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Local superfluidity at the nanoscale
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Motivated by the search for an experimentally realizable high density and strongly interacting one-dimensional
quantum liquid, we have performed quantum Monte Carlo simulations of bosonic helium-4 confined inside a
nanopore with cylindrical symmetry. By implementing two numerical estimators of superfluidity corresponding
to capillary flow and the rotating bucket experiment, we have simultaneously measured the finite size and
temperature superfluid response of 4He to the longitudinal and rotational motion of the walls of a nanopore.
Within the two-fluid model, the portion of the normal liquid dragged along with the boundaries is dependent on
the type of motion, and the resulting anisotropic superfluid density plateaus far below unity at T = 0.5 K. The
origin of the saturation is uncovered by computing the spatial distribution of superfluidity, with only the core of the
nanopore exhibiting any evidence of phase coherence. The superfluid core displays a scaling behavior consistent
with Luttinger liquid theory, thereby providing an experimental test for the emergence of a one-dimensional
quantum liquid.
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I. INTRODUCTION

Superfluidity or dissipation-free flow is rooted in quantum
mechanics with the wave function of the entire fluid being
described by an emergent global macroscopic phase θ . In
bulk 4He, this breaking of gauge symmetry has dramatic
consequences for the liquid below the superfluid transition,
Tλ � 2.17 K. It is well established that superfluid helium can
flow through extremely narrow constrictions, impenetrable to
the normal liquid, with a velocity vs = (h̄/m)∇θ limited only
by a critical velocity first understood by Landau. In “rotating
bucket” experiments, where a container of superfluid is rotated
at an angular frequency ω, vortices can be spontaneously
created, yielding a nonzero quantum of fluid circulation
κ = ∮

vs · d r = h
m

W , where W ∈ Z is the topological wind-
ing number, equal to the number of vortices within a closed
circulation loop. The quantitative details of the superfluid state
were first probed in the celebrated Andronikashvili torsional
oscillator experiment in 1946 where it was determined that
a superfluid fraction of the total fluid does not contribute to
the classical moment of inertia. This observation led to the
development of Tisza’s phenomenological two-fluid model
where the superfluid state is understood as two intertwined
liquids, having normal (ρn) and superfluid (ρs) components
with total density ρ = ρn + ρs .

The superfluid-normal transition in bulk 4He is in the
three-dimensional (3D) XY universality class. As the spatial
dimension of the system is reduced, the enhancement of
fluctuations suppresses the transition temperature to zero in
two dimensions and precludes any long-range ordered state in
one dimension. It is intriguing to consider how the continuum
two-fluid picture holds up in the low-dimensional limit where
the bosonic helium system should be described by the universal
harmonic Luttinger liquid (LL) theory1 at low energies. Such
a correlated liquid is strongly fluctuating with any phase
coherence decaying algebraically as a function of distance
at T = 0 K. Experimental realizations of low-dimensional
bosonic systems have been achieved in ultracold atomic gases2

at low densities where the interactions are expected to be weak

and short ranged. At higher densities, and in the presence of
strong interactions and Galilean invariance, direct observations
of LL behavior are still lacking. Previous experimental work
in low-d quantum fluids has focused on superfluid helium
confined to porous materials with a radial length scale in
the nanometer range, and there is evidence for new quantum
phases occurring at low temperature3,4 where the dynamical
response can be understood in terms of LL theory.5,6 Recently,
experiments have demonstrated the feasibility of measuring
the superflow of helium through nanometer-sized holes.7 The
next step will be to systematically decrease the radius of the
nanopore, thereby providing a quasi-one-dimensional (1D)
flow geometry in which the superfluid properties of helium
can be measured. Unequivocal evidence of LL behavior in
4He filled nanopores will require a detailed understanding
of the signatures of low-dimensional superfluidity in the
crossover regime, where fluctuations and strong interactions
compete with the effects of confinement. Towards this goal, we
have performed large-scale numerical simulations measuring
the superfluid response of a strongly interacting confined
quantum fluid of helium-4 at high density. The results expose
a breakdown of the two-fluid model of superfluidity at
the nanoscale and provide constraints on the experimental
parameters needed to observe an emergent 1D quantum liquid
far from the previously observed Tonks-Giradeau regime.8,9

We begin by defining a model Hamiltonian that describes
4He confined inside nanopores and provide some details of
our quantum Monte Carlo (QMC) method. After a careful
description of how superfluidity can be measured via the
linear response of the fluid to boundary motion, we present its
temperature dependence below the bulk superfluid transition.
An investigation of its nanoscale properties identifies the
presence of anisotropic superfluidity originating from only
the Luttinger liquid core region of pores with nanometer radii.

II. CONFINED HELIUM-4

The starting point is a system of helium-4 confined
inside a nanopore of radius R and length L formed as a
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cylindrical cavity in a slab of amorphous silicon nitride. The
interactions between helium atoms U are modeled via the
Aziz potential10 while confinement is achieved by combining
the effects of short-range repulsion with the walls of the pore
and a long-range dispersion force between helium and the
surrounding medium. The result is a surface wetting potential
V , with a deep attractive minimum near the pore wall11 where
the Lennard-Jones parameters have been chosen for Si3N4

(ε = 10.22 K, σ = 2.628 Å) to coincide with the nanofluidics
experiments described above. The resulting quantum many-
body Hamiltonian

Ĥ =
N∑

i=1

[
− h̄2

2m
∇̂2

i + V̂ (ri )

]
+

∑
i<j

Û (r i − rj ), (1)

where N is the number of atoms with mass m, can be exactly
simulated using continuous space worm algorithm (WA)
quantum Monte Carlo.12 Within the path integral formulation,
this method exploits the quantum-classical isomorphism,
performing Metropolis sampling of (d + 1)-dimensional con-
figurations of bosons that can be visualized as world lines
or trajectories in an imaginary time (τ ) direction.13 For
helium at finite temperature, the world lines obey a periodicity
condition in the additional dimension modulo identical particle
permutations, owing to their bosonic symmetry. The superfluid
response of the low temperature system is directly linked to the
existence and properties of long connected world line exchange
cycles consisting of many individual atoms.

Our simulations employ a fixed chemical potential μ/kB =
−7.2 K to ensure helium atoms in pores of L = 75 Å and
R = 3.0–15.0 Å are in thermal contact with a bath held at
saturated vapor pressure for temperatures between 0.5–2.25 K.

III. SUPERFLUID DENSITY

In QMC, the superfluid density is measured using linear re-
sponse theory by considering the effects of boundary motion.14

Within the two-fluid model, it is supposed that a superfluid
fraction ρs/ρ will remain stationary while the normal portion
ρn/ρ will be dragged along with the walls of the container. In
the nanopore geometry, two types of motion, depicted in the
first row of Fig. 1, are possible: the longitudinal motion of the
walls along the cylindrical axis and a rotation around it. These
two types of response correspond to different measurements
in the QMC, related to the geometry and topology of particle
world lines, represented as closed loops due to periodicity
in imaginary time. Within the naive two-fluid picture, they
should yield identical superfluid fractions and we can probe
this notion by concurrently measuring the dynamical response
to both types of boundary motion in the same nanopore.

A. Longitudinal response

In the case of longitudinal wall motion, (left column, Fig. 1)
we consider a container with periodic boundary conditions
along the axis of the pore, and for the purposes of visualization,
imagine the volume inside the pore to be mapped onto the
surface of a torus. The major circumference of the torus is
equal to L while the minor one is h̄β with β = 1/kBT . In the

FIG. 1. (Color online) The origin of superfluidity in 4He filled
nanopores measured by the winding (W , left column) and area (A,
right column) estimators in the path integral representation. At high
temperature, helium world lines are short, containing only single par-
ticles and there is no superfluid fraction: ρs/ρ = 0. As the temperature
is lowered, the world lines may link with each other, winding around
periodic boundary conditions in the simulation cell and having a large
projected net area perpendicular to the axis of rotation.

path integral representation, the winding number is given by

W = 1

L

N∑
i=1

∫ h̄β

0
dτ

[
dzi(τ )

dτ

]
, (2)

where zi(τ ) is the z component of r i(τ ), the (d + 1)-
dimensional position of particle i. It is equivalent to the number
of times the imaginary time trajectories of the N particles wrap
around the periodic boundary conditions of the sample. In WA
simulations, the imaginary time τ must be discretized and
we use kB�τ/h̄ = 0.004 K−1 to minimize Trotter error. The
resulting superfluid density ρW

s is related to the variance of the
distribution of winding numbers present13,14 through a winding
estimator,

ρW
s = mL

πR2h̄2β
〈W 2〉, (3)

where m is the mass of a helium atom and 〈· · · 〉 indicates a
QMC average. At high temperature, the helium atoms behave
classically, with spatially localized world lines containing only
a single atom. Long exchange cycles are extremely unlikely
and so 〈W 2〉 = 0. As the temperature is lowered, the kinetic
energy can be reduced by linking world lines together. Such
particle exchanges can be efficiently sampled within the WA
using spatially local updates, producing configurations with
extended world lines that wind around the periodic boundary
conditions (〈W 2〉 �= 0), producing a finite superfluid response.

B. Rotational response

An alternative approach, equivalent in the d � 3 thermo-
dynamic limit,15 measures the nonclassical response of the
fluid to a small rotation. The superfluid fraction ρA

s /ρ is then
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FIG. 2. (Color online) A comparison of the superfluid fraction of helium confined inside nanopores with L = 75 Å (symbols) measured
using the winding number and projected area of particle world lines with the experimentally measured value taken from Ref. 17 (line) for bulk
4He at saturated vapor pressure. The upper right insets show instantaneous quantum Monte Carlo particle configurations projected onto the z = 0
plane while the lower left inset in the first cell details superfluidity on a finer scale. All panels share the legend shown in the lower right panel.

equal to the nonclassical rotational moment of inertia fraction
(Icl − I )/Icl where I is the observed moment of inertia and Icl

is the total classical moment of inertia. The superfluid fraction
defined in this way can be estimated in the QMC by measuring
the world line area A of closed particle trajectories projected
onto a plane perpendicular to the axis of rotation16 through an
area estimator

ρA
s = 4ρm2

h̄2βIcl
〈A2〉. (4)

For a rotation about the z axis the path area is given by

A = 1

2

N∑
i=1

∫ h̄β

0
dτ

[
r i(τ ) × d r i(τ )

dτ

]
z

. (5)

At high temperature, the projected mean squared areas are
uncorrelated and

√
〈A2〉 ∼ 
2 where 
 =

√
2πh̄2β/m is the

thermal de Broglie wavelength and ρA
s /ρ ≈ 0 for large pores

as seen in the right column of Fig. 1. As the temperature
is reduced and long exchange cycles become energetically
favorable, there is a distribution of finite projected areas

and ρA
s /ρ > 0. The caveat to this approach is that angular

momentum conservation requires that the dimensions of
the simulation cell perpendicular to the axis of rotation do
not have periodic boundary conditions. A quantum fluid
confined inside a nanopore thus provides an ideal geometry
where we can directly compare the two estimators of the
superfluid fraction as shown in Fig. 2. The symbols correspond
to QMC measurements performed using Eqs. (3) and (4)
and the insets in the upper right corners are instantaneous
particle configurations projected on the plane z = 0. The
solid line is the experimentally measured superfluid fraction
of 4He at saturated vapor pressure taken from Brooks and
Donnelly17 for comparison. For pores with R < 9 Å we do
not observe any superfluid response above T = 0.5 K while
for R � 9 Å, ρW,A

s /ρ becomes nonzero at an R-dependent
onset temperature shifted below the bulk value of Tλ. This is
the expected behavior for a quantum fluid constrained inside
a porous material where both Tc and ρs/ρ are reduced18,19

(see Ref. 20 for a review).
The observed superfluid response measured via the winding

number is effectively one dimensional, originating from the
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flow along the pore axis, and any nonzero value should be con-
sidered a finite size effect that will disappear as L → ∞. In this
limit, superfluidity can arise from the dynamical suppression
of phase slips not captured in linear response theory.5 Another
feature distinguishing the nanopore superfluid fraction from
that of bulk helium is an apparent saturation at low temperature
for both ρW

s and ρA
s at a value much less than 1. A hint at

the origin of this behavior can be observed by examining the
spatial configurations inside the pore in Fig. 2. The interplay
of interactions between helium atoms as well as with the sur-
rounding amorphous Si3N4 leads to states exhibiting a series of
cylindrical shells,21,22 equivalent to the formation of thin film
layers of helium observed on 2D substrates including silicate.23

C. Local superfluidity

The competition between the tendency of bosons to
delocalize at low T and the strong geometrical confinement
effects in the pore can be investigated by measuring the
local contribution of the superfluid density. This was achieved
by histogramming the radial r dependence of the winding
number24 or path area25

ρW
s (r) = mL2

h̄2β
〈W · W (r)〉, (6)

ρA
s (r) = 4m2

h̄2βIcl(r)
〈A · A(r)〉, (7)

with W and A the full pore values defined above while

W (r) = 1

2πrL2

N∑
i=1

∫ h̄β

0
dτ

[
dzi(τ )

dτ

]
δ[r − r⊥

i (τ )] (8)

and

A(r) = 1

4πrL

N∑
i=1

∫ h̄β

0
dτ

[
r i(τ ) × d r i(τ )

dτ

]
z

δ[r − r⊥
i (τ )],

(9)

where Icl(r) = mr2 is the classical moment of inertia of a
single helium atom and r⊥

i (τ ) =
√
x2

i (τ ) + y2
i (τ ). A compar-

ison of the average particle number density with the two
types of local superfluid density can be seen in Fig. 3 for a
nanopore with R = 13 Å and L = 75 Å at T = 0.75 K. The
upper panels have been averaged over only the z axis while
the lower plot contains the fully cylindrically symmetric radial
values defined in Eqs. (6) and (7). The saturation of the total
superfluid density seen in Fig. 2 can now be immediately
understood in terms of a spatial “phase” separation where
only the inner volume of the pore contains superfluid helium
while the outer shells remain nearly solid, adhering to the
walls. The results are qualitatively similar for R = 12–15 Å
with the two outermost shells making a negligible contribution
to the superfluid density. The local superfluid estimators
are nearly identical while their total values can differ by a
factor of 2. This presents no paradox due to their different
normalizations:

ρW
s

ρ
≡ 2πL

N

∫ R

0
rdrρW

s (r), (10)

ρA
s

ρ
≡ 2πLm

Icl

∫ R

0
rdr

[
r2ρA

s (r)
]
, (11)
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FIG. 3. (Color online) The confined superfluid core seen by
comparing the particle (ρ), winding (ρW

s ), and area (ρA
s ) superfluid

number densities measured via quantum Monte Carlo simulations for
a R = 13 Å radius nanopore of length L = 75 Å at T = 0.75 K. The
first row shows the axially averaged local densities inside the pore
while the lower plot contains an additional angular average.

which are required to account for local contributions to the
classical moment of inertia present in inhomogeneous fluids

Icl = 2πLm

∫ R

0
rdr[r2ρ(r)] (12)

and provide consistency with linear response theory.25

The temperature dependence of the local superfluid density
can also be studied, and is shown for R = 13 Å in Fig. 4. When
the total superfluid density exhibits a plateau, there is only a
minimal dependence on temperature for the inner region of the
pore. As the temperature is raised, the local superfluid density
is reduced and begins to approach zero between the shells
indicating a suppression of intershell particle exchanges. The
nonzero and nearly temperature-independent feature in ρA

s (r)
near the outer edge of the largest cylindrical shell appears for
all radii studied, and is responsible for the finite value of ρA

s /ρ

at high temperature seen in the R = 10 Å inset of Fig. 2. Its
origin is connected to the presence of enhanced correlations
in the world line area when the radius of the cylindrical shell
is on the order of the thermal de Broglie wavelength.

IV. LUTTINGER LIQUID CORE

The core region exhibiting a nonzero superfluid response
is nearly one dimensional, having a radius of R � 6 Å. In
d = 1, fluctuations preclude the existence of any long-range
superfluid order, and instead, the helium system should be
described at lowest order, by the linear quantum hydrodynam-
ics of Luttinger liquid theory1 with effective Hamiltonian

H = h̄v

2π

∫ L

0
dz

[
1

K
(∂zφ)2 + K (∂zθ )2

]
. (13)

The phases φ(z) and θ (z) are defined in terms of the second
quantized helium field operator ψ†(z) ∼ √

∂zθ (z)eiφ(z) such
that [φ(z),∂z′θ (z′)] = iπδ(z − z′). Its low energy modes have
dispersion ε(k) = h̄vk and the value of the Luttinger parameter
K tunes the system between algebraic superfluid (K � 1) or
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FIG. 4. (Color online) The temperature dependence of the local
superfluid density measured via the winding number (top) and area
(bottom) estimator for a nanopore with radius R = 13.0 Å and length
L = 75 Å. The shaded region in the background corresponds to the
particle density ρ at T = 0.75 K.

solid (K � 1) order. For a real physical system, the velocities
vJ ≡ v/K and vN ≡ vK can be related to the parameters of the
underling many-body Hamiltonian. By comparing the predic-
tions of harmonic LL theory, derived from the grand partition
function Z = Tr exp[−β(H − μN )] with the measurements
from finite temperature QMC simulations, vJ and vN can be
determined. For quasi-1D helium confined inside nanopores
with R < 3 Å, this has already been accomplished,26 but for
larger radius pores, required the use of an ad hoc cutoff radius
when analyzing QMC data. The physical origin of this cutoff
is now fully understood as the radius of the superfluid core,
and we expect it to be described by LL theory:27

ρW
s

ρc

= 1 − πh̄βvJ

L

∣∣∣∣θ
′′
3 (0,e−2πh̄βvJ /L)

θ3(0,e−2πh̄βvJ /L)

∣∣∣∣ , (14)

where θ3(z,q) is a Jacobi theta function with
θ ′′

3 (z,q) ≡ ∂2
z θ3(z,q) and ρc = (Nc/N )ρ where Nc is

the number of atoms in the core. For each radius, we
have performed a rescaling of the total superfluid response
displayed in Fig. 2 and determined the velocity vJ (R) through
a fitting procedure that yields the best collapse of all low
temperature data onto Eq. (14). The results are displayed
in Fig. 5 where the temperature scaling of the nanopore
superfluidity is consistent with Luttinger liquid theory.

Much remains to be done, including confirming the
predicted pore length scaling of ρW

s /ρc and evaluating the
R-dependent LL parameter K . In addition, it seems natural
to contemplate the effects of disorder, surely present in the
pore walls, as well as the introduction of fermionic 3He which
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FIG. 5. (Color online) The superfluid fraction of the core of
nanopores for varying radii which can be collapsed onto the universal
prediction from Luttinger liquid theory. The inset shows the extracted
value of the phase velocity h̄vJ obtained by fitting to the winding
number estimator for each radius.

may strongly alter superfluidity as bosonic exchanges will be
suppressed in one dimension.

V. CONCLUSION

We have performed large-scale quantum Monte Carlo simu-
lations for helium-4 confined inside short 75 Å pores with radii
between 1–1.5 nm. The results show a finite and anisotropic
superfluid response above T = 0.5 K, with a magnitude that
is dependent on whether longitudinal or rotational motion
of the nanopore is considered. The difference is large and
arises from the absence of any classical moment of inertia in
the truly 1D limit where flow is still possible. Experiments
probing this remarkable breakdown of the two-fluid picture
could be performed by comparing the superfluid fraction
measured by capillary flow and a nanoscale Andronikashvili
torsional oscillator. Our results also indicate that when the
radii of nanopores becomes sufficiently small, the superfluid
fraction may exhibit plateaus, increasing in steps, due to
the classical sticking of wetting layers near the pore walls.
This is in stark contrast to the usual smooth temperature
dependence of ρs/ρ observed for bulk 4He and could provide
a signature of the crossover to 1D behavior. If the fraction of
atoms adhering to the nanopores’ walls could be discerned,
possibly by comparing flow rates at high and low temperature,
an examination of the finite size and temperature scaling
of the superfluid density would confirm that confined low-
dimensional helium is a Luttinger liquid. This would open up
an exciting strongly interacting and high density regime where
the effective low energy theory can be experimentally tested
in systems with Galilean invariance.
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