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Interaction effect on topological classification of superconductors in two dimensions
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We introduce a class of superconductors (SCs) in two spatial dimensions with time-reversal symmetry and
reflection (i.e., mirror) symmetry. In the absence of interactions, topological classes of these SCs are distinguished
by an integer-valued (Z) topological invariant. When interactions are included, we show that the topological
classification is modified to Z8. This clearly demonstrates that interactions can have a qualitative effect on
topological classifications of gapped states of matter in more than one dimension.
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I. INTRODUCTION

Topological phases are fully quantum mechanical states
of matter which are not characterized by classical symmetry
breaking.1 While gapped in the bulk, quite often, they
are accompanied by gapless excitations at their boundary,
signaling a highly entangled nature of their ground state. Since
the discovery of the integer quantum Hall effect (IQHE),2 the
list of topological phases in nature has been expanded, in
particular, by the recent discovery of topological insulators
in two and three dimensions (2D and 3D) in systems with
strong spin-orbit coupling,3–12 and the identification of 3He
B as a topological SC (superfluid).13 Unlike the IQHE, the
topological character of these topological insulators and SCs
(i.e., the stable gapless edge or surface modes) is protected
by time-reversal symmetry (TRS). The presence or absence
of a topological distinction among gapped phases for a given
set of symmetries and for given spatial dimensions can be
studied systematically, and is summarized in the “Periodic
Table” of topological insulators and SCs for noninteracting14

fermions.15–17

Since interactions are ubiquitous in real materials, a natural
question is whether and how interactions could modify topo-
logical classifications obtained for noninteracting systems.18

In other words, are there cases where interactions qualitatively
affect topological classifications? Even though this question
has not been fully or thoroughly answered, exciting progress
has been made in Ref. 19, in which Fidkowski and Kitaev
explicitly showed that the putative Z classification of one-
dimensional (1D) “noninteracting” SCs with unusual time-
reversal symmetry (“BDI class”) is modified to Z8 when
interactions are included. This Z8 classification of the 1D
BDI SCs with interactions is further illustrated from the
study of the entanglement spectrum.20,21 In more than one
dimension, stability of topological classifications in a number
of classes of noninteracting topological insulators and SCs
is argued from the perspective of low-energy topological
response theory.12,22,23 For bosonic (or spin) systems, a
systematic approach of constructing symmetry protected
topological phases in general spatial dimensions was recently
proposed.24 However, how interactions in fermionic systems
in 2D and 3D can dramatically modify their topological
classification obtained from noninteracting fermions remains
largely unexplored.25

In this paper, we partly fill this gap by considering 2D SCs
with TRS (T 2 = −1) and reflection symmetry (RS) (R2 =
−1). Note that T is antiunitary, while R is unitary. We call
SCs with these symmetry properties “DIII + R” SCs. First,
we show that the topological classes of these DIII + R SCs
are classified by an integer-valued (Z) topological invariant
at the quadratic level. Such topologically nontrivial SCs are
characterized by helical Majorana modes on the system’s edge.
The number of helical Majorana edge states is protected by the
symmetries at the noninteracting level.

We then ask whether those helical gapless Majorana edge
modes are stable against interactions while preserving those
relevant symmetries in question. As we show later in detail, the
helical Majorana edge states in the case of a Z = 8 topological
invariant are unstable against (even weak) interactions—the
gapless helical Majorana edge states become gapped while no
symmetry is broken in the bulk or the edges of the system.
It is worth stressing that all the relevant symmetries are fully
preserved while the gap opens in the edge. In other words, the
edge of the putative Z = 8 system is qualitatively the same
as Z = 0 systems when symmetry-preserving interactions are
included. Because the system’s edge we consider respects
the same set of symmetries as its bulk, robust edge states
could fully encode topological properties of the bulk due to
the bulk-edge correspondence. Consequently, the putative Z
topological classification of noninteracting DIII + R supercon-
ductors in 2D is reduced Z8 when interactions are considered.
A similar model, but with a different set of symmetries, was
studied independently in Refs. 26 and 27.

II. DIII + R SCS

Two-dimensional SCs with TRS T 2 = −1 (symmetry class
DIII) have a Z2 topological invariant as shown in the Periodic
Table. To see this explicitly, it is helpful to study their edge
theory. For Z2 nontrivial DIII SCs in 2D, its generic edge
theory is the 1D helical Majorana fermions:

Hfree =
∫

dx[ψ↑i∂xψ↑ − ψ↓i∂xψ↓], (1)

where ψσ are left/right-moving edge Majorana fermion
operators and σ = ↑,↓ are spin index with the following
properties under time-reversal transformation: T −1ψ↑T = ψ↓
and T −1ψ↓T = −ψ↑, which satisfies T 2 = −1. It is clear that

064507-11098-0121/2013/88(6)/064507(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.064507


HONG YAO AND SHINSEI RYU PHYSICAL REVIEW B 88, 064507 (2013)

the helical edge states above respect the TRS. Moreover, this
TRS protects this putative gapless helical edge state since there
is only one mass term imψ↑ψ↓ which breaks the TRS in the
edge. However, when there are two such helical gapless modes
labeled by a = 1,2, the putative gapless modes can be fully
gapped by time-reversal invariant terms im(ψ1

↑ψ2
↓ + ψ1

↓ψ2
↑).

Consequently, the topological classification is Z2.
To possibly have a Z topological classification of DIII SCs

in 2D, further discrete symmetry is needed. Since the helical
edge states preserve not only TRS but also the RS R defined as
R−1ψ↑(x)R = ψ↓(−x) and R−1ψ↓(x)R = −ψ↑(−x),28 we
consider 2D DIII SCs with RS, dubbed as the DIII + R class.
Note that R2 = −1 as required for spin half-integer fermions.
Now, we show that the DIII + R SCs in 2D are distinguished by
an integer-valued (Z) topological invariant. To see this, we con-
sider N copies (or flavors) of the helical gapless Majorana edge
states given by

∑N
a=1

∫
dx va[iψa

↑∂xψ
a
↑ − iψa

↓∂xψ
a
↓], where

a = 1, . . . ,N are the “flavor” indices (which is preserved by
both the time-reversal or reflection transformations) and va

are the Fermi velocities. We then write down the most general
mass term

iψa
↑Mabψ

b
↓, M∗

ab = Mab, (2)

and check if it can preserve both TRS and RS. (Note that
terms proportional to iψa

σ ψb
σ for σ = ↑ or ↓ are irrelevant

and only renormalize the Fermi velocities of edge fermions.)
Time-reversal symmetry requires Mab = Mba , while RS re-
quires Mab = −Mba . Consequently, M = 0 identically. In
other words, it is impossible to gap the N pairs of helical
gapless Majorana edge states by considering the noninteracting
fermion-bilinear terms for arbitrary N . This class of SCs is then
characterized by an integer-valued (Z) topological invariant
(see below).

III. MICROSCOPIC MODELS

Armed with insights from the edge theories, we now in-
troduce an explicit mean-field SC Hamiltonian which respects
both TRS and RS and which has nontrivial gapless helical
Majorana edge states:

Hlatt =
∑
〈ij〉σ

[−tc
†
iσ cjσ + H.c.] − μ

∑
iσ

c
†
iσ ciσ

+
∑

i

[�(c†i↑c
†
i+x̂↑ + c

†
i↓c

†
i+x̂↓) + H.c.]

+
∑

i

[i�(c†i↑c
†
i+ŷ↑ − c

†
i↓c

†
i+ŷ↓) + H.c.], (3)

where c
†
iσ are the fermion creation operators on site i and

σ = ↑,↓ are spin indices. It is clear that the model above is
invariant under RS R: cx,y,σ → (iσ x)σσ ′c−x,y,σ ′ and TRS T :
ciσ → (iσ y)σσ ′ciσ ′ .28 This model describes a SC with spin
up px + ipy pairing and spin down −px + ipy pairing, and
can describe a thin film of 3He-B. On a cylinder with edges
parallel to the x direction, we (numerically) obtain the helical
Majorana edge states, for t = � = 1 and for −4 < μ < 0 or
0 < μ < +4, say. These helical edge states are effectively
described by the Hamiltonian (1). The N -flavor generalization
of this model is straightforward.

IV. BULK TOPOLOGICAL INVARIANT

There is a bulk topological invariant which guarantees,
when noninteracting and when there is a translation symmetry,
the stability of the edge modes of DIII + R topological SCs
for arbitrary N . The construction is similar in spirit to the
mirror Chern number in 3D topological insulators protected
by RS.29 With the periodic boundary condition, the quadratic
bulk Hamiltonian can be Fourier transformed as

H =
∑

0�kx�π

∑
ky

�
†
kx

(ky)Hkx
(ky)�kx

(ky),

(4)
�

†
kx

(ky) := ( c
†
↑,k, c

†
↓,k, c↑,−k, c↓,−k

).

We then note at the reflection symmetric points kx = k̃x (=0
and π ), the Bloch Hamiltonian Hk̃x

(ky) commutes with R,
namely [Hk̃x

(ky),J x] = 0, where J x = diag(iσ x,−iσ x). In
other words, at k̃x , the quadratic Hamiltonian conserves Sx .
Combined with TRS, the quadratic Hamiltonian at kx = k̃x

can be written as

H (k̃x) =
∑
ky

(c†+,k,c−,−k)H̄k̃x
(ky)

(
c+,k

c
†
−,−k

)
, (5)

where the subscripts ± are eigenvalues of σx . Now, the
Hamiltonian H̄k̃x

(ky) above is in the AIII class with chiral
symmetry.15

Following Ref. 15, gapped 1D quadratic Hamiltonians
in symmetry class AIII are distinguished by an integer
topological invariant, the winding number ν. Thus, at each
reflection symmetric momentum kx = k̃x (k̃x = 0 and π ), we
can introduce an integer topological invariant (“the reflection
winding number”), ν(k̃x), the winding number of H̄k̃x

(ky). We
thus have two integral topological invariants, ν̃(kx = 0,π ).
The nonzero value of the invariant, ν̃(k̃x) 	= 0, guarantees
the presence of |ν̃(kx)| pairs of zero-energy Majorana states
at k̃x , when an edge is introduced along x direction. In
particular, when the invariant is nonzero ν̃(k̃x) 	= 0 at one
of the reflection symmetric momenta (k̃x = 0, say) and it is
zero at the other (k̃x = π ), this means there must be |ν̃(kx)|
branches of nonchiral edge modes. In general, the difference
of the reflection winding number

ν̃(kx = 0) − ν̃(kx = π ) (6)

tells us the number of nonchiral edge modes.

V. INTERACTION EFFECT

At the noninteracting level (and without disorder), the
DIII + R SCs have Z topological classification as shown from
both bulk and edge theories. Now, we consider the effect
of symmetry-preserving interactions in the mean-field BdG
Hamiltonian and check if the putative topological classification
of Z is modified or not. Since gapless helical edge states are
the hallmark of those topologically nontrivial SCs, we believe
that it would be sufficient to check if the gapless helical edge
states are stable against interactions while requiring there is
no symmetry breaking induced by interactions.30

For the case of topological invariant N = 8 [more generally
N ≡ 0 (mod 8)], we try to identify certain interactions that
can destabilize the gapless edge states while preserving the
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symmetries of the bulk and the edge. For simplicity, we
consider the helical edge modes of free fermions with the
same Fermi velocities va = v,

Hfree = v

∫
dx

8∑
a=1

[ψa
↑i∂xψ

a
↑ − ψa

↓i∂xψ
a
↓], (7)

which is invariant under the global SO(8) rotations among
the left-moving or right-moving Majorana fermions. Now,
we consider interactions allowed by TRS and RS. One
naturally starts with the following SO(8) symmetric inter-
actions: HGN = Hfree − g

∫
dx(

∑8
a=1 iψa

↑ψa
↓)2, where g is

the coupling constant. This theory is then the SO(8) Gross-
Neveu (GN) model in (1 + 1)D, which is exactly solvable.31

Especially, the interaction is marginally relevant for g > 0: for
arbitrary small interaction strength g the ground state is gapped
by spontaneously breaking the time-reversal (or Z2 chiral)
symmetry with the order parameter 〈iψa

↑ψa
↓〉 ∼ e−π/(vg). There

are twofold degenerate ground states at the edge. When g < 0,
the interaction is marginally irrelevant and the ground state
remains gapless. In other words, the SO(8) symmetric GN
interactions cannot result in a unique gapped ground state in the
edge. We need to look for some other channel of interactions
to fulfill this.

We follow the construction introduced in Ref. 19. The
noninteracting edge is described by the conformal field theory
of eight free Majorana fermions, which is equivalent to
the SO(8)1 Wess-Zumino-Witten model. The eight fermion
operators ψa

σ (σ =↑ or ↓) form the vector representation of
SO(8). Moreover, the 16-dimensional spinor representation
of SO(8) is reducible to two eight-dimensional irreducible
ones formed by spinor operators ηa

σ and χa
σ , a = 1, . . . ,8. The

explicit forms of ηa
σ and χa

σ are given by

exp

[
i

2

(±φ1
σ ± φ2

σ ± φ3
σ ± φ4

σ

)]
, (8)

where φa
σ are boson fields obtained from bosonizing the

system, ψ2a−1
σ ± iψ2a

σ = e±iφa
σ . The number of minus sign

in the exponent of Eq. (8) is even for ηa but odd for
χa . Accidently, ψ , η, and χ all form eight-dimensional
representations of SO(8); they can actually be transformed
into one another by the so-called triality symmetry of SO(8).
It turns out that the spinor fields are useful to construct the
interactions we desire.

To fully gap the edge states without spontaneously breaking
any symmetry, we consider the following interaction:

Hint = −
∫

dx

⎡
⎣A

(
7∑

a=1

iηa
↑ηa

↓

)2

+B

(
7∑

a=1

iηa
↑ηa

↓

)
(iη8

↑η8
↓)

⎤
⎦ , (9)

which is SO(7) invariant and leaves η8
σ fixed. This SO(7)-

symmetric interaction is also local in terms of the original
fermions ψa

σ . Indeed, a finite gap opens in the edge states
while preserving the symmetries in question, as explicitly
shown in Ref. 19 when B < 0 and 2A > B. To understand
this, let us first look at the limit A � |B| which is the SO(7)

GN model plus free η8
σ fermions (when B → 0). The chiral

symmetry is broken by the SO(7) GN interactions with the
order parameter M = 〈i ∑7

a=1 iηa
↑ηa

↓〉 	= 0, which generates a
mass term iBMη8

↑η8
↓ for η8 fermions. Now, the η8 fermions

can be mapped to the transverse field Ising model with
field strength (h − hc) ∝ ±BM , where hc is the critical field
strength in the transverse field Ising model which is equal
to the Ising interaction strength. For h > hc, its ground state
is paramagnetic without any symmetry breaking; for h < hc,
the system spontaneously breaks the Ising symmetry resulting
in twofold degenerate ground states. In other words, B > 0
and B < 0 lie in two different phases. Since B = 2A > 0 is
the SO(8) GN model which spontaneously breaks the chiral
symmetry having twofold degenerate ground states, it is then
clear that B < 0 phase has a unique gapped ground state
without breaking any symmetry.

It is worthwhile to understand more heuristically why
N = 8 is special. The edge theory with N = 8 is qualitatively
equivalent to the two-leg ladder electron model at half-filling.
Since there are two electrons per unit cell for the two-leg
ladder at half-filling, having a fully gapped ground state
without breaking any symmetry is possible and expected.32

To illustrate this, let us consider lattice Majorana fermions on
1D chains described by the Hamiltonian,19 H = uH1 + wH2,
where H1 is quadratic in lattice real fermion operators:
H1 = −(i/2)

∑8
a=1

∑
j saλ

a
jλ

a
j+1, where {λa

i ,λ
b
j } = 2δab

ij and
sa = {1,1,−1,−1,1,1,−1,−1}. It is clear that H1 is invariant
under either TRS or RS, when we assume

R : λa
j → (−1)aλa+2

−j , λa+2
j → −(−1)aλa

−j , (10)

T : λa
j → λa+2

j , λa+2
j → −λa

j , a = 1,2,5,6. (11)

H2 is an interaction, and given by H2 = ∑
j W (λa

j ), where
W (λa

j ) is a four fermion interaction composed of eight
Majorana fermions:

W (λa) = +λ1λ2λ3λ4 + λ1λ2λ5λ6 + λ1λ2λ7λ8

+ λ3λ4λ5λ6 + λ3λ4λ7λ8 + λ5λ6λ7λ8

− λ2λ3λ6λ7 − λ1λ4λ5λ8 + λ1λ3λ5λ7 + λ2λ4λ6λ8

− λ2λ3λ5λ8 − λ1λ4λ6λ7 − λ1λ3λ6λ8 − λ2λ4λ5λ7.

(12)

In the absence of the interaction term w = 0, the lattice
model is gapless, whose continuum limit is given by the
Hamiltonian (7). When we switch on w 	= 0, the edge theory is
gapped with unique ground state without breaking symmetries.
This can be understood in the following way: the interaction
W can be written in terms of complex fermions,

(λ1 + iλ2)/2 = c1↑, (λ3 − iλ4)/2 = c1↓,
(13)

(−λ5 + iλ6)/2 = c2↑, (λ7 + iλ8)/2 = c2↓,

as follows:

W
(
λa

j

) = 16Sj,1 · Sj,2 + 2(nj,1 − 1)2 + 2(nj,2 − 1)2 − 2,

(14)

where S1,2 and n1,2 are the spin and the fermion number
operator for c1,2s (s =↑/↓). With this interaction, the charge
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degrees of freedom will be frozen by Mott physics. The
exchange interaction S1 · S2 (the “rung-exchange’interaction)
realizes the rung-single phase which has a unique ground state
without breaking any symmetry.

VI. DISCUSSION

We have discussed interaction effects on topological SCs in
2D protected by TRS and RS. This is a nontrivial example
in 2D where topological classification of ground states is
dramatically altered by the interaction effect. In a separate
paper, we plan on a more systematic study on topological
insulators and SCs protected by RS in addition to other possible
discrete symmetries.33,34

We close with discussion on disorder effects. In the tenfold
classification of topological insulators and SCs, it has been
proved useful to consider the boundary (edge, surface, etc.)
Anderson localization problem: for a topological bulk, one
should find a boundary mode which is completely immune
to disorder. In turn, once one finds such “Anderson delocal-
ization” at the boundary, it means there is a topologically
nontrivial bulk. Not only this bulk-boundary correspondence
can be used to find and classify bulk topological phases in the
absence of disorder, it immediately tells us such topological
phases are stable against disorder. For topological phases
protected by a set of spatial symmetries, stability against
disorder is, in general, not trivial, since spatial inhomogeneity
does not respect the spatial symmetries. One can still consider,
however, situations where the spatial symmetries are preserved

on average. The effects of disorder in N -channel quantum
wires in symmetry class DIII, which are from our point of
view the edge theory of the DIII + R topological SC with the
topological integer (=N ), have been studied.35 It is known
that there is an even-odd effect in N : the mean conductance
decreases algebraically as L−1/2 with the length of the wire L

for odd N , whereas it decays exponentially with L for even
N . Correspondingly, for symmetry class DIII with N odd the
density of states shows the Dyson singularity. This implies
that disorder simply reduces the Z topological classification
of DIII + R SCs to the Z2 classification, which is the same as
the topological classification of 2D DIII SCs in the Periodic
Table. In a separate paper33 we will report the other cases
where the Z topological classification is reduced to the Z2

classification, which is not related to the existing topological
class in the Periodic Table.

Note added: Recently, some other papers, a couple of works
that deal with similar topic have appeared.36–38
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