Bogoliubov–de
Gennes (BdG) equations:

Ĥ0� +
(

0 �̂

�̂+ 0

)
� = ε�, (2)
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where Ĥ0 = τ̂3[(p̂ − τ̂3A)2 − p2
F ]/2m, � = (U,V ), U and V

are the particle- and holelike parts of the fermionic quasipar-
ticle wave function, p̂ = −i∇, τ̂i are the Pauli matrices in
a particle-hole space, the gap operator is �̂ = {�(r̂),eiχθp },
where χ = ±1 is chirality for px ± ipy wave and χ = 0 for
s wave, r̂ is a coordinate operator, �(r) describes the spatial
dependence of the gap function, and {A,B} = (AB + BA)/2
is an anticommutator which provides the gauge invariance of
�̂. The phase of the order parameter depends on the direction
of the electron momentum in xy plane: p = p(cos θp, sin θp).
The magnetic field is directed along the z axis B = Bz and for
extreme type-II superconductors we can consider the magnetic
field to be homogeneous on the spatial scale of intervortex
distance and take the gauge A = [B × r]/2.

Further calculations require expansion of the wave func-
tions �(r) by the basis of localized fermionic states of isolated
vortices. It can be implemented using the quasiclassical ap-
proximation and the convenient formalism14,15 of the so-called
s-θp representation. It allows one to express the quasiparticle
wave function in momentum representation in the following
form:

�(p) = 1

pF

∫ +∞

−∞
ds e−i(|p|−pF )s/h̄ψ(s,θp) . (3)

The inner product can be expressed through the envelope
functions

〈�1|�2〉 = π

pF

∫ ∞

−∞
ds

∫ 2π

0
dθpψ+

1 ψ2(s,θp). (4)

The BdG equation for ψ(s,θp) reads Ĥψ = Eψ , where

Ĥ = −iVF τ̂3
∂

∂s
+

(
0 �̂

�̂+ 0

)
. (5)

VF = pF /m is Fermi velocity. Here s is a coordinate along
the quasiclassical trajectory and θp is the angle which
determines its direction. The Hamiltonian (5) takes account
of noncommutability of angular momentum z axis projection
operator μ̂ = −i∂/∂θp and θp. Therefore, it involves the
angular momentum quantization. Hence the spatial coordinate
in the gap operator in Eq. (5) is quantum variable in s-θp

representation r̂ = spF /pF + {[pF × z],μ̂} /p2
F .

Let us consider now an isolated vortex positioned at r = 0
and described by the gap function �(r) = �v(r)eiθ . The gap
function operator in s-θp representation is given by

�̂ = �v(s)ei(1+χ )θp

[
s

|s| − 1

|s|pF

(
∂

∂θp

− χ + 1

2i

)]
. (6)

Then Eq. (5) has a standard solution corresponding to the low
energy CdGM levels,

ψ(s,θp) = C(θp)ψv(s,θp), (7)

ψv(s,θp) = eiτ̂3(1+χ)θp/2

(
1

−i

)
e−K(s)

√


, (8)

where K(s) = V −1
F | ∫ s

0 �v(t)dt | and  is a normalizing factor
so that 〈�|�〉 = 1. Such wave function ansatz implies periodic
boundary conditions C(θp + 2π ) = C(θp) for px + ipy and
C(θp + 2π ) = −C(θp) for s wave symmetry. Substituting it
to the BdG Hamiltonian (5) we obtain that C(θp) = exp[i(n +

γ )θp], which gives the CdGM spectrum (1) with the interlevel
spacing,

ω = −1
∫ ∞

−∞
ds e−2K(s)�v(s)/|s| � �0/(pF ξ ), (9)

where �0 is the gap value far from the vortex core and ξ =
VF /�0 is the superconducting coherence length.

The generalization of the above procedure for vortex
clusters with finite probability of intervortex tunneling of
quasiparticles was obtained in Refs. 14 and 15. In particular
for the generic problem of two vortices placed at the distance
d the low energy fermionic spectrum has the form

ε = ω[± arccos(
√

1 − e−α sin β)/π + n + 1/2 + γ ],

(10)

where γ = 1/2 for s wave and γ = 0 for px + ipy wave
superconductivity, α = 2πe−2d/ξpF ξ 2/d, and β = pF d +
α ln(pF ξ 2/d) + arg[�(1 − iα)] + π/4, where �(x) is the �

function. The spectrum (10) contains two series of levels
with the interlevel distance ω. Equation (10) demonstrates
that the perturbation of energy levels due to the intervortex
quasiparticle tunneling in general is not described by the plain
tight binding theory used, e.g., in Ref. 16. Indeed, the shift
of energy levels with respect to the isolated vortex spectrum
becomes larger than the energy level spacing ω when the
intervortex distance is smaller than the critical one d < dc,
where14,15

dc � (ξ/2) ln(pF ξ ). (11)

Note that dc � ξ , since pF ξ � 1. For the typical parameter
pF ξ = 100 corresponds to magnetic fields being larger than
that of the order 0.1Hc2.

In this paper we consider the next benchmark in the
theory by solving the problem of electronic states in the
periodic Abrikosov lattice. Here we address the case of
fully gapped systems. The lattice spectrum in gapless d-wave
superconductors was considered before22 (see also review23).

III. ELECTRONIC BLOCH WAVES IN ABRIKOSOV
LATTICE

The periodicity of vortex lattice is determined

�(r + d) = ei[B×d]r+iϕd�(r), (12)

A(r + d) = A(r) + [B × d]/2, (13)

where d = naa + nbb is the translation of the vortex lattice,
na,nb are integer numbers, and ϕd is an arbitrary constant
phase shift. By choosing the Wigner-Seitz elementary cell of
vortex lattice and placing the origin r = 0 at the vortex center
in this cell we immediately obtain that ϕa = ϕb = π .

The translational properties of �(r) and A(r) make Eq. (2)
commute with the magnetic translation operator

T h
d = τ̂3e

iτ̂3[B×d]r/2Td, (14)

so that T h
d ĤT h+

d = Ĥ where Td is the usual translation by the
lattice vector d. Consequently, the solutions of the BdG Eq. (2)
can be classified according to the eigenstates of the magnetic
translation operator. An important point is that the magnetic
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FIG. 1. (Color online) (a) Vortex lattice unit cell and correspond-
ing quasiparticle unit cell containing the nodes marked by 1 and
2 in square vortex lattice. The vortex positions are marked with
red filled circles which form the 2D Brave lattice with the basis
(a,b). (b) The 3D plot of magnetic Bloch band ε0+(K) given by (29)
χ = π/4 and Ia = Ia = 0.14. (c) The Bloch bands ε0±(Kx,Ky = 0)
for Ia = Ib = 1.4, 2.8, and 8.9 shown by red dashed, blue dash-dotted,
and black solid lines correspondingly. (d) The contour plot of ε0+(K)
for χ = π/4 and Ia = Ib = 4.3. The plots (b), (c), and (d) correspond
for the square vortex lattice.

flux through the vortex lattice unit cell is one-half of the flux
quantum z[a × b]B = π so that the magnetic translations by
lattice vectors anticommute T h

a T h
b = −T h

b T h
a . Therefore, we

should introduce the unit cell for the quasiparticle functions
consisting of two vortex lattice unit cells, for example shifted
by the vector a. For the case of square vortex lattice, this
choice is illustrated in Fig. 1(a). Then the magnetic translation
subgroup is formed by vectors dm = 2naa + nbb and the
solution of Eq. (2) in general has the form

�K =
∑
dm

eiKdmT h
dm

[�1(r) + eiKa�2(r)]. (15)

The functions �1,2(r) are localized in the centers of vortices
forming the unit lattice cell for the quasiparticles (see Fig. 1).

The form of the node functions �1,2(r) in Eq. (15) is
determined by the states localized in isolated vortex. We
consider the vortex lattice cite 1 centered at the origin r = 0
and define the spatial dependence of gap function inside the
unit cell as �(r) = �v(r)eiθ , where �v(r = 0) = 0. Then
eigenfunctions of the Hamiltonian (5) centered at lattice sites
1 and 2 have the form

ψ1(s,θp) = C1(θp)ψv(s,θp), (16)

ψ2(s,θp) = C2(θp)T h
a ψv(s,θp), (17)

where the function ψv = ψv(s,θp) is given by Eq. (8).

The wave function (15) is determined by quasimomentum
K in the Brillouin zone of quasiparticles. The magnetic transla-
tion operator (14) in the s-θp representation has the form T h

d =
τ̂3e

−iϕh(d)τ̂3/2Td, where ϕh(d) = Bd(s + nd) sin(θp − θd ), n =
(cos θp, sin θp) and the angle θd defines the direction of
d = d(cos θd, sin θd ), and Td = exp[−idpF(1 − ip−1

F ∂s)] is
the translation operator.14

We substitute the ansatz (15) to the BdG Eq. (2) and
calculate the inner product with �1,2(r) taking into account
only overlap with neighbor sites to obtain the system of tight
binding equations,

〈�j |Ĥ |�j 〉 = ω

∫ 2π

0
C∗

j μ̂Cjdθp, (18)

〈�j |Ĥ |T h
b �j 〉 = i(−1)j+1Jb

∫ 2π

0
e−ibpF |Cj |2dθp, (19)

〈�1|Ĥ |�2〉 = iJa

∫ 2π

0
e−iapFC∗

1C2dθp, (20)

〈�1|Ĥ |T h
−2a�2〉 = iJa

∫ 2π

0
eiapFC∗

1C2dθp, (21)

with j = 1,2. To obtain these expressions we have used
Eq. (4) for the inner product. The sign in Eq. (19) is determined
by the magnetic flux through the unit cell. Here for simplicity
we take into account the overlap with four neighboring
vortices. The cases of more neighbors can be considered
analogously. The main contribution to the inner products (19),
(20), and (21) comes from the stationary points of the phases
(apF) and (bpF), that is θ∗

p = θa,b + πn. The stationary points
θ∗
p correspond to the trajectories passing through both of the

neighbor vortex cores which means that we can calculate the
overlap factors as follows:

Jd = π

pF

∫ ∞

−∞
[�(s) − �̃v(s1)]ψ̃+

v (s)τ̂2ψ̃v(s1)ds, (22)

where d = a,b and s1 = s − nd, �̃v(s) = �v(s)sgn(s), and
ψ̃v(s) = ψv(s,θp = 0). Then with good accuracy Eq. (22)
yields an estimation |Jd| ≈ �0 exp (−d/ξ ).

With the help of the inner products (18) and (19) and taking
into account that Jd = −J−d, we obtain the equations

(ε − ωμ̂)C1 = Fb(θp)C1 + Fa(θp)C2,
(23)

(ε − ωμ̂)C2 = −Fb(θp)C2 + Fa(θp)C1,

where Fd(θp) = Jd sin[d(pF + K)] and d = a,b. The system
(23) should be solved together with periodic boundary
conditions C1,2(θp) = C1,2(θp + 2π ) for px + ipy wave and
C1,2(θp) = −C1,2(θp + 2π ) for s wave. Note that in Eqs. (23)
we can take into account overlapping with next-to-neighbor
vortices which will introduce the corrections of the relative
order e−d/ξ to the coefficients Fa,b. Here we neglect such
corrections.

The spectrum of Eq. (23) ε = ε(K) is defined in the mag-
netic Brillouin zone which can be chosen as −π < Kb � π

and −π/2 < Ka � π/2. Besides it has an additional symme-
try ε(K) = ε(K + br/2), where br = 2π [z × a]/(z · [a × b])
is the reciprocal lattice vector so that (brb) = 2π . This
symmetry is the same as for the usual tight binding 2D electron
model with half quantum flux through the unit cell.
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To solve Eq. (23) we use the approximate method employed
earlier for the system of two vortices.14 That is besides
the vicinity of the angles θ∗

p = θa,b + πn the solution with
good accuracy is C1,2 ∼ eiεθp/ω. In the δ vicinity of the
angles θ∗

p the system (23) can be diagonalzed to obtain the

matching conditions C(θ∗
p + δ) = M̂C(θ∗

p − δ) for the vector
C = (C1,C2)T . The matching matrices are

M̂(θb) = exp(−iτ̂3χb+), (24)

M̂(θa) = cos χa+ − iτ̂1 sin χa+, (25)

M̂(θb + π ) = exp(−iτ̂3χb−), (26)

M̂(θa + π ) = cos χa− − iτ̂1 sin χa−, (27)

where χd± = Id sin(Kd ± ϑd ) where ϑd = pF d − π/4 and
Id = (Jd/ω)

√
π/pF d .

The eigenvalues of energy ε are determined by periodic
boundary conditions

M̂(θb)M̂(θa)M̂(θb + π )M̂(θa + π )e2πiε/ω = ±1, (28)

where the upper (lower) signs are for the px + ipy (s) wave
symmetry. Solving Eq. (28) we obtain the Bloch waves ε =
εn(K) in a periodic Abrikosov flux lattice

εn±(K) = ω

(
±arccos X

2π
+ n + γ

)
, (29)

where γ = 1/2 for s wave and γ = 0 for px + ipy wave, X =
cos χa− cos χa+ cos(χb+ + χb−) − sin χa− sin χa+ cos(χb+ −
χb−), and n is integer. The width of Bloch bands (29) is
determined by the overall amplitude max(ω,�0e

−d/ξ /
√

pF d)
and rapid oscillations with the period p−1

F by the intervortex
distances a,b, which were found before in finite vortex
clusters14,15 and vortices in mesoscopic superconductors.24

The phase of oscillations is determined by the average
magnetic field, e.g., a = b = √

�0/B for the square lattice,
where �0 is magnetic flux quantum for Cooper pairs.

The plot of the Bloch band ε0+(K) is shown in Fig. 1(b)
for the parameters ϑa = ϑb = π/4 and Ia = Ib = 0.14. One
can see that this band contains a small energy gap. As will be
discussed below, in this case the Majorana zero energy state
exists at the center of Brillouin zone K = 0 only for the specific
case ϑa = πl or ϑb = πl where l is integer. Indeed for Id � 1
Eq. (29) can be simplified. Taking into account the quadratic
terms of the order I 2

d we obtain the gapless spectrum identical
to the one level lattice model19 with the hopping amplitude
determined by

td = ωId cos ϑd ≈ �0e
−d/ξ

√
pF d/π

sin(pF d + π/4), (30)

where d = a,b. The same hopping amplitude determines the
spectrum modification in finite vortex clusters with large
vortex separation.14 Note that the phase of oscillations in (30)
is different from that used in subsequent works.16 The terms
of the order I 4

d open the gap in the spectrum (29) which is
beyond the accuracy of one level approximation and appears
due to the mixing with higher levels. Note that overlap with
next-to-neighbor vortices introduces correction smaller by the
factor (pF ξ )−1/2 than the interaction with higher levels.

Decreasing the intervortex distance one obtains that for
higher values of the overlap factors Id the structure of Bloch
bands becomes more complicated with rapid oscillations as
function of quasimomentum with the characteristic period of
the order (Idd)−1. This evolution is shown in Fig. 1(c) with
red dashed, blue dash-dotted, and black solid lines for the
overlap factors Ia = Ib = 1.4, 2.8, and 8.9 correspondingly.
Such complicated structure of Bloch band ε0+(K) for ϑd =
π/4 and Ia = Ib = 4.3 is shown in the contour plot Fig. 1(d).

Let us consider the condition for the zero energy state
existence in px + ipy wave superconductor. Clearly even
despite the splitting of Majorana state on two vortices they
can appear in vortex lattice at some points of the Brillouin
zone. From Eq. (29) we get condition X = 1 which gives two
sets of zero-energy points,

χb(a)− = πm, χb(a)+ = πn, χa(b)+ + χa(b)− = πk,

(31)

χb(a)− = πm + π/2, χb(a)+ = πn + π/2,

χa(b)+ − χa(b)− = πk, (32)

where m,n,k are integer numbers so that m + n + k is even
for Eq. (31) and odd for Eq. (32). One can see that at
large intervortex distance the zero energy points are given
by Eqs. (31) with m = n = k = 0. Thus zero energy state
appears only at the center of Brillouin zone K = 0 [and
equivalent points; see Fig. 1(b)] if ϑa = πl or ϑb = πl, where
l is integer. Note that the corresponding wave function can
be chosen so that U = V ∗. Thus the zero energy state at
K = 0 is a Majorana one. For smaller intervortex distances
d < dc, where the critical distance dc is given by Eq. (11),
the overlap is larger Id > π/2. In this case Eqs. (31) and (32)
yield additional zero energy points. Due to the lattice symmetry
there is always an even number of zero energy states at K = 0.
Thus only that at the zone center in px + ipy superconductor
is a Majorana one. On the contrary, at K = 0 zero energy
states exist both for px + ipy and s wave symmetry. In
general, zero energy states appear only for the discrete set
of intervortex distances determined by the values of phase ϑd

when Eqs. (31) and (32) have solutions. For small intervortex
distances when Id � 1 the characteristic period of zero energy
states formation is d ∼ (IdpF )−1. Note that it is smaller than
the Fermi wavelength and therefore the finite density of zero
energy states can appear due to the fluctuations of vortex
positions.

IV. DISCUSSION

Finally let us consider the possible experimental test of
the suggested gapless spectrum of Majorana fermions (29). In
addition to the variety of experiments proposed25 the electronic
thermal conductivity κ measurements have been proven as an
effective tool to study the quasiparticle spectrum in the vortex
phase.15,26–28 The electronic states in magnetic Bloch bands
(29) can carry the energy current in the direction ⊥ B due to
the hopping of quasiparticles between neighboring vortices.

At large intervortex distances d > dc in px + ipy super-
conductor vortex lattice can contain single zero energy mode
at K = 0 which contributes to the thermal conductance in the
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limit T → 0. In s wave superconductors there are no zero
modes at d > dc. Here the critical distance dc is given by
Eq. (11). At smaller distances d < dc many zero modes
appear [see Fig. 1(c)]. Hence one should expect the threshold
behavior of κ(B) in the increasing magnetic field in the limit
T → 0. That is κ should be very small (or even zero) at
d > dc and at d < dc it can be estimated by the textbook
expression κ⊥ ∼ T V 2

g τν, where Vg = ∂ε/∂K is the group
velocity of Bloch waves (29), τ is transport time, and ν =
ω−1d−2 is the density of the vortex lattice. The typical value
of group velocity determined by the intervortex hopping is
Vg ∼ VF e−d/ξ

√
d/pF ξ 2 so that, assuming d = βξ

√
Hc2/B

where β ∼ 1, we obtain

κ⊥/κN =
√

B/Hc2

βpF ξ
e−2β

√
Hc2/B. (33)

Besides that κ⊥ also contains an oscillating part due to rapid
oscillations of energy levels (29) with the period p−1

F by
the intervortex distance. However, these oscillations should
be mostly canceled out due to the fluctuations of vortex
positions. The obtained value of κ is valid in the superclean
limit ωτ > 1 for fully gapped superconductors including s and
px + ipy wave symmetries. The estimation (33) contains the
small prefactor (pF ξ )−1 which can explain the experimentally
observed small values of κ⊥ at B � Hc2.26 Qualitatively
this small prefactor is determined by almost exact Andreev
backscattering which suppresses the single particle transport.29

Interestingly, the thermal conductivity κ‖ in the direction ‖ B
was observed in Ref. 27 to be described by Eq. (33) similar
to κ⊥. This behavior can be explained by the theory15 applied
to the spectrum (29) since the number of conducting modes
along the vortex line is determined by the tunneling factors Id.

The band spectrum (29) rapid oscillations with charac-
teristic length scale of Fermi wavelength p−1

F were found
before in finite vortex clusters14,15 and vortices in mesoscopic
superconductors.24 They appear due to the effective interfer-
ence of electronic waves with opposite wave vectors pF and
−pF. It is natural to expect that fluctuations of vortex positions
will destroy this interference and the rapid oscillations will be
smoothed out. However, this will not destroy the electronic

Bloch bands. Indeed provided the vortex displacements are
much smaller than coherence length ξ the periodic solution
(10) with coefficients determined by Eqs. (23) is still applicable
in the vicinity of the angles θp = θa,b + πn. Near these angles
the quasiclassical trajectory of electronic wave is parallel to
the main direction of the vortex lattice and passes through the
periodic chain of vortices for in quasiclassical approximation
the small vortex fluctuations can be neglected. Effectively,
one can obtain the result for thermal conductivity in this
case by averaging the group velocity Vg over the phases
ϑa,b in the spectrum Eq. (10). This procedure removes the
rapid oscillations of thermal conductivity and only the smooth
exponential behavior remains (33).

V. CONCLUSION

To conclude, we developed band theory of electronic
structure in Abrikosov vortex lattices. The results can be
applied to lattices of arbitrary geometry. Electronic Bloch
bands are formed due to the overlap of neighboring vortex core
states. These bands can intersect the Fermi level forming zero
energy states. We found that in px + ipy wave superconductor
with sparse Abrikosov lattice the Majorana state appears at
the center of Brillouin zone K = 0 for the discrete set of
intervortex distances. At smaller distances additional zero
modes exist at K = 0 both in s and px + ipy wave symmetries.
We have shown that the obtained electronic Bloch bands can
transmit the energy through the vortex lattice and therefore
provide a natural mechanism for thermal conductivity in clean
type-II superconductors at small magnetic fields. We argue
that the presence of electronic zero modes can be tested by
measuring electronic thermal conductivity.
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