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Field-induced phase transitions in the helimagnet Ba2CuGe2O7
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We present a theoretical study of the two-dimensional spiral antiferromagnet Ba2CuGe2O7 in the presence of
an external magnetic field. We employ a suitable nonlinear σ model to calculate the T = 0 phase diagram and the
associated low-energy spin dynamics for arbitrary canted magnetic fields, in general agreement with experiment.
In particular, when the field is applied parallel to the c axis, a previously anticipated Dzyaloshinskii-type
incommensurate-to-commensurate phase transition is actually mediated by an intermediate phase, in agreement
with our earlier theoretical prediction confirmed by the recent observation of the so-called double-k structure. The
sudden π/2 rotations of the magnetic structures observed in experiment are accounted for by a weakly broken
U (1) symmetry of our model. Finally, our analysis suggests a nonzero weak-ferromagnetic component in the
underlying Dzyaloshinskii-Moriya anisotropy, which is important for quantitative agreement with experiment.
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I. INTRODUCTION

The presence of Dzyaloshinskii-Moriya (DM) anisotropy1,2

in low-symmetry magnetic crystals typically leads to weak
ferromagnetism, as a result of slight spin canting in an
otherwise antiferromagnetic (AF) ground state. Another pos-
sibility is the occurrence of helimagnetism whereby spins are
arrayed in a helical or spiral structure whose period (pitch)
extends over several decades of unit cells. These structures
have intensively been studied lately, and the interest stems
from a number of factors. Some DM helimagnets display
appealing magnetoelectric or multiferroic properties.3–5 This
enables the control of unusual magnetic states by electric
fields and vice versa, and makes these materials attractive
for spintronics applications. Another major factor is that, in
addition to one-dimensional (1D) spin spirals, the ground
states can form a vortex (skyrmion) lattice, as advocated by
Bogdanov et al.6–8 in a number of related models. Recently,
skyrmion-lattice ground states were observed experimentally
in several magnetic systems.4,9–11 Nontrivial types of localized
nonlinear excitations (domain walls) in DM helimagnets have
also been discussed in recent theoretical works.12–14

Ba2CuGe2O7 is an example of a helimagnet well suited for
experimental investigation thanks to a fortunate combination
of physical properties. It is an insulator whose magnetic prop-
erties can be understood in terms of localized s = 1

2 spins car-
ried by the Cu2+ ions. The scale of energy set by an exchange
constant J ∼ 1 meV is very convenient for neutron scattering
experiments. Because of the low tetragonal symmetry (space
group P 4̄21m), the corresponding Heisenberg Hamiltonian
involves an interesting combination of antisymmetric (DM) as
well as symmetric exchange anisotropies which lead to a rich
phase diagram. In particular, the strength of anisotropy is such
that magnetic phase transitions take place at critical fields that
are well within experimental reach.

A series of experiments in the late 1990s (Refs. 15–19)
revealed the existence of a Dzyaloshinskii-type20

incommensurate-to-commensurate (IC) phase transition
when the strength of an external field applied along the
c axis exceeds a critical value Hc ∼ 2 T. For H < Hc,

the ground state is an incommensurate spiral whose
period L = L(H ) grows to infinity in the limit H → Hc.
For H > Hc, the ground state was thought to become a
commensurate antiferromagnet, a spin-flop state. We note
that the Dzyaloshinskii-type transition is similar to the
cholesteric-nematic phase transition induced by an external
magnetic field in chiral liquid crystals.21–23 But, the IC
transition observed in Ba2CuGe2O7 was the first clean
realization of the Dzyaloshinskii scenario in its original
context, and as such still remains very rare.

We carried out a detailed theoretical investigation24–26

inspired by the earlier experimental work15–19 and predicted
that the IC phase transition does not occur immediately;
instead, between the incommensurate and commensurate
phases occurs a separate intermediate phase. In short, there
exist two critical fields Hc1 and Hc2 such that Hc1 < Hc <

Hc2 where Hc ∼ 2 T is the critical field for the presumed
Dzyaloshinskii-type phase transition. For H < Hc1 ∼ 1.7 T,
the ground state is a flat spiral (cycloid) that propagates along
the x axis while the staggered magnetization rotates in the xz

plane. For H > Hc1, the cycloid transforms into a nonflat spiral
where all three components of the staggered magnetization are
different from zero. Such a state may concisely be described as
an antiferromagnetic conical spiral that propagates along the x

axis while it nutates around the y axis. Above Hc2 ∼ 2.9 T, the
spiral becomes a conventional commensurate antiferromagnet.
This state is a commensurate antiferromagnetic spin-flop state
which is the ground state for all H > Hc2. Therefore, the
Dzyaloshinskii field Hc is not a true critical field, and the
corresponding IC phase transition is actually mediated by an
additional phase in the region Hc1 < H < Hc2.

This prediction24 remained unexplored for almost a decade.
Additional experimental work on Ba2CuGe2O7 has revealed its
remarkable magnetoelectric properties and demonstrated the
electrical switching of magnetic propagation vector and the
control of electric polarization by magnetic fields.3 However,
a new series of experiments has now confirmed the occurrence
of an intermediate phase in the form of an antiferromagnetic
conical spiral which has been called a double-k structure by
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the experimental discoverers. This state occurs as predicted
when an external magnetic field is applied almost perfectly
parallel to the c axis,28 while further experiments have also
explored the phase diagram in the presence of an arbitrary
canted magnetic field.29 It was not immediately evident to the
experimentalists that they had found what we predicted. Our
current task is to confirm that the recently observed double-k
structure is indeed the intermediate phase predicted in Ref. 24
and further to calculate the phase diagram in arbitrary canted
magnetic fields so as to complete the connection with the latest
experiments.

In Sec. II, we describe the discrete spin Hamiltonian and its
continuum approximation in the form of a nonlinear σ model.
In Sec. III, the ground-state properties and the associated
low-energy dynamics will be calculated from the nonlinear
σ model for a magnetic field of varying strength and direction.
Hence, in Sec. III A the field is restricted to point along the c

(or z) axis and its strength is varied through the IC transition.
We recover then results of Ref. 24 and further discuss the
nature and stability of the intermediate phase. An explicit
calculation of the low-energy magnon spectrum throughout the
intermediate phase, and hence the opportunity for comparison
with future experiments, is relegated to Appendix A. In
Sec. III B, we study the case of a field applied in a direction
perpendicular to the c axis. We thus recover an experimentally
observed bisection rule and further illuminate the role of the
out-of-plane DM anisotropy dz. The case of a magnetic field
applied in an arbitrary direction (canted magnetic field) is
analyzed in Sec. III C where we present a theoretical prediction
for the T = 0 phase diagram, in fair agreement with recent
experiments. Local stability of the spin-flop phase in the
presence of arbitrary canted fields is shortly discussed in
Appendix B. Our main conclusions are summarized in Sec. IV.

II. NONLINEAR σ MODEL

In the method of calculation we closely follow the work of
Ref. 24. Ba2CuGe2O7 is a layered compound where the Cu
atoms with spin s = 1

2 form a perfect square lattice within
each layer with natural axes x and y and lattice constant
l = 5.986 Å. We note that the axes x, y differ from the
conventional crystal axes a, b by a 45◦ azimuthal rotation.
The major spin interaction between in-plane neighbors is
antiferromagnetic, while the interaction between out-of-plane
neighbors is ferromagnetic and weak. Therefore, the interlayer
coupling is ignored in the following discussion which concen-
trates on the two-dimensional dynamics within each layer.

The two-dimensional (2D) spin Hamiltonian is of the
general form

W =
∑
〈kl〉

[Jkl(Sk · Sl) + Dkl · (Sk × Sl)]

+ 1

2

∑
〈kl〉

∑
i,j

G
ij

kl

(
Si

kS
j

l + S
j

k Si
l

) −
∑

l

(gμBH · Sl),

(1)

where Sk is the spin localized at site k, which satisfies the
classical constraint S2

k = s2. The first and the second terms
in Eq. (1) describe the isotropic exchange interaction and
antisymmetric DM anisotropy over in-plane bonds denoted
by 〈kl〉. The third term contains all symmetric exchange

anisotropies, and the indices i and j are summed over the three
three values corresponding to the Cartesian components of the
spin vectors along the axes x, y, and z. Single-ion anisotropy
is not present in this spin s = 1

2 system. Finally, the last
term describes the usual Zeeman interaction with an external
field H.

The form of the interaction parameters is significantly
restricted by the crystal symmetry (space group P 4̄21m). It
is safe to consider only nearest-neighbor (NN) in-plane bonds
and neglect interactions between next-nearest neighbors.24–26

Symmetry requires that the exchange constant J = Jkl is the
same for all NN in-plane bonds, whereas the constant vectors
Dkl which account for pure DM anisotropy are of the form

Dkl = (0,D⊥,±Dz) for bonds along x,
(2)

Dkl = (D⊥,0,±Dz) for bonds along y,

where D⊥ and ±Dz are two independent scalar constants.
It should be noted that the z component of the DM vectors
alternates in sign on opposite bonds, a feature that could lead
to weak ferromagnetism. No such alternation occurs for the
in-plane components of the DM vectors which are responsible
for the observed spiral magnetic order or helimagnetism.

The symmetric exchange anisotropy will be restricted to
the special Kaplan, Shekhtman, Entin-Wohlman, Aharony
(KSEA) limit30 throughout this paper. In this limit, the
(traceless) symmetric tensor G

ij

kl is expressed entirely in terms
of the corresponding DM vector Dkl :

G
ij

kl = Di
klD

j

kl

2Jkl

− |Dkl|2
6Jkl

δij , (3)

where δij is the Kronecker delta. The KSEA limit has been
shown to explain quantitatively a large set of experimental
data,17 including some finer issues such as the lattice pinning
of helical magnetic domains,27 and will be adopted here
without further questioning. The Hamiltonian of Eq. (1) is
still consistent with the underlying space group P 4̄21m but is
not the most general Hamiltonian allowed by symmetry.24,26

To our knowledge, Ba2CuGe2O7 is the only known pure
KSEA system. In this respect, we mention that the layered
antiferromagnet K2V3O8 is not described by the KSEA
anisotropy, as incorrectly stated in Ref. 31, because the
observed easy-axis anisotropy is impossible to occur in the
KSEA limit.26

The discrete Hamiltonian of Eq. (1) could be, in principle,
analyzed by standard spin-wave techniques but such a task
is technically complicated. The ground state and low-energy
dynamics can be calculated from a simpler continuum field
theory, which is a reasonable approximation because the period
of the observed magnetic spiral is sufficiently long, about 37
lattice constants at zero field. We omit technical details but
stress the important steps of the continuum approximation.

The major spin interaction is antiferromagnetic (J =
0.96 meV) and sets the energy scale of the system. We therefore
divide a complete magnetic lattice into two sublattices A and
B and then rewrite the Landau-Lifshitz equation as a system
of two coupled equations for the sublattice spins A and B.
However, a more transparent formulation is obtained in terms
of new variables, the magnetization m = (A + B)/2s and
the staggered magnetization n = (A − B)/2s, which satisfy
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the classical constraints m · n = 0 and m2 + n2 = 1. The
basis for the derivation of an effective field theory is the
fact that all anisotropies and the applied field D⊥, Dz,
gμBH/s are significantly smaller than the exchange constant
J . Consequently, |m| is also much smaller than |n|, and both
m, n vary appreciably only over distances of many lattice
spacings.

To ascertain the relative significance of the various terms
that arise during a consistent low-energy reduction, one may
employ a dimensionless scale ε defined from, say, ε = D⊥/J .
We further introduce rescaled (dimensionless) anisotropy dz =√

2Dz/εJ and magnetic field h = gμBH/(2
√

2sεJ ). Note
that the unit of field (h = 1) corresponds to 2

√
2sεJ/gμB =

1.68 T, where we use the values s = 1
2 , g = 2.474, J =

0.96 meV, and ε = 0.1774 thought to be appropriate for
the description of Ba2CuGe2O7. Similarly, we introduce
rationalized spatial coordinates x, y, and time t , and complete
our choice with the statement that frequency is measured in
units of h̄ω = 2

√
2sεJ = 0.24 meV, and distance in units of

l/ε = 33.75 Å, where l is the lattice constant of the square
lattice formed by the Cu atoms.

The continuum approximation is then obtained by a
systematic formal expansion of Landau-Lifshitz equation in
powers of ε, where both m, n are considered as continuous
functions of the (dimensionless) in-plane spatial coordinates
x, y. The magnetization m is treated as a quantity of order
ε, whereas the staggered magnetization n and the rescaled
variables are assumed to be of order of unity. Then, to leading
order, the classical constraints reduce to m · n = 0 and n2 = 1.
Finally, the T = 0 low-energy dynamics is expressed entirely
in terms of the staggered magnetization n, and is calculated
from a nonlinear σ model with Lagrangian density L:

L = L0 − V ; L0 = 1
2∂0n · ∂0n + h · n × ∂0n;

V = 1
2 (∂1n − e2 × n)2 + 1

2 (∂2n − e1 × n)2 (4)

+ 1
2 (n · h)2 + dz(h × e3) · n.

Here e1, e2, and e3 are unit vectors along the x, y, and z axes,
whereas derivatives are described by ∂1 = ∂/∂x, ∂2 = ∂/∂y,

and ∂0 = ∂/∂t. The applied magnetic field h = h1e1 + h2e2 +
h3e3 may point in any arbitrary direction. We emphasize that
the staggered magnetization n = n1e1 + n2e2 + n3e3 is a unit-
vector field (n2 = 1) that depends upon the in-plane spatial
coordinates x and y as well as the time variable t : n = n(x,y,t).
The in-plane component of the DM anisotropy D⊥ has been
completely suppressed in Eq. (4) through the definitions of
rationalized units.

It should be noted that the special KSEA limit adopted
here is equivalent to setting κ = 0 in the Lagrangian of
Ref. 24. Otherwise, Eq. (4) gives the most general Lagrangian
compatible with symmetry, expressed in fully rationalized
units. Rationalized units greatly simplify the analysis of Eq. (4)
and will be employed throughout our theoretical development
in the remainder of the paper. However, the critical or otherwise
significant values of the field will occasionally be quoted
also in physical units, in order to facilitate the orientation
of the reader and comparison with experiment. Essentially for
the same reason we use physical units in all figures directly
relevant to experiment.28,29

III. T = 0 PHASE DIAGRAM

A. Field parallel to c

We begin by specializing to the case where the magnetic
field is applied strictly along the c axis: h = he3. Then, the
potential V of Eq. (4) reduces to

V = 1
2

[
(∂1n)2 + (∂2n)2 + (1 + h2)n2

3 + 1
]

− [(∂1n1 − ∂2n2)n3 − (n1∂1 − n2∂2)n3] (5)

and is symmetric under the U (1) transformation

x + iy → (x + iy) eiψ , n1 + in2 → (n1 + in2) e−iψ , (6)

which is somewhat unusual in that an azimuthal rotation of
spatial coordinates x and y by an angle ψ is followed by a
corresponding rotation of the staggered magnetization by an
angle −ψ .

The ground state is obtained by finding energy-minimizing
solutions n of the static energy functional

W =
∫

dx dy V. (7)

In order to enforce the constraint that the staggered magneti-
zation be of unit length, we adopt a parametrization

n = sin 
 sin � e1 + cos � e2 + cos 
 sin � e3, (8)

which differs from more standard parametrizations by a
circular permutation, but turns out to yield slightly more
compact expressions later on.

Our first task is to find solutions � = �(x,y), 
 = 
(x,y)
that minimize W . The minimum of energy is sought after in
the form of the one-dimensional (1D) ansatz

�(x,y) = θ (x), 
(x,y) = φ(x), (9)

which assumes that the staggered magnetization depends
only on the spatial coordinate x. In view of the U (1) symmetry
in Eq. (6), any solution we find of this type automati-
cally produces a family of additional solutions of the same
energy rotated by angle ψ. Varying W then yields

∂2
1 φ = − (2 ∂1φ − 2) cos θ ∂1θ + γ 2 cos φ sin φ sin θ

sin θ
,

(10)
∂2

1 θ = ((∂1φ)2 − 2 ∂1φ + γ 2 cos2 φ) cos θ sin θ

with γ 2 = 1 + h2. Here, subscript 1 indicates a derivative with
respect to x. All derivatives with respect to y vanish because
we are working in a space of one-dimensional solutions.

To illustrate the solutions, we first consider the special case
of a flat spiral (cycloid) with θ = π/2. Then, the second of
Eqs. (10) is automatically satisfied and the first becomes

∂2
1 φ + γ 2 cos φ sin φ = 0, (11)

while the staggered magnetization becomes

n = (sin φ,0, cos φ), (12)

a cycloid that propagates along the x axis while rotating in the
xz plane (upper left panel of Figs. 1 and 2). The solution for
φ obeys

∂1φ =
√

δ2 + γ 2 cos2 φ, x =
∫ φ

0

dϕ√
δ2 + γ 2 cos2 ϕ

. (13)
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FIG. 1. Solutions of Eqs. (10) minimizing the average energy density of Eq. (18) for a number of illustrative magnetic fields h = hz pointing
along the c axis. Note that the period L varies with the field. Above hc2 = √

3 the solution becomes a commensurate antiferromagnet with
n2 = 1, n1 = n3 = 0.

The result can be expressed in terms of elliptic functions, but
there is no particular advantage to doing so. δ2 is a positive
constant that will be determined below. The cycloid has a
period (pitch) of

L =
∫ 2π

0

dφ√
δ2 + γ 2 cos2 φ

(14)

and the free parameter δ is determined by the requirement that
the average energy density w = W/L achieve a minimum:

1

2π

∫ 2π

0
dφ

√
δ2 + γ 2 cos2 φ = 1 ⇒ w = 1

2
(1 − δ2). (15)

z
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        h=1.02        h=1.00           h=0

        h=1.21

yy

zz
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FIG. 2. (Color online) The same solutions as in Fig. 1, but viewed
from a different perspective. Blue lines on the sphere surface trace out
directions for the staggered magnetization, placing the base of each n
at the center of the sphere and then moving from one unit cell to the
next along x, the direction of spiral propagation. For 0 < h < hc1, the
spins describe a cycle in the xz plane, while for 1 < h < hc2 = √

3,
they also have a nonzero oscillating y component.

As γ (or h) increases, δ becomes zero at a critical field:

γ = γc = π/2 ⇒ h = hc =
√

π2

4
− 1 ≈ 1.21. (16)

In physical units, Hc = 2.04 T. This is the Dzyaloshinskii
critical field and the corresponding Dzyaloshinskii scenario
may be described as follows: for h < hc, the solution is a
flat spiral that propagates along the x axis and rotates in the
xz plane. As h approaches hc, the spiral is highly distorted
and becomes a kinklike structure with diverging period. For
h > hc, the ground state becomes the uniform spin-flop state

n = (1,0,0) modulo U (1).

We realized that this scenario was incomplete when we
computed the magnon spectrum24 of the flat spiral and found
negative eigenvalues starting at

hc1 = 1.01, Hc1 = 1.7 T. (17)

The fact that the value of hc1 in rationalized units is practically
equal to 1 is remarkable, yet fortuitous, and bears no special
significance otherwise. Above hc1 the flat spiral is unstable. We
thus return to energy minimization and revoke the assumption
θ = π/2, although continuing to assume a one-dimensional
structure of the form φ = φ(x) and θ = θ (x).

Efforts to find explicit analytical solutions of Eqs. (10) have
not been fruitful so we resort to numerics. We minimize the
energy density

w = 1

L

∫ L

0
dx V (θ,φ) (18)

over a periodic chain of length L and vary L to achieve a
minimum for any given value of h.

For h < hc1 = 1.01, we recover the previous results for
the flat spiral. But, for h > hc1 a nonflat spiral arises with
nontrivial φ(x) as well as θ (x). We call this the intermediate
state. Examples appear in Figs. 1 and 2 for a variety of
field values. Entering the intermediate phase for h > hc1, n2

acquires nonzero values and one can describe the state as
an antiferromagnetic conical spiral that propagates along x
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but nutates around y. This is precisely the structure deduced
from recent scattering experiments28,29 and called a double-k
structure because of twofold peak characteristically observed
during experimental scans through k space. As h increases,
the component n2 becomes larger and larger until at hc2 = √

3
(or Hc2 = 2.9 T), the solution becomes a commensurate
antiferromagnet or spin-flop state with n = (0,1,0). This upper
critical point was determined in Ref. 24 from a stability
analysis. The existence of the intermediate state does not
depend upon the presence of a nonzero transverse magnetic
field.

We now comment on the two issues concerning the nature
of the ground state for h ‖ c. Our first comment concerns the
possible existence of more general structures with average
energy density lower than those calculated above through
the 1D ansatz (9). In particular, ground states in the form
of a vortex (skyrmion) lattice in 2D Dzyaloshinskii-Moriya
helimagnets have been speculated theoretically6,7 [also in
connection with Ba2Cu2O7 (Ref. 8)], and later discovered
experimentally in several such systems.4,9–11 Hence, we carried
out extensive two-dimensional simulations, but our numerical
investigation yielded negative results for a potential ground
state in the form of, say, a vortex lattice. Instead, in all
our 2D numerical experiments, we found that the optimal
configuration for hc1 < h < hc2 is actually the same 1D
nonflat spiral, which was obtained earlier in this section by
a numerical minimization applied directly to a 1D restriction
of the energy functional (18).

Second, the nonflat spiral, calculated numerically through
the relaxation algorithm, exists as a stationary point of the
energy functional in the region hc1 < h < hc2. It is thus
desirable to examine also its stability, and check whether or not
there exists yet another critical field within the intermediate
region, beyond which the nonflat spiral may cease to be locally
stable. We have therefore calculated the magnon spectrum
of the intermediate phase (Appendix A) and verified that all
eigenvalues are always positive. Consequently, the nonflat
spiral is locally stable within the entire intermediate region.
This computation does not prove it is the ground state,
but in combination with extensive numerical explorations of
two-dimensional states that found no solutions of lower energy,
it is a strong indication. Note that the magnon spectrum in the
intermediate phase has not been experimentally investigated
yet. Hence, our current theoretical predictions provide the
opportunity for comparison with future inelastic neutron
scattering studies.

B. Field perpendicular to c

We next consider a field applied in a direction strictly per-
pendicular to the c axis, a case that had attracted experimental
interest already in Ref. 18. For the moment, we assume that
the field is applied along the y axis, h = (0,h⊥,0), hence the
potential V of Eq. (4) reduces to

V = 1
2

[
(∂1n)2 + (∂2n)2 + n2

3 + h2
⊥n2

2 + 1
] + h⊥dzn1

− [(∂1n1 − ∂2n2)n3 − (n1∂1 − n2∂2)n3], (19)

where the applied field enters in two distinct ways, namely,
through the appearance of an effective easy-plane anisotropy
1
2h2

⊥n2
2 and a Zeeman-type anisotropy h⊥dzn1. The latter

also contains the strength dz of the out-of-plane oscillating
component (±Dz) of the DM vectors which was neglected in
the analysis of Ref. 18.

To find minima of the energy functional, we first note that
the positive term 1

2h2
⊥n2

2 again favors a flat-spiral configuration
with n2 = 0 which propagates along the x axis. Using the
angular parametrization (8), we write


 = φ(x), � = π

2
; n = (sin φ, 0, cos φ), (20)

which is inserted in Eq. (19) to yield

V = 1
2 [(∂1φ − 1)2 + cos2 φ] + h̄ sin φ, (21)

where the only free parameter

h̄ = h⊥dz (22)

is a combination of the applied field h⊥ and the effective
out-of-plane DM anisotropy dz.

Otherwise, the calculation is similar to that of the flat spiral
in Sec. III A. Stationary points of the energy functional W =∫

V dx now satisfy the ordinary differential equation

∂2
1 φ + cos φ sin φ − h̄ cos φ = 0 (23)

whose first integral is given by

(∂1φ)2 − cos2φ − 2h̄ sinφ = C = 2h̄ + δ2. (24)

Our choice of the integration constant C indicates that
minimum energy is achieved with a positive new constant
denoted by δ2. The actual configuration 
 = φ(x) is then given
by the implicit equation

x =
∫ φ

0

dϕ√
δ2 + cos2ϕ + 2h̄(1 + sinϕ)

, (25)

and the corresponding spiral period L is given by

L =
∫ 2π

0

dφ√
δ2 + cos2φ + 2h̄(1 + sinφ)

. (26)

Finally, the free parameter δ2 is calculated by minimizing the
average energy density w = 1

L

∫ L

0 V (x)dx which yields

1

2π

∫ 2π

0
dφ

√
δ2 + cos2φ + 2h̄(1 + sinφ) = 1, (27)

an algebraic equation that may be used to determine δ2 for
each value of h̄. The corresponding minimum energy is then
given by

w = 1
2 (1 − δ2 − 2h̄). (28)

In the absence of the out-of-plane DM anisotropy (dz = 0),
the configuration just calculated reduces to the zero-field flat
spiral of Sec. III A for any value of the applied transverse
field because h̄ = h⊥dz = 0 for all h⊥. In particular, no phase
transition of the Dzyaloshinskii type would be expected to
occur for a field applied in a direction strictly perpendicular to
the c axis, as presumed in the analysis of early experiments.18

However, the situation changes significantly for dz �= 0.
Then, the effective field h̄ = h⊥dz is different from zero
except when h⊥ = 0. With increasing h⊥, and thus increasing
h̄, the parameter δ2 decreases and eventually vanishes when
h̄ reaches a critical value h̄ = h̄c computed from Eq. (26)
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applied for δ2 = 0. A simple numerical calculation yields
h̄c = hc

⊥dz = 0.3161, or

hc
⊥ = 0.3161

dz

. (29)

In the limit h⊥ → hc
⊥, δ2 vanishes and the average energy

density of Eq. (28) reduces to w = 1
2 (1 − 2h̄c) which coincides

with the energy of the uniform spin-flop state n = (−1,0,0).
Thus, we again encounter a Dzyaloshinskii-type phase transi-
tion at a critical field that now depends on dz.

As mentioned already, no such transition was detected in
the early experiments18 which were conducted with transverse
magnetic fields of limited strength H⊥ � 2 T or h⊥ �
2/1.68 ≈ 1.2. However, recent experiments29 reveal a critical
field Hc

⊥ = 9 T or hc
⊥ = 9/1.68 = 5.36 and, using Eq. (29),

dz = 0.06. (30)

As far as we know, this is the first estimate of the strength
of the out-of-plane DM anisotropy and will be used in all
numerical calculations presented in the continuation of this
paper. Incidentally, using the definition of the rationalized
anisotropy dz = √

2Dz/εJ from Ref. 24, we find Dz/J =
0.0076, to be compared with ε = D⊥/J = 0.18.

The preceding calculation was completed in Ref. 25 with
a detailed calculation of the corresponding magnon spectrum
which could prove useful for the analysis of future inelastic
neutron scattering experiments in the presence of a strong
transverse magnetic field H⊥. The same calculation reveals
no sign of further critical instabilities as long as dz < 0.5.
In particular, an intermediate phase of the type encountered
in Sec. III A is not present in the case of strictly transverse
magnetic fields and dz < 0.5. In other words, the predicted
phase transition is of pure Dzyaloshinskii type.20

This section is completed with a brief discussion of the case
of a transverse magnetic field

h⊥ = h⊥(sin ψ, cos ψ,0) (31)

which points in an arbitrary direction within the basal plane
obtained by a clockwise rotation of the y axis with angle ψ (see
Fig. 3). In fact, the ground-state configuration for this more
general case (ψ �= 0) can be surmised from the special ψ = 0
solution calculated earlier in this section by simple algebraic
transformations, thanks to the underlying U (1) symmetry of
Eq. (6) broken by the applied transverse field. Indeed, let n1 =
n1(x), n2 = 0, n3 = n3(x) be the ψ = 0 solution. Then, the
solution for ψ �= 0 is given by

n′
1 = cos ψ n1(ξ ), n′

2 = − sin ψ n1(ξ ), n′
3 = n3(ξ ), (32)

where ξ = x cos ψ + y sin ψ . Thus, the new spiral propagates
along the x ′ axis obtained by a counterclockwise rotation
of the x axis with angle ψ (see Fig. 3) while the staggered
magnetization rotates in the plane x ′′z which is perpendicular
to the field direction (axis y ′′). In other words, a flat spiral
(cycloid) that initially propagates along the x axis and rotates
in the xz plane (ψ = 0) is reoriented to propagate along the
x ′ axis (ψ �= 0) so that the normal to the spin plane (axis y ′′)
points along the applied magnetic field. The angle formed by
the direction of spiral propagation (axis x ′) and the normal to
the spin plane (axis y ′′) is bisected by the conventional crystal

’y

’x

’’x

x

y

ψ ψ

ψ

ψ

’’h⊥y ,

FIG. 3. Illustration of the bisection rule in a transverse field
applied along the y ′′ axis. The spiral propagation vector points along
the x ′ axis, while the staggered magnetization rotates in the x ′′z plane.

axis b = (0,1,0) denoted by a dotted line in Fig. 3 for any
ψ . When the field is applied along b, ψ = π

4 and the normal
to the spin-rotation plane is parallel to the propagation vector
(screw-type spiral).

The “bisection rule” just described theoretically was exper-
imentally discovered already in Ref. 18. Actually, agreement
with the ideal bisection rule requires that H⊥ � 0.5 T in
order to overcome a certain energy barrier due to discreteness
effects which lead to an additional tetragonal anisotropy that
breaks the underlying U (1) symmetry even in the absence
of a transverse field.18,27 The same anisotropy explains the
experimental fact that the spiral propagates along the x =
(1,1,0) or x = (1,1̄,0) directions, in the absence of a transverse
field, while a sufficiently strong field H⊥ � 0.5 T is required
to reorient the spiral according to the bisection rule.

We have thus completed the discussion of the phase diagram
in the presence of a field strictly parallel to the c axis
(Sec. III A) or a field strictly perpendicular to c (Sec. III B).
The general case of a canted magnetic field is discussed in the
following Sec. III C.

C. Canted magnetic fields

We now turn our attention to the most general case of the
applied field h, whose transverse component h⊥ and the com-
ponent hz along the c axis are both nonzero. This is necessary to
consider because experimentalists have reported ground-state
information on the system while scanning through all field
components. For a while, we assume that the magnetic field h
is given by

h = h⊥e2 + hze3. (33)

The explicit form of the potential of Eq. (1) becomes

V = 1
2 [(∂1n)2 + (∂2n)2 + 1]

− [(∂1n1 − ∂2n2)n3 − (n1∂1 − n2∂2)n3]

+ 1
2γ 2n2

3 + 1
2h2

⊥n2
2 + h⊥hzn2n3 + h⊥dzn1, (34)

where the parameter γ 2 depends upon hz,

γ 2 = 1 + h2
z. (35)
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FIG. 4. (Color online) T = 0 theoretical prediction for the phase diagram. We adopt conventions used in publication of experiments
(Ref. 29). The antisymmetric and symmetric phases reported here are illustrated in Figs. 5, 6 and 7, 9, respectively. (a) The antisymmetric
phase is realized below the solid line. The symmetric phase, denoted as S in the figure, exists in the area between the solid line and the dashed
line. The dashed line depicts the limit of local stability of the spin-flop phase. The spin-flop phase is locally stable above the dashed line, but is
actually realized only in the area above both the dashed line and the solid line. (b) A portion of the phase diagram near the tricritical point �

where the three phases (symmetric, antisymmetric, spin-flop) merge. Experimental data were extracted from Fig. 11(a) of Ref. 29. The straight
solid (green) lines correspond to experimental scans along magnetic field that will be discussed in the paragraph on neutron scattering.

When h⊥ �= 0, a brief inspection of the potential of Eq. (34)
reveals that the Zeeman energy 1

2 (n · h)2 now contains also
the off-diagonal anisotropy h⊥hzn2n3, which was absent
when either h⊥ = 0 or hz = 0. The presence of the latter
anisotropy precludes analytical treatment. We therefore obtain
the corresponding solutions by a direct minimization of the
energy functional, in a manner analogous to the calculation
presented in Sec. III A. For the sake of clarity, we also
recall the value of the out-of-plane DM anisotropy dz = 0.06
estimated in Sec. III B, which is used in all subsequent
numerical calculations. We state our T = 0 results in the phase
diagram in Fig. 4. For comparison, we include experimental
critical lines determined from neutron diffraction and magnetic
susceptibility measurements taken, however, at relatively high
temperature T = 1.65 and 1.8 K.

We begin our discussion with the case where hz < hc1 =
1.01 (or Hz < Hc1 = 1.7 T) and consider the evolution of
the system with increasing h⊥. Our results are displayed in
Figs. 5(a) and 6(a). In the limit h⊥ = 0, the spin configuration
that minimizes the energy is the flat spiral constructed in
Sec. III A. Recall that this solution is degenerate with respect
to rotations around c, in agreement with the U (1) symmetry
given by Eq. (6). When h⊥ �= 0, the U (1) symmetry is
broken, and the energy is minimized by a nonflat spin spiral
propagating strictly along the x axis. The component of the
staggered magnetization n2 is now different from zero and
points in the direction of the transverse field h⊥, while its
sign oscillates over the period L = L(hz,h⊥) with the property
n2(x) = −n2(L − x). Because of this characteristic behavior,
we call this state the antisymmetric phase. The path traced
out by the staggered magnetization n during one period L,
shown in Fig. 6(a), looks relatively simple. The spin rotates
approximately in a plane whose normal is tilted from the y

axis towards some new direction in the yz plane.
The origin of the oscillating component n2 can be under-

stood by a direct inspection of the Zeeman energy ∝(n · h)2.
Its diagonal terms n2

2h
2
⊥, n2

3h
2
z are always positive, but the

off-diagonal contribution may become negative provided that
n2 adjusts so that its sign is always opposite to the sign of n3.
But, the projection of n onto the xz plane rotates during the
period L thanks to the chiral DM term (n1∂1n3 − n3∂1n1) in
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FIG. 5. Calculated evolution of spin configuration in the antisym-
metric phase with the applied magnetic field. (a) Left panel: hz = 0.59
(Hz = 1 T), h⊥ increases. (b) Right panel: h⊥ = 2.68 (H⊥ = 4.5 T),
hz increases. The bottom entries in both panels are applied for points
near the critical line between the antisymmetric and the spin-flop
phases. Notice an enhanced n1 = −1 domain in these entries. The
antisymmetric spiral propagates strictly along x.
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FIG. 6. (Color online) The same antisymmetric spirals as in Fig. 5
but from a different perspective. Blue lines on the sphere surface are
paths traced by the end point of n during one period L.

the potential V of Eq. (34). Therefore, the sign of n3 oscillates,
and n2 also displays oscillatory behavior.

To fully describe the spin structure, all terms in the potential
of Eq. (34) must be considered, but the main conclusion
persists: the spiral minimizes its energy by developing n2 �= 0
along the direction of the transverse field h⊥, and the sign of n2

oscillates over the period L. As a result, the expectation value
〈n2n3〉 becomes negative (〈n2n3〉 < 0), while 〈n2〉 = 〈n3〉 = 0,
as verified by a direct calculation.

We now briefly describe the role of the term h⊥dzn1 in
Eq. (34). The importance of the latter contribution has already
been established in Sec. III B during our analysis of the
properties of the flat spiral (n2 = 0) in the presence of a field
applied strictly in the xy plane (h⊥ �= 0, but hz = 0). The
scenario discussed in Sec. III B is here mildly modified by the
presence of hz �= 0 but its main features remain the same, as
confirmed by our numerical studies. The weak-ferromagnetic
anisotropy h⊥dzn1, generated by the transverse field h⊥
applied along the y axis, makes the spin orientations along
the ±x axis energetically nonequivalent. In the antisymmetric
state, the component of the staggered magnetization that is
perpendicular to the transverse field h⊥ rotates in the xz plane,
and is thus directly affected by the weak-ferromagnetic term
h⊥dzn1. In turn, the profile of the antisymmetric spiral is
modified, and the expectation value of n1 over the period L

becomes nonzero and negative (〈n1〉 < 0) in order to minimize
h⊥dzn1.

With increasing h⊥, the spiral becomes significantly dis-
torted, and the n1 � −1 orientation (domain) during the
spin rotation is greatly enhanced. This is apparent from the
bottom entry of Fig. 5(a). At the same time, the period

L of the spiral increases, and the energy density of the
antisymmetric state begins to approach the energy density
of the uniform spin-flop state n = (−1,0,0) from below. At
the critical value of the transverse field hc

⊥(hz), the period
of the spiral grows to infinity (L → ∞), and its energy
density becomes equal to the energy density of the spin-flop
state w = 1

2 (1 − 2h⊥dz). This numerically verified scenario is
consistent with experiment,29 and is somewhat similar to that
discussed in Sec. III B for strictly transverse fields. Above
the critical line, only the uniform spin-flop state emerges
from our numerical calculations, and the incommensurate
antisymmetric spiral no longer exists. The boundary between
the antisymmetric and the spin-flop states is indicated by the
solid line in Fig. 4. We have verified that the antisymmetric
state displayed in the phase diagram always carries lower
energy density than the uniform spin-flop state.

Evolution of the spin structure with increasing hz, but fixed
strength of the transverse field h⊥, is shown in Figs. 5(b) and
6(b). Our results, applied here for h⊥ = 2.68 (H⊥ = 4.5 T),
are qualitatively similar to those in Figs. 5(a) and 6(a). In
particular, the spiral again develops a nonzero oscillating com-
ponent n2 �= 0 along h⊥, with zero expectation value 〈n2〉 = 0
over the period L. Expectation value 〈n2n3〉 < 0 due to the
off-diagonal anisotropy n2n3h⊥hz, whereas 〈n1〉 < 0 thanks
to the weak-ferromagnetic term h⊥dzn1. With increasing hz,
the period of the spiral L increases and presumably again
diverges (L → ∞) at the critical line. Above the critical line,
only the uniform spin-flop state emerges from our numerical
calculations, and the incommensurate antisymmetric spiral no
longer exists.

We emphasize that the characteristic properties of the
antisymmetric state discussed in the preceding paragraphs
remain the same for any point hz �= 0, h⊥ �= 0 below the solid
line in Fig. 4. However, the scenario of the phase transition
between the antisymmetric and the spin-flop phases, discussed
in connection with Fig. 5, is slightly modified for sufficiently
weak h⊥, near the point �. Specifically, for H⊥ below ∼1 T,
the energies of both states again become equal at the critical
line, but the period L of the antisymmetric spiral remains
finite (albeit large). Above the critical line, our numerical
minimization still yields the solution in the form of the
antisymmetric spiral with, however, the energy density higher
than the energy density of the spin-flop state n = (−1,0,0).
This should be contrasted with behavior for large h⊥, where
the period of the antisymmetric spiral diverges (L → ∞) at
the critical line; and above the critical line, only the uniform
spin-flop state exists. Interestingly, our results seem to be again
consistent with the experiment.29

We now focus on the area left from the point � in the
phase diagram. Our spin-wave analysis of the spin-flop state
in the presence of arbitrary canted fields, given in Appendix B,
established that the spin-flop phase is locally unstable below
the dashed line in Fig. 4. Thus, it can not exist beyond the
point �, where the energy densities of the antisymmetric and
the spin-flop states become equal. It is more or less clear that
there is a new phase realized in some area just below the dashed
line, near the axis hz (near h⊥ = 0). Note that the dashed line
starts from the point hz = √

3 (Hz = 2.9 T), which is just
the upper critical field hc2 obtained in Ref. 24. For hz < hc2,
the spin-flop phase is locally unstable, and the intermediate
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FIG. 7. (Color online) (a) Examples of spin configurations in
the symmetric phase, calculated for h⊥ = 0.06 (or 0.1 T) and the
two values of hz. This phase exists in the narrow area of the phase
diagram 1.01 � hz �

√
3 (1.7 T < Hz < 2.9 T) and weak but nonzero

h⊥, 0 < h⊥ � 0.12 (0 < H⊥ � 0.2 T). The symmetric conical spiral
propagates strictly along y and nutates around the −x axis. Otherwise,
its properties are similar to its precursor phase, the intermediate state
of Sec. III A. (b) The same symmetric spirals viewed from a different
perspective. Blue lines on the sphere surface are paths traced by the
end point of n during one period L.

phase is realized in the region hc1 < hz < hc2. It is natural to
expect that the intermediate phase survives in some form also
in the presence of a weak transverse field h⊥ �= 0.

Our calculations confirm this expectation. When h⊥ �= 0, a
symmetric phase emerges as the ground state in the region
between the dashed and the solid lines in Fig. 4. This
phase acquires its name because n1(y) = n1(L/2 + y). Two
examples are illustrated in Fig. 7. The symmetric phase
can be described as an antiferromagnetic conical spiral that
propagates strictly along y, but nutates around the −x axis.
Importantly, the component n1, perpendicular to the transverse
field h⊥, is nonzero (n1 �= 0) and always negative (〈n1〉 < 0).
All these features agree with the experiment.29

The symmetric phase develops from its predecessor, the
intermediate phase (the conical antiferromagnetic spiral)
discussed in Sec. III A for fields strictly parallel to c. Recall
that the intermediate phase obeys the U (1) symmetry described
by Eq. (6). In practice, the U (1) symmetry is broken by
an additional tetragonal anisotropy induced by discreteness
effects.18,27 Thus, in the absence of transverse fields, there
exist four degenerate states, shown in Fig. 8: the conical
spiral propagates along x and nutates around the ±y axis or it
propagates along y but nutates around the ±x axis.

This degeneracy is broken when h⊥ �= 0. To illustrate this
point, consider for a moment the intermediate spiral with
the profile n, calculated in the absence of a transverse field.
Inserting this solution in the potential V of Eq. (34), applied
with h⊥ �= 0, yields the additional corrections to the energy
given by 1

2h2
⊥〈n2

2〉 + h⊥dz〈n1〉. The first correction, quadratic
in h⊥, originates in the Zeeman energy ∝(n · h)2. Note that
the off-diagonal Zeeman term h⊥hz〈n2n3〉 does not contribute

h = 0)⊥Degeneracy of the Intermediate phase (         

z

x
y

z

y
x

z

y
x

propagates along x, nutates around +y or −y

z

y
x

propagates along y, nutates around +x or −x

FIG. 8. (Color online) Illustration of the four degenerate states in
the intermediate phase (h⊥ = 0) discussed in the text, calculated here
for hz = 1.21. Thick lines on the sphere indicate paths traced out by
the end points of the staggered magnetization during one period L.
The base of the staggered magnetization is placed at the center of the
sphere. A nonzero transverse component h⊥ �= 0, applied along +y,
breaks the above degeneracy and favors the spiral propagating along
y and nutating around the −x axis, which becomes the precursor of
the symmetric spiral.

because the expectation value 〈n2n3〉 in the intermediate phase
vanishes for any degenerate state. The second correction,
linear in h⊥, is due to the weak-ferromagnetic anisotropy
dz(h × e3) · n. This linear contribution dominates for small
transverse field, and favors the particular degenerate state,
namely, the conical spiral propagating along y and nutating
around the −x axis, with 〈n1〉 < 1. Numerical work confirms
that the above qualitative argument is correct despite the sim-
plifying assumption that neglects the changes in the staggered
magnetization induced by h⊥. The actual profile of the
symmetric spiral n and its period L are both mildly modified
by h⊥ �= 0. Otherwise, its properties are similar to the
intermediate phase.

The symmetric phase emerges in canted magnetic fields
applied nearly parallel to the c axis, when hz � hc1. It is
the stationary point of the energy functional with the lowest-
energy density in the area between the dashed line and the
solid line of Fig. 4. With increasing hz, the period L increases,
and the magnitude of n1 becomes larger and larger, until at the
dashed line n1 → −1 and the solution becomes the spin-flop
state n = (−1,0,0). This behavior, apparent also from Fig. 7,
is virtually identical to the intermediate phase. Our results
generally agree with experimental findings.28,29 Evolution of
the spin structure with increasing h⊥ but fixed strength of the
longitudinal component hz is rather mild. The period L slightly
decreases with h⊥, whereas the magnitude of n1 moderately
increases due to the weak-ferromagnetic energy dz(h × e3) · n.
Importantly, at the critical solid line, the energy density of the
symmetric phase becomes equal to the energy density of the
antisymmetric phase. This happens at h⊥ ∼ 0.12 or 0.2 T.
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For stronger h⊥, the antisymmetric state emerges as the true
ground state, with the energy density lower than the symmetric
spiral. The corresponding phase transition is first order, and is
further discussed in the following paragraphs.

Comparison with neutron diffraction. Experimental data
were obtained from measurements with a magnetic field of
varying strength H applied at an angle α with respect to the c

axis28,29 [see the straight (green) lines in Fig. 4]. The in-plane
component of the field H⊥ = H sin α was directed along the
y axis, or the (−1,1,0) axis using the notation of Refs. 28
and 29. The alternative choice H⊥ ‖ (1,0,0) yielded equivalent
results, and is thus ignored in the following discussion. We
concentrate on the data for α ∼ 5◦ and 15◦, analyzed in detail
in Ref. 29. We used similar angles 4.57◦ and 15.64◦ in our
calculations.

We first discuss the case α ∼ 5◦. For H < Hc1(α) = 1.95 T,
the experiment observed an incommensurate structure that
propagates along y, while its spin rotates in the xz plane,
perpendicular to H⊥. This structure is a cycloid for weak H ,
that distorts to a soliton lattice for stronger fields. At the critical
field Hc1, the propagation direction suddenly rotates exactly
by π/2, from the y to the x axis, and the structure becomes
an antiferromagnetic cone.28,29 This antiferromagnetic cone
phase (or the double-k phase) propagates along y, parallel to
H⊥. Its “incommensurate” spin component rotates in the yz

plane, while a “commensurate” component is perpendicular
to both the c axis and the transverse field, as shown in
Fig. 13(a) in Ref. 29. Finally, the IC transition is observed
at Hc1 ≈ 2.4 T.

These experimental findings are consistent with our results.
For H < Hc1 [the top entry in Fig. 9(a)], theory predicts
the antisymmetric phase that propagates strictly along x,
perpendicular to H⊥. Importantly, the component of the
staggered magnetization n2, oscillating along H⊥, is for α ∼ 5◦
rather small, and the structure resembles the flat spiral. The
antisymmetric phase can be identified with the cycloid and/or
the soliton lattice of Ref. 29. Above Hc1(α), predicted at
∼1.9 T, the symmetric phase, a conical spiral propagating
along y but nutating along the −x axis, emerges [see the
middle and the bottom entries in Fig. 9(a)]. This agrees with
the spin structure proposed in Ref. 29, and the symmetric
phase should be identified with the antiferromagnetic cone
phase. The IC transition occurs at Hc2(α) ∼ 2.7 T. Note
that the antisymmetric spiral propagates strictly along the x

axis, while the symmetric propagates along y. Therefore, the
phase transition at Hc1 is accompanied by a sudden rotation
of the spiral propagation direction exactly by π/2, as in
the experiment. This sudden π/2 rotation, highlighted as a
noteworthy feature of recent experiments, has been explained
by our previous analysis earlier in this section. Specifically,
the presence of H⊥ �= 0 breaks the U (1) symmetry described
by Eq. (6), and selects a particular spin orientation and spiral
propagation direction in each phase. Thus, in the antisymmet-
ric phase, propagation along x is required to minimize the
Zeeman energy, while the symmetric phase must propagate
along y in order to minimize the dominant weak-ferromagnetic
contribution dz(h × e3) · n. In this respect, we note that the
sudden π/2 rotation should only occur when H⊥ �= 0, and is
not expected for α = 0 or fields applied strictly along the c axis.
However, a perfect alignment of the applied field with the c
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FIG. 9. Calculated spin configurations in a magnetic field of
varying strength H , applied at an angle α with respect to the c axis.
The two values of α are roughly equal to 5◦ and 15◦ used in neutron
scattering measurements of Ref. 29. (a) α = 4.57◦. The top entry
corresponds to the antisymmetric phase, and the spiral propagates
along x. The middle and the bottom entries display the symmetric
phase, where the spiral propagates along y. Phase transition between
the antisymmetric and the symmetric phases is accompanied by sud-
den π/2 rotation of propagation direction. (b) α = 15.64◦. All entries
show the antisymmetric phase, with propagation direction along x.

axis is impossible to achieve in practice. Therefore, the results
of Ref. 28 reported for α = 0 and “a sample with an almost
perfect alignment” (misalignment less than 0.5◦) should be
interpreted from the perspective of our previous comment.

We now discuss the evolution of the incommensurability
parameter L(0)/L(H ), shown in Fig. 10(a). Note a discontinu-
ous jump of the incommensurability parameter to higher value
at the critical field Hc1, considered as another characteristic
feature of the phase transition to the antiferromagnetic cone
phase.29 We emphasize a remarkable agreement of our
theory with the experimental data; the incommensurability
parameter increases by ∼5% (theory) or ∼6% (experiment).
The calculated value of Hc1 ∼ 1.89 T also agrees well with
∼1.97 T extracted from the experimental data. Note that the
latter value, obtained from our analysis of the experiment,
differs from 1.95 T quoted in Ref. 29. The calculated critical
field Hc2 ∼ 2.7 T is slightly larger than the observed ∼2.4 T.
However, the overall agreement is good. One should keep in
mind that we compare the T = 0 calculations with the data
taken at relatively high temperature T = 1.65 K ∼ 0.5TN .
Actually. our theoretical data are shown only for field values
up to 2.6 T < Hc2. This is because of numerical difficulties
that occur as the period L rapidly quickly grows near
Hc2. The corresponding average energy density, which is a
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FIG. 10. (Color online) Evolution of the incommensurability
parameter L(0)/L(H ) with the strength of the magnetic field applied
at an angle α with respect to the c axis. Comparison of T = 0
theoretical predictions with experiment. Neutron scattering data and
error bars, taken at T = 1.65 K, were extracted from Fig. 10 of
Ref. 29 and adjusted to fit our conventions. (a) α ≈ 5◦. The two
dotted lines mark the location of the critical field Hc1(α) determined
by theory (1.9 T) and experiment (1.97 T). A discontinuous jump to
a larger value at Hc1 corresponds to the phase transition between the
antisymmetric and the symmetric phases. (b) α ≈ 15◦.

function of L, then displays a shallow minimum that makes
it hard to determine the precise value of L. Nevertheless, our
calculations indicate a continuous IC transition with n1 → −1,
but finite (albeit large) L in the limit H → Hc2.

We now discuss the case when the field is applied at
“large” angle α ∼ 15◦ with respect to the c axis. In this
case, no reorientation of the spiral propagation direction
(which is along x) was observed in the experiment.29 For
H � 1.7 T, the proposed spin structure was described as
clearly nonsinusoidal, nonplanar “complexly distorted in-
commensurate phase,” whose detailed structure, however,
remained unresolved. This “distorted incommensurate phase”
was characterized by the smooth appearance of higher-order
harmonics seen by neutron diffraction, both odd and even.
The measured dependence of the incommensurate parameter
on H displays a characteristic shape, concave for weak field,
and convex when H � 1.7 T. Finally, the IC transition is
observed at ∼2.6 T. All these features are consistent with our
T = 0 calculations, which predict the antisymmetric phase
with oscillating n2 ‖ H⊥, propagating along x for all field
strengths until the IC transition at ≈3.45 T. Predicted critical
field is somewhat larger than that observed in the experiment,
but is not terribly inconsistent with the measured value
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FIG. 11. Theoretical field dependence for the intensities of the
first, second, and the third Fourier harmonics calculated from the n1

and n3 components of the staggered magnetization. The magnetic
field was H was applied at an angle α = 15.64◦ with respect to
the c axis and is roughly equal to 15◦ used in the experimental
Fig. (8), Ref. 29. We adopt SI units to facilitate comparison with
the experiment.

2.6 T quoted in Ref. 29, especially in view of our previous
comments. The n2 component is small for weak fields, but
its magnitude quickly increases with H , as apparent from
Fig. 9(b). For stronger fields, the calculated structure becomes
clearly nonsinusoidal, nonplanar, and can be identified with the
“distorted incommensurate structure” of Ref. 29. Importantly,
the Fourier transform of the staggered magnetization provides
evidence for higher harmonics, both odd and even.

Our T = 0 theoretical results for the field dependence of the
intensities of the first, second, and third Fourier components
of the staggered magnetization n(x) are presented in Fig. 11.
The intensities are calculated from the n1, n3 components.
This is because neutron scattering sees only the components
perpendicular to momentum transfer (which is parallel to n2).
Our results are related to the experimental data in Fig. 8(b) of
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Ref. 29. The first harmonic displays the typical shape seen in
the experiment: first very mild, almost linear decrease followed
by a convex shape for H � 1.7 T that becomes concave near
the IC critical field. The difference with experiment thus lies
mainly in somewhat larger theoretical value of the IC critical
field, as mentioned already in the previous paragraph. In
agreement with the observation, higher harmonics smoothly
appear above 1.7 – 2 T. The intensity of second harmonics
linearly increases with the field, as in the experiment. Similarly,
the third harmonics first increases, then shows a shallow dip
and increases again near the IC critical field. This characteristic
behavior is exactly what was observed in the experiment.29 On
the other hand, our results show rapid increase of both higher
harmonics as the field approaches the critical value, whereas
the experimental data show smoothing at the IC transition. This
can be perhaps due to finite temperature. Overall agreement
with experiment is, however, fairly good.

Finally, we discuss the field dependence of the incom-
mensurability parameter shown in Fig. 10(b). In agreement
with experiment, the curve shows no discontinuity until the
IC transition. The shape is concave for weak field strengths,
but becomes convex for H � 1.7 T. This corresponds to the
emergence of higher harmonics and is again in agreement
with the experiment, with minor discrepancy in the value of
the IC critical field. The nature of the observed IC transition
as deduced from the measured incommensurability parameter
remains unclear; the corresponding wording in Ref. 29 (page 9)
suggests that the data are consistent with a discontinuous
transition. However, the related discussion in page 8 of the
same reference states that due to the smallness of the measured
parameter near the critical field, “no reliable conclusion can
be drawn” whether the data continuously diverge or show a
finite jump. In any case, for α = 15◦ our calculations indicate
a discontinuous IC transition, which becomes continuous for
larger angles. This point has already been briefly discussed in
the discussion of the antisymmetric spiral.

Comparison with magnetic susceptibility measurements.
Neutron scattering studies confirmed the existence of the
double-k phase and proved useful for examination of its
properties. However, they were limited to only few values
α = 0◦, 5◦, 15◦, and 30◦. Thus, the exact boundaries of the
double-k phase (or the symmetric phase) remain an open
question. For example, our theory predicts that the latter
phase exists for α � 6◦, which is just slightly above the
experimentally studied case 5◦. Additional measurements in
the region 5◦ < α < 10◦ may help to clarify this issue.

The phase diagram was further explored by complementary
magnetic susceptibility measurements. Peaks in the experi-
mental data, taken at T = 1.8 K, yielded the two critical “lines”
marked in the phase diagram of Fig. 4 by crosses and diamonds.
Near the c axis (α = 0◦ and 5◦), a single sharp peak in the
data was interpreted as the transition to the double-k phase
at Hc1. The results were practically identical with neutron
scattering studies, as apparent from the overlap of the first two
crosses with neutron diffraction data. The IC transition at Hc2

is featureless in magnetic susceptibility.
However, for α � 10◦, a single peak splits into two. The

lower peak (crosses) is interpreted as a crossover to a “distorted
incommensurate structure” seen in magnetic diffraction. The
nature of this “distorted structure” has already been discussed

in previous paragraphs. The lower peak broadens with increas-
ing α, and completely disappears at α ∼ 45◦. The sharp upper
peak (diamonds) is clearly seen until α ∼ 90◦ corresponds to
the IC phase transition between the antisymmetric and the
spin-flop phases. The agreement between our T = 0 theory
and the experiment is almost perfect for α ∼ 90◦ or the fields
applied strictly in the xy plane. This is not surprising because
the measured critical field 9 T was actually used as an input
value in our theoretical estimate of the out-of-plane DM
anisotropy dz. The slight discrepancy in the critical field for
strictly transverse field, seen in the phase diagram of Fig. 4,
is simply due to the fact that we adopted the rounded value
dz = 0.06 that differs by ∼10−3 from the exact result. For
canted fields, our theory predicts somewhat larger critical fields
than those measured in the experiment. However, the overall
agreement is satisfactory, and discrepancies in the values of
the critical fields are typically ∼10–20%.

We end this section with two comments:
(i) Numerical work confirms that the existence of dz �= 0

is not crucial for the appearance of the double-k structure
and/or sudden π/2 rotations observed in experiment. It is,
however, important to provide quantitative agreement with
experiment. In particular, for dz = 0 and fields nearly parallel
to c, the intermediate phase would first appear at hc1 in the
form of a nonflat spiral propagating strictly along x but nutating
around the y axis, without reorientation of the spin propagation
direction. A sudden π/2 rotation of the propagation direction
occurs later, at yet another critical field hrotation ≈ 1.20, above
which the minimum energy state becomes the symmetric spiral
propagating along y but nutating around the x axis. In the
absence of the weak-ferromagnetic energy dz(h × e3) · n, an
explanation of sudden reorientation requires a detailed analysis
of the of the energy term ∝(n · h)2.

(ii) We assumed that the transverse component of the field
h⊥ points strictly along the y axis. Our results, however, are
not restricted to this special case. For example, assume that
h⊥ points in an arbitrary direction in the xy plane, which is
obtained by a clockwise rotation of the y axis with angle ψ .
Then, the staggered magnetization n for any state calculated
earlier in this section must be also rotated clockwise with the
angle ψ around the c axis, while the original direction of spin
propagation must be rotated counterclockwise, with the angle
−ψ . All other results remain unchanged.

IV. CONCLUSION

We have presented a rather complete theoretical study of
T = 0 phase transitions in canted fields of arbitrary strength
and direction. We calculated the complete phase diagram and
identified the symmetries of states in a number of different
regions. For the fields applied nearly parallel to the c axis, we
confirmed the existence and stability of the intermediate phase
that mediates the incommensurate-commensurate transition
and analyzed its properties. We identify this phase with an
experimentally observed double-k structure. By analyzing data
on fields applied perpendicular to the c axis, we determine
an out-of-plane anisotropy parameter dz needed to complete
quantitative comparison with experiment. Finally, our model
accounts for sudden π/2 rotations that have been highlighted
as a noteworthy feature of recent experiments.
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The work reported in this paper results from a long-
standing theoretical investigation of spiral magnetic structures
in Dzyaloshinskii-Moryia antiferromagnets. The theoretical
framework involves a number of approximations: the replace-
ment of quantum-mechanical by classical variables, ignoring
interlayer couplings and the replacement of discrete spins by
continuous fields in a model Lagrangian.

Nevertheless, detailed agreement with experiment28,29 is
now so extensive that the applicability of this model to systems
such as Ba2CuGe2O7 may now be established. The only
remaining discrepancies lie in the particular magnetic field
values at which transitions between magnetic states take place.
These discrepancies are on the order of 10%–20%, which is
not much beyond experimental uncertainty. The discrepancies
can also be partly attributed to the fact that the experimental
data were taken at relatively high temperature ∼0.5TN .
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APPENDIX A: MAGNON SPECTRUM FOR h ‖ c

Here, we calculate the magnon spectrum of the intermediate
state from Sec. III A. We first introduce new fields according
to

�(x,y,t) = θ (x) − g(x,y,t),
(A1)


(x,y,t) = φ(x) + f (x,y,t)/ sin θ (x),

where θ and φ are solutions for the intermediate state found
previously in Sec. III A, and f and g account for small fluc-
tuations. The new fields (A1) are introduced in the complete
Lagrangian given by Eq. (4) applied with h = (h,0,0) which
is then expanded to second order in f and g.

The final result for the linearized equations of motions is(
∂2

1 + ∂2
2 − ∂2

0

)
f = U11f + U12g + A∂1g + B∂2g + C∂0g,(

∂2
1 + ∂2

2 − ∂2
0

)
g = U22g + U21f − A∂1f − B∂2f − C∂0f,

(A2)

where all functions except f and g are functions only of x and
are given by

U11 = −(∂1θ )2 + cos2 θ ((∂1φ)2 − 2 ∂1φ)

+ γ 2 (cos2 φ cos2 θ − 2 cos2 φ + 1),

U12 = − (2 ∂1φ − 2) ∂1θ

sin θ
,

U21 = (2 ∂1φ − 2) cos2 θ ∂1θ + 2 γ 2 cos φ sin φ cos θ sin θ

sin θ
,
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FIG. 12. Magnon spectrum along the x direction in the reduced
zone scheme for six illustrative magnetic fields. For h > hc1 = 1.01,
the results show the magnon spectrum of the intermediate phase.
The wave number Q1 is measured in relative lattice units defined as
ζ = ε/L = 0.1774/L. Note that the lowest-lying band has a linear
dispersion relation.

U22 = −((∂1φ)2 − 2 ∂1φ + γ 2 cos2 φ) (2 sin2 θ − 1),

A = (2 ∂1φ − 2) cos θ, B = −2 sin φ sin θ,

C = −2 h cos φ sin θ. (A3)

We have verified that for the flat spiral (θ = π/2, ∂1φ =√
δ2 + γ 2 cos2 φ), these expressions reduce to those previ-

ously obtained for the magnon spectrum of the flat spiral in
Eq. (5.2) of Ref. 24, but with φ ←→ θ . Note that the two linear
equations for f and g are coupled as long as the magnetic field
h is different from zero or spin-wave propagation deviates from
the x axis.

We have solved the linear system (A2) by a Bloch analysis
of the type given in Appendix A of Ref. 24 now extended
to calculate the low-energy magnon spectrum throughout
the intermediate phase hc1 < h < hc2. The numerical proce-
dure yields eigenfrequencies ω(q1,q2) as functions of Bloch
momentum q = (q1,q2). Since the potential terms on the
right-hand side of Eq. (A2) are periodic along x with period
L, the component q1 of the Bloch momentum can be restricted
to the zone [−π/L,π/L]. But, q2 is unrestricted because the
background spin spiral is independent of y.

We present the results of the magnon calculations in
Figs. 12 through 14. The Bloch momentum in the figures is
quoted in relative lattice units Q[r.l.u.]= (ε/2π )q = 0.028q,
following conventions in publication of experiments. Note that
the value Q[r.l.u.]= 1 corresponds to Bloch wavelength of
one lattice spacing of the square lattice formed by the Cu
atoms within each layer. The component Q1 along the x

axis can now be restricted to the zone [−ζ/2,ζ/2], where
ζ = ε/L = 0.1774/L.
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FIG. 13. Magnon spectrum along the x direction in the extended
zone scheme for six illustrative magnetic fields. For h > hc1 = 1.01,
the results show the magnon spectrum of the intermediate phase.
Bands have been assembled in a fashion that corresponds with
conventions in publication of experiments.

We make the following comments:
(i) All eigenvalues are positive. Therefore, the intermediate

state is locally stable. This computation does not prove it is
the ground state, but in combination with extensive numerical
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FIG. 14. Magnon spectrum along the y direction for six illustra-
tive magnetic fields. For h > hc1 = 1.01, the results show the magnon
spectrum of the intermediate phase. The wave number Q2 is measured
in relative lattice units explained in the text.

explorations of two-dimensional states that found no solutions
of lower energy, it is a strong indication.

(ii) We provide plots both in the reduced zone scheme and
the extended zone scheme. The reduced zone scheme is more
compact, particularly for hc1 and below. However, as the field
increases towards hc2, the reduced zone scheme acquires a
large number of bands that are resolved more clearly in the
extended zone scheme. Experimentalists are likely to find the
display in the extended zone scheme more useful.

(iii) Along Q1, the low-energy spectrum is linear at the
zone center. Moving towards hc2 it acquires two bands: an
“acoustic” band with linear dispersion and an upper optical
band (higher bands exist that have not been resolved by the
computation). The linear portion of the acoustic band is the
Goldstone mode of these magnetic spin states. In the limit that
h → hc2 the bands depicted here collapse onto the horizontal
axis; the next excitation is at an energy over 0.4 that lies above
the top of the figure.

(iv) Along Q2, the low-energy spectrum is quadratic. As
h increases towards hc2 the quadratic regions become small
and the spectrum becomes nearly linear. Upon reaching hc2,

the dispersion becomes completely linear. At this point, it
produces the Goldstone mode of the spin-flop phase.

APPENDIX B: LOCAL STABILITY OF THE SPIN-FLOP
PHASE IN CANTED MAGNETIC FIELDS

Here, we calculate the magnon spectrum of the spin-flop
phase in the presence of canted magnetic field given by Eq. (8)
and thus examine an important issue concerning its stability.

We first note that the uniform spin-flop state n = (−1,0,0),
or 
 = −π

2 , � = π
2 using the spherical parametrization (8),

is a more or less obvious stationary point that minimizes the
energy functional W = ∫

V dx dy, where V is the potential
given in Eq. (34). Actually, there exist two different spin-
flop configurations n = (∓1,0,0), and both of them are the
stationary points of the corresponding energy functional.
However, their energy densities given by w = 1

2 (1 ∓ 2h⊥dz)
are different. Therefore, we will only consider the spin-flop
state n = (−1,0,0) with lower energy in our analysis. To
examine the stability, we first introduce new fields


(x,y,t) = −π

2
+ f (x,y,t),

(B1)
�(x,y,t) = π

2
+ g(x,y,t),

where f (x,y,t), g(x,y,t) account for small fluctuations around
the spin-flop state. Now, the actual parametrization of the
staggered magnetization n given by Eq. (B1) is inserted
in the complete Lagrangian of Eq. (4), which is applied
for a magnetic field h given by Eq. (33) and expanded to
quadratic order in f , g. If we further perform the usual Fourier
transformation with frequency ω and wave vector q = (q1,q2),
the corresponding linearized equations of motion can be solved
analytically to yield the (squared) eigenfrequencies

ω2
±(q) = q2

1 + q2
2 + h⊥dz + 1

2

(
1 + h2

z + h2
⊥

±
√(

1 + h2
z − h2

⊥
)2 + 4h2

zh
2
⊥ + 16q2

2

)
. (B2)

The above calculated magnon spectrum is strongly
anisotropic. To examine the local stability of the spin-flop
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state, we note that the stability condition requires that ω2
+ � 0

and ω2
− � 0 for each q. It is also clear that ω2

+ � ω2
−, and ω2

− is
minimum for q1 = 0. Therefore, we minimize ω2

− with respect
to q2 and then set ω2

− = 0 to obtain

h2
z = 3 − h2

⊥ − 2
√

h2
⊥ + 4h⊥dz. (B3)

The above-obtained line of local stability of the spin-flop
state is displayed by the dashed line in the phase diagram
of Fig. 4. Below the dashed line, the spin-flop state is
locally unstable and can not exist. Note that Eq. (B3)
applied for the special case h⊥ = 0 yields hz = √

3 (Hz =
2.9 T), which is just the upper critical field hc2 obtained in
Ref. 24.
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