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We study the influence of the band structure on the symmetry and superconducting transition temperature in
the (solvable) weak-coupling limit of the repulsive Hubbard model. Among other results we find that (1) as a
function of increasing nematicity, starting from the square-lattice (zero nematicity) limit where a nodal d-wave
state is strongly preferred, there is a smooth evolution to the quasi-1D limit, where a striking near-degeneracy is
found between a p-wave- and a d-wave-type paired states with accidental nodes on the quasi-one-dimensional
Fermi surfaces—a situation that may be relevant to the Bechgaard salts. (2) In a bilayer system, we find a phase
transition as a function of increasing bilayer coupling from a d-wave to an sy-wave state reminiscent of the
iron-based superconductors. (3) When an antinodal gap is produced by charge-density-wave order, not only
is the pairing scale reduced, but the symmetry of the pairs switches from d,2_,> to d,,; in the context of the
cuprates, this suggests that were the pseudogap entirely due to a competing CDW order, this would likely cause

a corresponding symmetry change of the superconducting order (which is not seen in experiment).
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I. INTRODUCTION

Electronic pairing mechanisms have been extensively
studied in the context of high-temperature superconductivity,
with much focus on the prototypical Hubbard model with a
repulsive on-site interaction.!? It is challenging to obtain un-
equivocal results for this model owing to the fact that there exist
no well-controlled solutions (in more than one dimension) in
the physically most relevant regime, where the strength of the
interaction is comparable to the bandwidth. We can, however,
use the perturbative renormalization group (RG) method to
obtain asymptotically exact results’ in the weak-coupling
(small U) limit in which unconventional superconductivity
occurs without any fine tuning. One might hope that insights
from the weak-coupling limit, such as trends in 7, and the
structure of the order parameter, may carry over qualitatively to
real materials. This notion is supported by the fact that a variety
of different physically motivated approximate calculations
based on weak-coupling reasoning seem to give consis-
tent results when extrapolated to intermediate couplings®?
(see Sec. V).

That unconventional superconductivity can arise from a
purely repulsive interaction has been known for a long time.*
Generically, in the weak-coupling limit, the bare interaction
is purely repulsive while second-order processes, although
typically attractive, are much weaker. However, when the
bare interactions are short-ranged, the induced attraction can
overscreen the bare repulsion. For the case of the Hubbard
model, the bare interaction operates only onsite; the second-
order induced attraction is nonlocal and therefore operates in
nontrivial channels where the bare interaction has no effect.
The effective interaction inherits its k-space structure from
virtual particle-hole excitations, whose properties are in turn
sensitive to the band structure, not only at the Fermi energy
but further away from it as well.

Specifically, we consider a reference “undistorted” Hub-
bard model defined on a square lattice, and then study the
effect of various distortions of the band structure on the
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superconducting 7. In the context of the cuprates, these distor-
tions can be thought of as arising from the presence of specific
forms of “competing” orders, including various density wave,
orbital current, and electron nematic phases that may play a
role in the pseudogap regime.'®!3 To address the formation
of these phases, and their relationship to superconductivity,
one necessarily must solve the intermediate-coupling problem,
which has no small parameters. However, deep inside such
phases, these nonsuperconducting orders can be represented
as static mean fields that reconstruct the bare band structure.

Our results provide a general perspective on the mechanism
of unconventional superconductivity. In the limit of a strong
nematic distortion, the band structure is that of a quasi-1D
superconductor; as a function of increasing strength of the
coupling between the two planes in a square lattice bilayer, we
find a transition from d- to sy-wave pairing symmetry. The
fact that we can follow the evolution of the superconducting
state from the undistorted limit in which it has simple d-wave
pairing, of the sort found in the cuprates, to an s state, of the
sort thought to occur in the Fe-based superconductors, or to
a quasi-1D case in which there is a near degeneracy between
a singlet and a triplet paired states with “accidental nodes,”
which may be relevant to the Bechgaard salts or, possibly even
to Sr,RuQy, suggests a unified understanding of the origin
of unconventional pairing across a broad range of materials.
Although this mechanism is loosely related to the “spin
fluctuation exchange” that has been widely discussed,> "1 in
the limit studied here there is no well-defined collective mode
that can be thought of as “the glue;”! rather, the pairing is a
result of overscreening by the entire band.

This paper is organized as follows. In Sec. I, we summarize
the key results obtained from our study. In Sec. III, we
review the perturbative renormalization group (RG) method
developed in Ref. 3, and present a generalization for multi-
band cases. In addition, we review the general features of
gap structures from unconventional pairing, and establish
the physical considerations that determine the preferred
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superconducting order parameter symmetry for a given fermi-
ology. In Sec. IV, we discuss various model problems of
band-structure effects on superconductivity. In Sec. V, we
speculate more broadly on the implications of our results
for real materials, where interactions are never weak, so
we are forced, without formal justification, to extrapolate to
intermediate couplings.

II. RESULTS

A. Optimal band structure for superconductivity

There is considerable ambiguity in how to define the
optimal condition for superconductivity, even in principle,
since the answer depends on what is held fixed. This issue
arises even more clearly when real materials or composites are
considered, where many microscopic interactions are changed
when any macroscopic characteristic is varied. Thus we have
focused on a number of qualitative features that emerge from
an exploration of 7, as a function of specific parameters that
alter the band structure in the various models we have studied.

(a) Role of Van Hove points. The square lattice affects
the band structure near half-filling in a way that is highly
conducive to d,»_,>-wave superconductivity. As has been
elucidated in many places,®%!%!% this is a combined effect of
a maximum in the particle-hole susceptibility near (;r,7) and
the fact that this same vector connects the “antinodal” portions
of the Fermi surface that pass near the Van Hove points, i.e.,
X = (,0) and X = (0,7) where the Fermi velocity vanishes,
leading to a logarithmically divergent density of states when
the chemical potential is tuned to them.

However, as can be seen in Figs. 3 and 13, the dimensionless
pairing interaction is substantial for a relatively broad range of
chemical potentials in the neighborhood of the critical value.
This reflects the fact that the Van Hove points are “points” on
the Fermi surface whereas the condensation energy involves
the entire Fermi surface. The precise significance of the Van
Hove point would be further reduced by quasiparticle lifetime
effects, either from higher order processes in powers of U/t
or due to the presence of weak disorder.

(b) Multiple Fermi pockets. Multiple Fermi surfaces occur
in many materials as a multiorbital effect, but they can just
as easily appear in the Hubbard model with multiple sites
in the unit cell, which is often a consequence of translation
symmetry breaking orders. In particular, as is illustrated in
the bilayer example (see Figs. 13 and 12) when electron-type
and hole-type pockets are present, it can be energetically
preferable for the pairing gap to change sign between these
pockets, but to be nearly constant (nodeless) on each pocket.
Somewhat less intuitive, however, is the diverse behaviors
that are possible even as the size of a Fermi pocket tends
to zero; as shown for the case of the (7,7)-CDW (discussed
in Sec. IV C), the pairing strength need not vanish and the
preferred gap can have sign changes (i.e., be nodal) as a
function of angle around the pocket, even in this limit.?’ This
follows from the fact that the density of states of an elliptical
Fermi surface in 2D is independent of its enclosed area
(e, |prl?).

(c) Optimal inhomogeneity for superconductivity. It has
been proposed that there is an “optimal inhomogeneity for
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superconductivity,” a notion that has been investigated with
contradictory results using various approximate methods?>'~>
in the context of the checkerboard Hubbard model—defined
in Sec. IV D. Unambiguously, in the weak-coupling limit, we
find that the dimensionless pairing interaction X is a strongly
increasing function of the checkerboard potential, although for
reasons that are somewhat trivial.

B. Interpolating between limiting cases

(a) From the square symmetric to quasi-1D limit. Nematic
order spontaneously breaks the Cy4 rotational symmetry of the
square lattice to C;; at a band-structure level, the degree of
nematicity is the difference between hopping amplitudes in
the x and y directions. Over the entire range of nematicity,
the dominant spin-singlet superconducting instability remains
a d-wave-type singlet with four gap nodes on the Fermi
surface (see Figs. 3 and 4), which are required by symmetry
only in the limit of zero nematicity. This smooth evolution
highlights the unity of mechanism involved in the square
lattice and 1D limits, and identifies the “accidental” gap
nodes in the quasi-1D system as vestigial d-wave nodes. For
large nematicity, there is also a spin triplet (p-wave) paired
state that is nearly degenerate with the singlet state. There is
considerable experimental evidence that both these features
of the superconductivity may be relevant to the Bechgaard
salts.”6-28 Our finding of an approximate degeneracy between
d-wave and p-wave states might suggest further investigations
such as applying magnetic fields to break this degeneracy.

(b) From d- to si-wave pairing in a bilayer model. In a
bilayer square-lattice model near half-filling, as a function of
interlayer tunneling, the band structure evolves from a weak-
tunneling regime in which two nearly identical electronlike
Fermi surfaces enclose the I" point, to a strong-tunneling
regime with an electron and hole pocket enclosing, respec-
tively, the I' and M points. The latter case shares a salient
feature of the fermiology of the pnictide superconductors.?
As shown in Fig. 13 (and consistent with earlier results
of Maier and Scalapino®’), a phase transition occurs for
intermediate tunneling where the symmetry of the order
parameter changes from d-wave for small bilayer coupling
to s for large tunneling.’'*> However, the basic pairing
“mechanism” remains the same illustrating the principle that
different order parameter symmetries can emerge from the
same underlying mechanism, depending on the band structure.

C. Insufficiency of competing orders to fully explain the
“pseudogap” phenomenology

The pseudogap,®® which in the hole-doped cuprates domi-
nates the “normal” state above the superconducting 7, has a
k-space structure that is of d-wave type; it is vanishingly small
in the “nodal region” (i.e., near the points on the Fermi surface
at which the d-wave nodes in the quasiparticle dispersion
appear in the superconducting state) and it is largest in the
antinodal regions. In the superconducting state below T,
the gap takes on a standard d,>_,>-wave form, as found for
materials that are not too strongly underdoped. These facts
suggest that the pseudogap is somehow intimately related to
the d-wave superconducting gap. Conversely, the pseudogap
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has a different temperature and doping dependence than the
near-nodal superconducting gap, and shares other features
suggestive of a distinct, nonsuperconducting order.

Given that many different types of order appear to be in
close competition in the cuprates, so that the various orders are
more “intertwined®*” than simply “competing,” it may not be
possible to unambiguously define the extent to which the pseu-
dogap reflects precursor pairing correlations versus the effect
of an actual or incipient density-wave order. On the basis of
the weak-coupling analysis, we are able to highlight a possible
inconsistency with a viewpoint that attributes the pseudogap
entirely to a nonsuperconducting competing order.

Suppose, that the pseudogap arose entirely from some form
of particle-hole ordering—for example, from (m,7)-CDW
order. The fact that the pseudogap eliminates states near the
X points in the BZ, i.e., precisely the states that most strongly
contribute to the d,>_,> pairing, certainly leads to a suppression
of T, as is clear in the model calculation shown in Fig. 8. It also
leads to a change in symmetry of the dominant order parameter.
Indeed, in the model considered, the dominant instability
switches from d,_,2- to d,,-wave superconductivity once the
CDW order is strong enough to open a complete antinodal gap.
No such change in symmetry has been seen in the cuprates.

III. MODEL AND METHODOLOGY

Itis well established that the effective field theory involving
weakly interacting degrees of freedom close to a Fermi surface
can be treated using a perturbative renormalization group (RG)
approach. To connect this to the behavior of a microscopic
model, Ref. 3 introduced a two-step analysis where in the
first step, the low energy effective action is derived from the
Hubbard model, and in the second step, the method of Shankar
and Polchinski®*>3 is implemented to calculate the RG flow.

In the first step, the effective action is obtained by inte-
grating out all high energy modes outside an asymptotically
thin energy shell of width €2y around the Fermi energy using
perturbation theory. There is an arbitrariness in the choice of
Qp. For a system with bandwidth W and density of states
at the Fermi surface, p, 2o must be taken large enough,
Qo > We PV to avoid the breakdown of perturbation
theory which would otherwise arise due to logarithmically
divergent terms in the series. At the same time, 2y must
be small enough, Qy <« pU? « W that all quantities with
nonsingular dependences on €2 can be replaced by their values
evaluated at 2o = 0 and, moreover, errors associated with
linearizing the dispersion relation near the Fermi energy can
be neglected.

In the next step, the RG flow is calculated from the
effective action. The superconducting transition temperature
is identified with the energy scale where the dimensionless
coupling constant in the Cooper channel grows to order
unity. It can be shown that the final result is independent
of €. This relatively simple analysis is justified because
in the weak-coupling limit, superconductivity is the only
generic instability of the Fermi liquid, as long as we avoid
perfect nesting in the particle-hole channel or Van Hove
singularities. Although our method breaks down exactly at
these singularities, it is still valid as long as we stay away from
them by more than O(e~'/?Y). When we discuss the “behavior
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at a singularity,” it should be kept in mind that there always
exists a parametrically narrow region around it, which is not
included in our description.

A. Model

To go through the details of the procedure described
above, we consider the most general Hubbard Hamiltonian
encompassing all cases studied in this paper. Its quadratic part
is a tight-binding model with one orbital per atom and one or
more atoms per unit cell. There is a local Hubbard interaction
(which for simplicity we take to be the same on all sites, even
if there is more than one per unit cell), which gives an energy
penalty of amount U whenever two electrons reside on the
same atom. In momentum space, the Hamiltonian reads

H=Hy+V,
Hy= Y &) cl,curo - 1)
k,t,7',0

4 P
V= N Z Ckiv1Chor ) Chat L Oy Tt 5
kil T

where k4 = k; + k, — k3, N is the number of unit cells in
the system, and 7 and 7’ denote sublattices in a unit cell.
No spin-flip term exists in Hy as (for simplicity) we have
not included effects of spin-orbit coupling, and the only
magnetically ordered states we will treat have collinear spin
ordering. tg/)(k) is a Hermitian matrix, which is diagonal-
ized by the set of orthonormal eigenvectors oeﬁ")(n,k) with
corresponding eigenvalues €, (n,k). These eigenvalues are the
energy dispersion of the noninteracting band structure and n
is the band index. Henceforth, we will use the compressed
notation k = (n,Kk). We can rewrite the Hamiltonian as

Hy = es(k)cl,ch ,
ko

(2)
U ;
. T
V = N {ks} M(kl,kz,k3,k4)C]I]TCk2le4¢Ck3T,

where

M (ki ks k3, ks) = Zoei“(kl)*ai“(kz)*oé”(ks)ozi“(lw) 3)

is the bare vertex function. The factor M (ky,k;; k3,k4) of the
scattering element play a crucial role in expressing multiorbital
and multi-sublattice interference effects.’"

B. Perturbative renormalization group

In the first step of the calculation, we integrate out the high
energy degrees of freedom and compute the various vertex
operators that enter the low energy effective action. The only
important vertex is the Cooper channel, FM/(n,lA(; n/,ﬁ/), which
is the amplitude for scattering a pair of electrons with spin
polarization ¢ and ¢’ from crystal momenta k and —k" on
the Fermi surface corresponding to band »’, to k and —k on
the Fermi surface corresponding to band » while maintaining
their spins. This calculation can be carried out perturbatively
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in powers of U with the result
Dy (ks k) = UTY ) ks k) + UPT s ) + - )
where k = (n,k), —k = (n, —K), k' = (0’ ,k)),
Ik Ky = Mk, —k: k', -k, 5)
renkn k)
= I (—k.n;—k )
_ Z / 2 { S0 )] = f1E1n.p + K+ )
@m) E,(m',p) — &y (m,p +k + k)

—K)]

x M[(n,k),(m’,p); (m,p + k +K),(n',
x M[(m,p +k+K),(n, —k); 0 ,K),(m',p)I},  (6)

where &;(n,p) = €,(n,p) — 1 is the single-particle energy
measured from the Fermi level u, v is the volume of the unit
cell, f(§) is the Fermi function (actually, the step function
because we work in zero temperature), and the integral is
performed over the first Brillouin zone.

For like spins, there is no first-order term, ') =0,
since the onsite Hubbard interaction operates only between
antiparallel spins, while

r2m.k:n' k)
_ 2 d’p | f1&,(m',p)] — fI& (m,p +k — '9)
=V Z 2
(2m) E,(m',p) — & (m,p+k—K)
x M[(n,k),m’,p); (0’ K),(m.,p +k — k)]

xM[(n, —Kk),(m.p+k —K); (', — ﬁ/),(m’,p)]}, )

and F(Z)(k k' is defined correspondingly. Figure 1 shows the
Feynman diagrams corresponding to Eqs. (6) and (7). The

m,p+k+Kk,1

TI’/71A(,7T TI’7IA{>T
\ /
\ /
\ /
\N/
A
/ N\
/ \
/ \

—_— N e .
n/,ik,ai Wl,7p7l n, _k7l
(a)

TI’/71A(,7T TI’7IA{>T
}
~ ~1 /
7n7p+k7k7l QTN'?pvi
}
—_— .
n/,ik,aT n, _k7T
(b)

FIG. 1. Second-order effective interaction vertices in the Cooper
channel: (a) opposite spins: F(Tzf(n,k;n/ k). (b) like spins:
F(z)(n k;n' k) l"(z) and 1"(2) are obtained by inverting all spins in
(a) and (b), respectlvely
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momentum transfer is k + K for opposite and k — K for like
spins. When there is only a single band (per spin), further
simplification follows:

r'?, (k:K) = % x_g 10 (k FK), (8)

where

& [ fl&,®)] = [1& (P + @)
oo’ =’ s 9
Koo (= / (2n)2{ &P — & (P +a) } )

is the usual particle-hole susceptibility.

The second stage of the RG calculation is most efficiently
carried out in a basis that diagonalizes I" in which each
component renormalizes independently of the others. The
eigenvalue equation for pairing with antiparallel spins assumes
the form of an integral equation:

dk,
Z/mrm(n ko' K, )W (n k)

= haVa(nk,), (10)

where v(n,k,) = de(n,k)/0k denotes the Fermi velocity at
(n,k,). The analogous expression for like-spin pairing is
obtained in terms of I',,. The integration is over the portion
of the Fermi surface belonging to each band, and we have
introduced new subscripts # and n’ in k,, and IA(;/ to emphasize
the bands they originate from. In cases in which SU(2) spin
rotational symmetry is preserved, all even eigenfunctions of
'y, correspond to spin-singlet and all odd eigenfunctions of
both I'y; and I'y4 =T'y, correspond to spin-triplet pairing.
Notice that 1/v accompanies the integration measure. The
eigenfunctions in Eq. (10) satisfy the normalization condition

dk, R .
————— VY, (n.k, nk,) =8y 11
;/(Zn)zv(n,kn)w Wenk) =8 (1)
and the completeness relation

Y Valn R K,) = 2 u(n,R,)8 Ky — K ) S -

For small U, the first-order contribution to the Cooper
channel vertex for opposite-spin pairing, U F(T f , 1s paramet-
rically large compared to the second-order contribution. As
F(Tlf is positive semidefinite, the space of all possible pairing
solutions can be divided into two subspaces—that in which
F(le has positive eigenvalues (which would be the space of
the “conventional s-wave” states if U were attractive) and
that which is annihilated by T'{!) (which we will refer to as
“unconventional”). In analyzing higher order contributions
to I'y,, we must always project onto the unconventional
subspace—this will be implicit in all further discussion.

All negative eigenvalues grow under the second stage of
RG. We will adopt the convention that A, < A,+1, SO Ag is
the most negative, and hence most relevant eigenvalue. The
RG procedure can be iterated until the most relevant coupling
grows to be of order 1, which occurs at an energy scale
~W exp(—1/|Xo|), where W is the bandwidth.> This energy
scale is identified with the superconducting transition temper-
ature, and the symmetry of the eigenvector(s) corresponding
to Ag is the pairing symmetry. Solving the BCS gap equation
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using this interaction gives a pairing gap that has exactly the
same momentum dependence as one of the pair wave functions
w(")(kn). Moreover, wé")(ﬁn) must transform according to
an irreducible representation of the point group, and the
symmetry of the pairing gap (i.e., the pairing symmetry) can be
classified in the same manner. Note that different harmonics
can contribute to the given form factor in its corresponding
symmetry sector.

Finally, we comment on practical methods for diagonalizing
I'. This is performed numerically, after discretizing Eq. (10) so
that it becomes a matrix equation. We can take two different
approaches in the discretization. Most straightforwardly, we
can do this by discretizing the Fermi surface in terms of a
large set of patches, for which various schemes have already
been developed within the functional renormalization group
(fRG).!819:38,40-42 Alternatively, we can discretize the whole
first Brillouin zone, but only keep states whose single-particle
energy lies within a small energy window €2 from the Fermi
surface. This requires transforming the integration measure in
Eq. (10) into a summation over the momenta within the energy
window:

/(Zn)zv(n k,) 20 / /(27[) 2v(n,k,)

Pk 5
~ 2 a2 2QNV -
[El] <
12)

where N is the number of unit cells in the system.

The first method is more accurate for a fixed number
of discrete k points (fixed size matrix). At the same time,
implementing it poses a challenge, as a detailed analysis
of the equation describing the Fermi surface is required to
divide it into different segments and determine the weight
for each. The second method is easier to implement, but
requires a much larger number of points to ensure the same
level of accuracy. Eventually, we have employed the first
method, taking advantage of the expertise existent from the
fRG schemes.

C. Pairing from repulsive interactions

Before analyzing specific problems, we discuss the con-
siderations which lead to negative eigenvalues of the Cooper
channel vertex I'. In many circumstances, the second-order
Cooper channel vertex is a quantity with a fixed sign
regardless of its band indices or momentum arguments. When

(G)(k) = tirf’)(—k)* (time-reversal symmetry) in Eq. (1),

aZ(k) = a;7(—k)* is satisfied. Then, the two bare vertex
functions in Eq. (6) are complex conjugates of each other
and it follows that ') > 0. Similarly, #.7)(k) = #%)(—k)*
(all hopping amplitudes are real) implies I'®) < 0.* In such
cases, which includes all examples we have studied except for
opposite-spin pairing in the presence of an SDW background
negative eigenvalues of the positive quantity I L arise from
large off-diagonal elements, leading to sign- changmg pair
wave functions. On the other hand, to obtain a negative

eigenvalue out of the negative quantity I'?), it is desirable

oo’
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to have a pair wave function with the same sign between two
momenta whenever the matrix element connecting them is
large, together with the sign change mandated by fermion
antisymmetry.

The features that characterize the states with the most
negative eigenvalues are then clear. (1) They involve sign-
changing order parameters, which are orthogonal (averaged
along the Fermi surface) to all “conventional” s-wave states.
(2) The structure of the favored superconducting gap along
the Fermi surface can be inferred in large part from a catalog
of wave vectors, Q, at which I'® is large; in general, for
antiparallel spins, the gap will have the opposite sign at
any two points on the Fermi surface for which k + kK ~ Q,
and for parallel spins, to the extent it is consistent with the
antisymmetry required by Fermi statistics, the gap will have
a uniform sign for any two points for which k — K ~ Q.
(3) The most important portions of the Fermi surface are
either those in which this approximate “nesting” condition
is satisfied over a substantial region of the Fermi surface, or in
which the Fermi velocity is small (density of states is large).
Portions of the Fermi surface with a relatively small integrated
density of states generally play little role in either determining
the structure of the gap function, or the magnitude of the
eigenvalue, A.

Notice that as long as spin rotation symmetry is unbroken,
both spin-singlet and spin-triplet pairing can be derived from
I'4,—even parity solutions are singlet and odd parity solutions
are triplet. For magnetically ordered states that break spin
rotation symmetry, the eigenfunctions of I';, must be analyzed
separately.

IV. MODEL PROBLEMS
A. Square-lattice Hubbard model

We have applied the above theoretical framework to a
variety of systems based on the 2D square lattice. The common
starting point is the repulsive Hubbard model with nearest-
and next-nearest-neighbor hopping amplitudes (¢ and ¢') and
uniform on-site energy (which is set to zero). The energy
dispersion in the noninteracting limit is thus

e(k) = —2t(cosk, + cosk,) — 4t cos k. cos ky. (13)

In Ref. 3, various cuts through the phase diagram of this model
were computed for weak repulsive U. For both ' = 0 and
t' = —0.3¢, the ground state exhibits superconductivity with
the d,>_ > symmetry for a broad range of electron density near
half-filling.

Before discussing more complicated models, let us review
the origins of the robust d,>_,2-wave superconductivity in
this model. No multi-orbital or multi-sublattice effects are
present [M(ky,ks,k3,ks) = 1]. Thus, to first order in U, I'y,
is momentum independent and repulsive. As a consequence,
all candidate pair wave functions, v, (ﬁ), are constrained to
be orthogonal to the trivial s-wave solution, lﬂs(f() o 1. The
second-order contribution is —U2x(q = k + IA(/) > 0 (spin in-
dices are dropped because there is no spin dependence), which
for electron density not too different from ng = 1 per site,
is somewhat peaked for Q = (7,7). [x(q) has a logarithmic
divergence at q = Q under fine-tuned circumstances when the
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-05 0
kx/n

FIG. 2. (Color online) The Fermi surface of the “parent Hubbard
model” for ' = —0.3¢ at half-filling (ny = 1). The green arrows
represent the dominant scattering processes, and the dashed lines
mark the nodes of the d,2_ 2-wave gap.

Fermi surface passes through the Van Hove points at (7r,0)
and (0,7).] Moreover, the density of states is maximal near
(0, &) and (£m,0), while minimal where diagonals of the
square Brillouin zone intersect the Fermi surface. Thus the
second-order induced interaction vertex is the largest between
the region near (0, £7) and that near (+,0), precisely where
the density of states is largest. For d,»_,> pairing, the gap
changes sign in just the right way to take full advantage of this
strong effect, while the associated nodes intersect the Fermi
surface exactly where the density of state is the smallest, and
hence the associated loss in condensation energy is smallest
(see Fig. 2).

B. Ordered translationally invariant states

With translation symmetry unbroken, we are still dealing
with a single band problem, for which M = 1 and hence
is simply the usual particle-hole susceptibility. Thus the only
differences with the problem already analyzed come from the
effects of the k-space structure of x and the shape of the Fermi
surface produced by the various changes in the band structure.

1. Nematic phase

The nematic phase breaks the D4 point group symmetry of
the square lattice down to D,. Time-reversal, inversion, spin
SU(2), and lattice translational symmetries are unbroken.

Nematic order can be realized by assigning different
hopping amplitudes to x and y directions, i.e., z, = t(1 — N\)
and t, = 1(1 +N), where the nematic order parameter A
(0 < N < 1) controls the anisotropy of the system. The band
structure is now modified to

e(k) = =21[(1 — N)cosk, + (1 + N)cosk,]
— 41" cos ky cosk, . (14)

Because the nematic phase breaks the point group symmetry,
certain pairing channels for the undistorted system are no
longer distinguishable by symmetry. For example, d>_,»
and s are mixed in the nematic state, as are gyy2—,2) and
dyy. The p-wave channel, which forms a two-dimensional
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FIG. 3. (Color online) Pairing strengths and the density of states
(y axis to the right) as functions of nematicity with ' = —0.3z.

(a) ng = 1.0 (half-filling). (b) ne = 0.8. AVyy denotes the critical
value of nematicity at which the Fermi surface changes from being
closed and holelike to open and quasi-1D. In (b), the singularity
at A = 0.81 marks the special point at which the Fermi surface is
perfectly flat.

representation when the nematic order parameter vanishes,
splits into distinct p, and p, states.

Figure 3 shows pairing strengths and density of states
for t’ = —0.3¢ at half-filling (ng = 1) and at n,; = 0.8 as a
function of A. Here and henceforth, the quantities plotted will
be
W2[A|

vz’
where the bandwidth is given by W = 8t.

Figure 4 shows the Fermi surfaces for small and large
anisotropy. We see from Fig. 3 that the dominant pairing
instability changes from s (inherited from the d,>_,» wave
for the original square lattice) to p, as A is increased. There
are two notable points in the behavior of pairing strengths
as N is varied. First, the sharp feature in the vicinity of the
Van Hove singularity, and second, near-degeneracies between
different pairing channels which persists for a broad range of
N where the system is quasi-one-dimensional. In the range of

A=

p=pW, s5)
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FIG. 4. (Color online) Fermi surfaces in the presence of the
nematic background for ¢’ = —0.3¢ and n = 1 (Nyy ~ 0.17). (a)
Small anisotropy (N = 0.1): the dotted lines denote the accidental
nodes of the (d + s)-wave gap. (b) Large anisotropy (N = 0.4): the
dashed line is the symmetry-required nodal line of the p,-wave gap,
while the dotted lines denote approximate locations of the accidental
nodes for both the (d + s)- and p,-wave gap functions. The blue
arrow represents the approximate nesting vector (mw,2kr), where
2k F = TTNg.

N and n considered here, the Fermi surface passes through
the Van Hove point at k = (0,7) at a critical value N' = Nyy,
(NMyn & 0.17 for ng = 1, and Ny = 0.03 for ng = 0.8). For
N < Nyp, the Fermi surface is closed around (7,7 ), whereas
for N > ANyy, it is open along the x direction. The pairing
strengths, A,, in the various channels are continuous, but
nonanalytic functions of N at Nyy.

By comparing A(N) with A(0) in Fig. 3, we can address
the question of whether nematicity competes with or enhances
superconductivity. We see the common feature for both ne; = 1
and ne = 0.8 that singlet (d + s)-wave superconductivity is
at first suppressed by increasing nematicity, but the behavior
is abruptly inverted at the critical value Nyy, and beyond
this point, the pairing strength increases as a function of N
and then drops again past a local maximum. For ny = 0.8,
where AMyy is small, this local maximum corresponds to
an enhancement of superconductivity due to nematicity, i.e.,
Max[A(N)] > A(0). (Recall, T, depends exponentially on A, so
what may appear to be a small relative effect in A corresponds,
in the weak-coupling limit, to a large effect in 7,.) On the
other hand, for ne = 1, where Nyy is relatively larger, the
pairing strength is uniformly weaker for nonzero N than
for N = 0.

In the limit of large N, the nematic band structure
corresponds to that of a quasi-1D conductor. There are a few
salient features of superconductivity in this limit that warrant
mention. First, for most of the range of A" > Ayy, there is a
remarkable near degeneracy of singlet (d + s)-wave and triplet
p-wave pairing channels. Moreover, both the corresponding
pair wave functions are more structured than expected—on
each open segment of the Fermi surface, they both have a
pair of “accidental nodes” that are not required by symmetry.
Indeed, the near degeneracy of the two states arises from
the fact that the gap structure looks almost the same on
each open Fermi surface, with the only significant difference
being the sign change in going from one Fermi surface to the
other in the p-wave case. (While the actual gap structure is
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generally quite complicated, a caricature of the state is that
A(k) = Apfcos[(1 + ¢)k,] — cos[(1 — @)k, ]} for the singlet
state and A(K) = Ay sin(ky)[cos(k,) — 8] for the triplet state,
where both ¢ and § depend on the precise shape and position
of the Fermi surface, but are both relatively small.)

At an intuitive level, we can think of the accidental nodes
in the (d + s)-wave state as reflecting the smooth evolution of
this state from a pure d-wave parent state in the isotropic lattice
(N = 0); while there is no symmetry mandating it, this state
remains largely d-wave-like in character. This underscores
the existence of a single “mechanism” underlying the d-wave
superconductivity of the square lattice and unconventional
(d + s)-wave pairing in quasi-1D. However, this unification is
still broader—the nearly identical nodal structure and pairing
strength in the triplet channel carries with it the implication
that the mechanism of pairing can be essentially identical,
independent of the symmetry of the order parameter! (This
connection has also been observed** in the context of weak-
coupling calculations of models with the band structure of
SI‘QRUO4.)

The origin of both the accidental near degeneracy of
two symmetry-distinct superconducting states and of the
accidental nodes can be understood simply in the quasi-1D
limit. As confirmed by our study, x in a quasi-1D conductor is
peaked at (;r,2k ), where 2k =mn, is the average separation
between the two branches of the open Fermi surface [see
Fig. 4(b)]. Thus, in looking for the most negative eigenvalues

of the positive quantity F(Tzf(f(;]}/) =—xk+ lA(/), the most

significant processes are those with k+ k' close to (7, £ 2kp),
i.e., the nesting vector shown in Fig. 4(b). Note that this refers
to particle-hole excitations from one branch of the Fermi
surface to the other; the corresponding process in which a
particle pair is scattered from (k',—Kk) to (k,—k) requires
k and K’ be on the same branch of the Fermi surface. That
interbranch scattering has a subdominant effect implies that
the relative sign of the pairing gap on the two is relatively
unimportant; this is responsible for the near-degeneracy of
the d + s and p, states, and between d,, and p, states. (For
the case of the dominant orders d + s and p,, see Fig. 3.)

Moreover, k + kK ~ (r, &£ 2kF) requires k and k' to be not
only on the same branch but also in the same quadrant of
the Brillouin zone. This results in an accidental node in each
quadrant, as depicted in Fig. 4(b).

Notice that the superconducting properties of the repulsive
Hubbard model in the presence of strong nematic background
is very similar to that of the Bechgaard salts in many aspects:
Fermi surface topology, near-degeneracies, and accidental
nodes.?”?® There, given that the superconducting phase is in-
duced by electronic interaction, the close competition between
d-wave- and p-wave-type phases is to be expected due to the
quasi-one-dimensional nature of the band structure. As the
competing superconducting states are located in different spin
channels, a way to test the applicability of these ideas would
be to apply a weak Zeeman field to the material, which would
favor the spin-aligned p-wave order over the d-wave one.

2. Nematic spin nematic phase

Here, we consider a spin-triplet version of nematic order, in
which the sign of the nematic distortion is opposite for spin up
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FIG. 5. (Color online) Pairing strengths and the density of states
(y axis to the right) as functions of the nematic spin nematic order
parameter fort’ = —0.3¢. (a) n = 1.0 (half-filling). (b) n = 0.8. In
(b), the (almost invisible) singularity around N; &~ 0.81 is where the
Fermi surface is exactly flat.

and spin down electrons. Alternatively, this can be thought of
as a d-wave relative of ordinary ferromagnetism (which could
arise in Fermi liquid theory from a sufficiently negative F').
It has been awkwardly named*’ “nematic spin nematic.”” From
the perspective of unconventional superconductivity, the most
remarkable thing about this state is that, under appropriate
circumstances, it can give rise to a gap structure with a large
number of accidental (i.e., unrelated to symmetry) gap nodes.

The nematic spin nematic phase is a nematic phase such that
N; = =N, = N,. One immediate consequence is that in the
resulting band structure, €;(k) = €, (—k) no longer holds in
general. In the weak-coupling limit, pairing between opposite
spins cannot occur, so the only possible superconducting states
are p, and p, waves formed by equal-spin pairing. As time
reversal followed by a C4 rotation remains a good symmetry
of the system, spin-up and -down Fermi seas are rotated by 90°
from each other, and therefore, the p,(,) wave of up spins and
the py) wave of down spins are degenerate. Hence, without
loss of generality, we hereafter only consider spin-up electrons
with V; > 0, and the pairing strengths in this case are shown in
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Fig. 5. We see that the pairing symmetry is p, for sufficiently
large values of N, and otherwise Dy-

AtN; = Nip = 14 2% cos(™2) (Nip = 1forng = 1and
Nip ~ 0.81 for ng = 0.8), the Fermi surface for spin up
electrons becomes two straight lines given by k, = £nem/2.
In this case, there is a simple mechanism responsible for
px-wave superconductivity. In the pairing between up spins,
the virtual particle-hole pairs originate from the spin-down
Fermi sea [see Eq. (7) and Fig. 1(b)], which is perfectly
nested for any momentum transfer of the form, (wng,qy).
The second-order interaction I'y4 is negative in this case. To
obtain the most negative eigenvalue, the pair wave function
should have the same sign between two points on the spin-up
Fermi surface whenever their difference satisfies the nesting
condition.

For an arbitrary point on the spin-up Fermi surface, the
points shifted by (wn.,0) and (wne,L£mng), respectively, are
also on the Fermi surface. As argued above, the pair wave
function should have the same sign at all of these points. For
the latter two points, which are related to each other by the
reflection about the x axis, this is only possible for a p, wave
butnota p, wave, and hence p, should be the preferred pairing
symmetry. For the former two, it means that the pair wave
function has the same sign when translated by mn, on each
branch of the Fermi surface. This periodicity (in sign), together
with the fact that a p, wave is odd under reflection about the
y axis, requires (possibly a large number of) additional nodes.
One can show that when n./2 = a/b, where a and b are two
integers that are relatively prime, 2b total number of evenly
spaced nodes should exist in each branch. Notice that having
nodes is unfavorable for pairing in general because of reduced
condensation energy. Hence, we expect that larger b would
resultin lower T, at Ny = Np. Thisis indeed seen in Fig. 5, as
the pairing strength in the dominant p, channel is significantly
smaller for ne; = 0.8 (b = 5) than forne = 1 (b = 2).

3. Orbital current-loop order

A fascinating orbital current-loop ordered state has been
proposed!? to account for many of the features of the pseudo-
gap of the cuprates. Among all proposals for broken symmetry
states in the pseudogap, this is unique in that it breaks both
time-reversal and inversion symmetries. A consequence of
this is that the perfect nesting in the particle-particle channel
responsible for the Cooper instability is absent in this state,*®
which in turn implies that for sufficiently weak coupling, this
order is incompatible with superconductivity. In numerical
approaches designed to treat stronger coupling regime for
finite size systems, it has likewise been an ongoing challenge to
detect orbital loop current order in Hubbard models for cuprate
superconductors.*’* From a weak coupling viewpoint, no
other order considered to date so unambiguously “competes”
with superconductivity.

C. (m,m)-density-wave orders

We now move on to states that break the translational
symmetry of the underlying square lattice. Here, there is more
than one band, so the bare interaction vertex M is nontrivial. As
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FIG. 6. (Color online) The Fermi surface in the presence of the
(7r,m)-CDW/SDW background for half-filling and #' = —0.3¢. The
inner black square rotated by 45° represents the folded zone. (a)
@ = 0.08. Dashed lines denote the nodes of the d,2_,2-wave gap.
(CDW and SDW) (b) ® = 0.4 (p wave for CDW and SDW.).

illustrative examples we study density waves of two different
sorts: CDW and SDW with ordering vector (7,7), for which
the unit cell is doubled, i.e., there are two bands and the first
Brillouin zone is halved.

In a “site-centered” CDW, the on-site energies are +® on
the even and —® on the odd sublattice. An SDW is similarly
constructed, although now @ is a vector in spin space, whose
direction defines the axis of quantization, such that the on-site
energy is opposite for spin up and down electrons. The CDW
and SDW share the same dispersion:

€+(k) = —4t' cosk, cos ky

+ \/|<1>|2 + 4121 + cos(ky+ky)I[1 + coslky —ky)],
(16)

where =+ correspond to “conduction” and ‘“valence” bands.
For |®| < 2|t'|, the two bands overlap in energy, and even
for ne = 1, the system is a two-band metal. For |®| > 2|,
however, the system is a band insulator when n¢ = 1. The
evolution of the Fermi surface as a function of ® is shown
in Fig. 6. The density-wave order causes a reconnection of
the Fermi surface, resulting for ne; = 1 in two inequivalent
hole pockets which enclose the (folded) zone edge centers at
(£m/2, £ /2), and an electron pocket, whose area is equal to
the sum of those of the hole pockets, enclosing the zone corners
at (7,0) and (0,7). For somewhat smaller n,;, the relative size
of the electron pocket decreases such that, for large enough
®, only the hole pockets survive. For SDW, spin rotational
symmetry is broken. Hence the three-fold degeneracy of the
spin-1 pairs is lifted, so we must treat separately the S, =0
pairing between opposite-spin electrons (obtained from the
eigenstates of I'4 | ) and the doubly degenerate S, = &1 pairing
between like-spin electrons (obtained from the eigenstates of
yp).

1. Half-filling

For ne = 1, for both kinds of density waves, the dominant
pairing symmetry remains d-wave for a range of &, but
gives way to p-wave pairing for |®| > &, ~ 0.3t as shown
in Fig. 7. In the SDW case, the dominant p-wave solution
involves pairing of like-spin electrons. Since C, rotational
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FIG. 7. (Color online) Pairing strengths and the density of states
(y axis to the right) for n, = 1 and t' = —0.3¢ in the presence of the

(a) (;r,71)-CDW and (b) (;r,7r)-SDW.

symmetry is preserved, the p-wave solutions correspond
to a two-dimensional representation—the particular pattern
of p-wave pairing below 7, is determined by nonlinear
interactions not treated in the perturbative RG analysis,
although it is likely that p &+ ip pairing will maximize the
condensation energy. For the CDW case, a basis can be found in
which one component of the p-wave gap lives predominantly
on one of the hole pockets whose minor axis coincides with
the associated p-wave nodal line, while the other component
is associated with the other hole pocket. For the SDW case,
the p-wave pairs reside primarily on the electron pocket
(see Fig. 6).

We also see that d-wave pairing is uniformly suppressed
with increasing @; in this sense, the density-wave order and
superconductivity “compete.” However, the p-wave pairing
strength is an increasing function of &, so in the regime
of dominant p-wave pairing, density-wave order enhances
superconductivity. The evolution of the pairing strengths in
Fig. 7 is particularly notable: at the right-hand edge of the
figure, the size of the Fermi pockets is tending to zero
upon approach to the metal-insulator transition which occurs
at ® = 2|¢’| = 0.6¢. Counterintuitively, the strength of the
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p-wave pairing grows all the way to the border of the insulating
phase. A similar behavior has been found for the case of the
pnictide LiFeAs, where, taking the two-dimensional (k, = 0)
limit of the electronic model, a very small pocket triggers
a considerable propensity to ferromagnetic fluctuations and
hence p-wave superconductivity.’!

This peculiarity derives from the property of two dimen-
sions that even when the Fermi surface is arbitrarily small
around a quadratic band edge, the density of states is finite
and hence there are enough initial and final states available
for scattering. This alone is not sufficient to explain the
stability of a nodal (p-wave) superconducting solution in this
limit. Nonzero pairing strength with one or more sign change
within an infinitesimally small pocket means that the effective
interaction must be substantially k-dependent over this small
range. This kind of singularity can arise due to particle-hole
pairs excited around a similarly small pocket so that the Fermi
function in Eqgs. (6) or (7) changes sensitively as the tiny
momentum transfer varies. (When a Fermi pocket is centered
at atime-reversal ipvariAa}nt momeptumA,/which is indeed true for
our case, notonly k — k butalsok + k modulo the periodicity
of the folded BZ is of the order of the pocket size.)

We elaborate further on how the singular momentum
structure described above can arise. Suppose we focus on a
term in Eqgs. (6) or (7) corresponding to a case where the
intermediate states arise from an infinitesimally small pocket.
Then, the integrand is nonvanishing only in a tiny region where
the difference of Fermi functions is nonzero, and the product
of two bare vertex functions is essentially constant over this
region. The remaining integral is then simply proportional to
the usual particle-hole susceptibility for a quadratic dispersion,
which is given by the following analytic expression:

1
x@=po|1—Re/1——+], (7
a(q)

where a(p) = (q./2kr.)> + (qy/2kr.,)* and q =Kk £k is
the momentum transfer. 2k , and 2kr , are major and minor
axes of an elliptical Fermi pocket. py is the density of states
per spin. The above expression is constant for o(q) < 1 and
otherwise monotonically decreases as a function of a(q).

For a nontrivial momentum structure to be possible at all,
the pocket responsible for the structure of x must be “smaller”
than the pocket on which the pairs reside—or, more precisely,
the pocket which mediates the effective interaction must not
be able to enclose the pocket on which the pairing takes
place if the two were put on top of one another. (Among
other things, this means that a single pocket cannot both be
the home of the pairing electrons and of the particle-hole
excitations that mediate the pairing interactions.) Conversely,
in order for the pairing strength to be substantial, the pocket
on which the pairs reside must not be too much larger than
the one which mediates the interaction®? since if it were too
large, the induced interaction would be small for all but the
smallest momentum transfer pair-scattering processes—i.e.,
the effective interaction would be very weak.

In our example of density waves, there is an additional
simplification. At the folded BZ boundary, where the tiny
Fermi pockets are located, the Bloch states from each band
reside strictly in a single sublattice. [This can be inferred from
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the fact that the band energy does not depend on ¢ wherever
ky = £(7 £ k,).] This, along with the property of the Hubbard
interaction that it is diagonal in the sublattice index, render
Fermi pockets living in different sublattices decoupled from
each other. The consequence is that in the CDW state, the bare
interaction between the electron and hole pockets does not
exist, whereas in the SDW state, this is the only allowed bare
interaction.

To second order in U in the CDW case, the effective
intrapocket interaction acquires singular momentum structure
only when the electron pairing occurs on one of the hole
pockets, and the virtual particle-hole pairs are from the other
hole pocket. In the SDW, the interaction of like spins within
the electron pocket mediated by virtual pairs from one of the
hole pockets and the converse process produce q-dependent
effective interactions. However, the former are generally more
effective. As can be seen from Fig. 6(b), each hole pocket
almost fits into the electron pocket, and therefore, does a
poor job in generating momentum-dependent interactions at
the electron pocket. This observation leads us to expect that
the nodal p-wave solution should predominantly reside in the
hole pockets for CDW and the electron pocket for like-spin
pairing in the SDW, which is in perfect agreement with what
we find numerically.

2. ng=0.8

It is noteworthy that the hole-doped system (n¢ = 0.8)
shows a qualitatively different behavior as & increases
compared to the case of half-filling. For the CDW, the pairing
symmetry is dy, for ® 2 0.14, as can be seen from Fig. 8.
We have found that the d,, pairing solution predominantly
lives in the hole pockets, and accidental nodes form within
each pocket (see Fig. 9). The singularity seen in Fig. 8(a)
around ® = &, ~ 0.11 marks the point where the electron
pocket vanishes. For SDW, there is no transition in the pairing
symmetry, but superconductivity is significantly suppressed
when the electron pocket disappears.

We see that both kinds of density-wave orders eliminate
some (or for large enough, &, all) of the Fermi surface in the
“antinodal” region, much the way these states are eliminated
by the psuedogap in underdoped cuprates. Moreover, just as the
pseudogap seems to suppress 7, in the cuprates, the presence
of density-wave order in our calculations tends strongly to
suppress dy2_,2 superconductivity. However, in the cuprates,
there is certainly no sign of the change of the symmetry of the
superconducting state which we find when the CDW order is
strong enough to fully gap the antinodal portion of the Fermi
surface. Despite the emerging evidence of CDW order in at
least some portions of the pseudogap regime, this presents
a significant barrier to any theory of the pseudogap, which
identifies it simply with a CDW gap.

Notice that there is a striking contrast between the CDW
and SDW cases, in how the pairing strength of the d,>_,.-wave
behaves at & = &, at which the electron pocket vanishes.
From Fig. 8, we see that there is only a continuous singularity
for the CDW case, while there is a sharp discontinuity in
SDW case. The reason for this difference is that in the former,
the tiny electron pocket (just before it vanishes) can affect
superconductivity only by providing virtual electron-hole pairs
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FIG. 8. (Color online) Pairing strengths and the density of states
(y axis to the right) for ng = 0.8 and +' = —0.3¢ in the presence of

the (a) (7r,71)-CDW and (b) (;r,71)-SDW.

mediating the effective interaction, whereas in the latter, a
finite fraction of the pairing solution actually resides on the
vanishingly small pocket.

D. Checkerboard model

The checkerboard model is defined by a form of 2 x 2
plaquette-density-wave order on the square lattice, as shown
in the inset of Fig. 10. Specifically, the model we consider
is obtained from the square lattice model by weakening half
the nearest-neighbor bonds (+ — 7 < t) in such a way that
each quadrupled unit cell contains a square plaquette formed
by strong bonds, with different plaquettes connected by weak
bonds. For simplicity, next-nearest-neighbor hoppings are set
to zero (¢’ = 0). The dispersion of the resulting four bands is
given by

€.(K) = —[r\/ﬂ + 12 4 217 cos 2k,

+ r’\/t2 + 2+ 2rf cos 2k, ]. (18)

where r = + and r' = +.
Because we have not included any second-neighbor hop-
ping, the system is particle-hole symmetric at half-filling and
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FIG. 9. (Color online) The Fermi surface in the presence of the
(7t,m)-CDW/SDW background for ng = 0.8 and t' = —0.3¢. The
inner black square rotated by 45° represents the folded zone. (a)
@ = 0.08. Dashed lines denote the nodes of the d,»_,2-wave gap.
(CDW and SDW) (b) ® = 0.4. Dashed and dotted lines denote the
symmetry-related (d,,) and accidental nodes, respectively, for CDW.
(d,>_,2 for SDW.)

thus has a number of nongeneric features of its band structure;
the density of states is divergent due to a Van Hove singularity,
and the Fermi surface is perfectly nested with nesting vector
(7r,7), just as the square lattice with uniform nearest-neighbor
hopping amplitudes. However, for n. < 1, the properties of
the system are more robust. As shown in Fig. 11, there are
two symmetry-related electron pockets originating from the
(+,—) and the (—,+) bands that enclose, respectively, the
points (0,7 /2) and (;r/2,0). One hole pocket from the (+,+)
band exists, enclosing (/2,7 /2), for a sufficiently weak
checkerboard pattern, i.e., for 7/ close enough to 1, but this
pocket is lost for 7/¢ smaller than a critical ratio, (7/1)..
Figure 10 shows the pairing strength for n, = 0.8 as 7/t
is varied. d,>_,» is always the dominant pairing channel,
while the strength of pairing grows as 7 is decreased from 7.
This pairing symmetry is naturally expected. There is a large
density of states at the electron pockets as they lie close to the
Van Hove singularity at (0,0). The d,>_,» permits a gap
structure that for 7/t < (f/t). ~ 0.81 does not have any nodes
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FIG. 10. (Color online) Pairing strength and the density of states
(y axis to the right) when the checkerboard pattern (as described
in the inset) is imposed for ny = 0.8. 7 denotes the weak hopping
amplitude between different plaquettes.
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FIG. 11. (Color online) The Fermi surface in the presence of the
checkerboard pattern for n, = 0.8. (a) 7 = 0.9z. (b) 7 = 0.6. The
hole pocket is present only in the former case. Dashed lines represent
the nodes of the d,2_,2-wave gap.

which intersect a Fermi surface, but nonetheless has the
favored sign changes between different electron pockets.

We see that the pairing strength as a function of 7 is smooth
at (f/t)., below which the hole pocket does not exist. This
reflects the fact that the hole pocket, especially when it is
vanishingly small, participates negligibly to superconductivity.
Formally, the loss of the contribution of intermediate electron-
hole pairs from this pocket causes a weak singularity in
the pairing strength. However, it is not surprising that this
singularity is not visible in this particular case because the
density of states of the hole pocket is small, as can be seen
from Fig. 10 by the small size of the jump in DOS at (/1)..

In the context of an attempt to determine whether there is
an “optimal inhomogeneity for superconductivity,” this model
has been studied previously for intermediate values of U using
exact diagonalization,’ DMRG,?> CORE,”® and DCA ?*»
Similar conclusions have been reached concerning an en-
hancement of 7, for intermediate strength of the checkerboard
potential in all but the DCA results. (We speculate that the
DCA results are probably artifacts of the small cluster sizes
used in those calculations.) In the weak-coupling regime, the
rise of T, with decreasing 7/¢ is pronounced, consistent with all
the studies other than the DCA. However, the enhancement of
superconductivity we find is largely in agreement with what a
simple reduction of bandwidth would result in, i.e., p o< 1/ W
and Vi o< U2/ W, and therefore, A = p Vo ox U2/ W? o p2.

E. Bilayer model

The dispersion for the bilayer square lattice with (intralayer)
nearest-neighbor hopping ¢ and interlayer hopping ¢, , is given
as follows:

e+(k) = —[2t(cosk, + cosk,) =t ]. (19)

The (4) and (—) band correspond to the bonding and
antibonding states between the layers, respectively. As in the
case of the checkerboard pattern, we again have a particle-hole
symmetric system with perfect nesting for (7,7 ) at half-filling,
but the Van Hove singularity does not coexist with the perfect
nesting unless #; = 0. We will consider the case in which
ne is slightly less than 1, where this nesting is imperfect,
but nonetheless results in a significant peak in the effective
interaction at (77,7).
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FIG. 12. (Color online) The Fermi surface for the bilayer model
for ng = 0.95. (a) t; = 0.07¢. Dashed lines denote the nodes of the
d>_2-wave gap. (b) t; = 2.0t. The s-wave gap changes its sign
across the dotted lines.

When 7, = 0, the bilayer essentially behaves as two
independent copies of the square lattice. There are two almost
identical electronlike Fermi surfaces from each of the bands,
where the one from the (+) band is slightly larger. On the other
hand, for sufficiently large 7, , the Fermi surface from the (+)
band closes around (7,77) and becomes a hole pocket, while
the one from the (—) band remains an electron pocket around
(0,0) (see Fig. 12). A Van Hove singularity occurs at a critical
value of 7, /t at the border between these two regimes.

Figure 13 shows the pairing strengths of the bilayer system
as a function of ¢, /t for ny = 0.95. The pairing symmetry
is dy>_» for t; /t ~ 0, which is inherited from the case of
t; = 0. Superconductivity is enhanced around the Van Hove
singularity at ¢, /¢t ~ 0.09, and there is a transition around
t;/t ~ 1, past which the dominant form of superconductivity
is an unconventional s-wave that changes sign between the
electron and the hole pocket (si). This pairing solution
makes the best use of the large effective interaction at the
momentum transfer of (77,7) due to the approximate nesting.
Note that the approximate degeneracy of s1 and d-wave at the
instability level does not necessarily imply the existence of an
intermediate s + id phase. =’

S

FIG. 13. (Color online) Pairing strengths and the density of states
(y axis to the right) in the bilayer model for ny = 0.95 and with no
second-neighbor hopping.
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V. THE MECHANISM OF UNCONVENTIONAL
SUPERCONDUCTIVITY

Models with weak, short-range electronic repulsions admit
to a controlled solution, but are somewhat artificial; in
real materials, interactions are always complicated and of
substantial magnitude. In this final section, we extrapolate
the insights we have obtained from this controlled limit to
venture some more general “principles of unconventional
superconductivity,” and to make inferences concerning the
physics of a variety of unconventional superconductors.

While conventional superconductors differ in many salient
details, enough essential features are shared that it makes
sense to talk about a single “conventional mechanism of
superconductivity;” there is an induced attraction between
electrons due to the exchange of phonons that is highly
retarded, and so able to overcome the generally stronger
but instantaneous bare repulsion between electrons. Because
the electron-phonon coupling is typically relatively local in
space, the resulting superconducting gap function is weakly
structured in k space, although it is strongly frequency
dependent. Because 7, is small compared to the phonon
energy, which is in turn small compared to the Fermi energy,
pairing and phase coherence occur essentially simultaneously,
and mean-field theory is thus extremely accurate.

The essential feature of the unconventional mechanism
explored here is that the bare repulsion is short-ranged while
the induced attraction is longer-ranged. The resulting gap-
function must be strongly k-dependent, such that the average
over the Fermi surface of the gap is small compared to the root-
mean-square gap, A(k)|2 <« |A(K)|%. However, the symmetry
of the gap function is not essential; depending on details of
the band structure, the same “mechanism” can give rise to
various forms of sign-changing s-wave superconductivity, not
to mention both triplet and singlet pairing. Indeed, at least
in the strongly nematic case, we have seen that a singlet and
triplet state can be nearly degenerate over a broad range of
parameters, driven by precisely the same interactions.

There has been considerable focus on unconventional
pairing produced by fluctuations associated with a nearby
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ordered state, especially with spin-density-wave states of
one sort or another. In the weak-coupling limit, except
for exceptionally fine-tuned band structures, the correlations
associated with any putative density-wave states are always
weak. Strong spin fluctuations (or CDW, nematic, orbital
current, or dDW fluctuations) certainly occur under broad
circumstances as the interactions get stronger, but the absence
of a small parameter makes well-controlled theory impossible.
However, it is physically plausible that, as the susceptibility
towards some particular SDW (or some other ordered) state
grows stronger, the induced attractions between electrons are
enhanced and with them the pairing scale.

Various appealing approximation schemes have been used
to explore the pairing in the intermediate-coupling regime,
of which fRG!®19384042 o1 parquet RG*>°8%-0! are the most
directly related to the methods used in the present paper. These
approaches generally give results similar to the weak-coupling
approach in the appropriate limit. Moreover, as a function
of the strength of the couplings, these approaches usually
lead to a gap function which does not change its symmetry
or nodal structure as the coupling strength is increased.
Descriptive words based on such intermediate-coupling ap-
proaches, such as “spin-fluctuation exchange mechanism,”
may be applicable in some specific cases, although the spin
fluctuations in question are typically rather short-range corre-
lated. More importantly, in our opinion, this nomenclature
obscures a more basic commonality, in which the short-
range repulsive interactions between electrons is the dominant
feature.
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