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We study the motion of several types of domain wall profiles in spin-orbit coupled magnetic nanowires and
also the influence of spin-orbit interaction on the ferromagnetic resonance of uniform magnetic films. Whereas
domain wall motion in systems without correlations between spin space and real space is not sensitive to the
precise magnetization texture of the domain wall, spin-orbit interactions break the equivalence between such
textures due to the coupling between the momentum and spin of the electrons. In particular, we extend previous
studies by fully considering not only the fieldlike contribution from the spin-orbit torque, but also the recently
derived Slonczewski-like spin-orbit torque. We show that the latter interaction affects both the domain wall
velocity and the Walker breakdown threshold nontrivially, which suggests that it should be accounted for in
experimental data analysis. We find that the presence of multiple spin-orbit torques may render the Walker
breakdown universal in the sense that the threshold is completely independent on the material-dependent Gilbert
damping α, nonadiabaticity β, and the chirality σ of the domain wall. We also find that domain wall motion
against the current injection is sustained in the presence of multiple spin-orbit torques and that the wall profile
will determine the qualitative influence of these different types of torques (e.g., fieldlike and Slonczewski-like).
In addition, we consider a uniform ferromagnetic layer under a current bias, and find that the resonance frequency
becomes asymmetric against the current direction in the presence of Slonczewski-like spin-orbit coupling. This is
in contrast with those cases where such an interaction is absent, where the frequency is found to be symmetric with
respect to the current direction. This finding shows that spin-orbit interactions may offer additional control over
pumped and absorbed energy in a ferromagnetic resonance setup by manipulating the injected current direction.
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I. INTRODUCTION

Spintronics has been a highly fertile research area especially
over the last two decades,1 giving rise to practical develop-
ments such as read heads of hard drives, nonvolatile magnetic
memory, and other types of magnetic sensors.2,3 The key
ingredient in this field is to utilize the spin degree of freedom
in currents and materials to achieve the desired functionality,
in particular with an eye to providing a feasible alternative
to semiconductor technology. One of the main obstacles to
overcome in this regard is the high energy cost associated
with, e.g., Joule heating when passing a spin-polarized current
consisting of electrons through a device: current densities of
order 106 A/cm2 are needed to perform magnetization switch-
ing via current-induced spin-transfer torque. As an alternative
mechanism to spin-transfer torque which could circumvent the
Joule heating from electrons, magnon-induced magnetization
dynamics has been investigated more recently.4–7

Currently, the topic of controllable domain wall motion is
receiving much attention (see, e.g., Ref. 8 for a very recent
review) due to its potential with regard to the storage and
transfer of information. A domain wall is a topological defect
in a magnetic system where the local magnetic order parameter
typically rotates spatially in a fashion that reduces the net
magnetic moment of the domain wall area. Owing to their
small size (∼10 nm) and large velocities (∼100 m/s),9,10

controllable domain wall motion holds real potential for
tailoring functional devices with fast writing speeds. In
addition, there have been several proposals11–14 related to
magnetic memory functionality due to the nonvolatile nature
of magnetic domains. Walker breakdown15 is nevertheless a
limiting factor in this regard.

Domain walls can come in several different shapes de-
pending on the anisotropy energies and dimensionality of
the system at hand. In a low-dimensional system such as a
magnetic nanowire, Bloch walls are one of the most frequent
types encountered. However, it is also possible to generate
other sorts of magnetization textures such as head-to-head
domain walls. Both of these wall types are shown in Fig. 1. A
key question is whether or not specific domain wall types are
beneficial with regard to the objectives mentioned above (e.g.,
fast propagation, low current densities to generate motion).
The answer to this question depends on if the spin and position
degrees of freedom are correlated in the system, for instance
via spin-orbit interaction. In the absence of such spin-orbit
interactions, different types of domain walls behave in the same
way—the exact magnetization texture has no effect and one
obtains, for instance, the same terminal domain wall velocity in
all cases. The fact changes when spin-orbit coupling is present
since the electron transport and spin torque now directly
depends on the precise magnetization texture, which warrants
a specific study for how domain wall motion is manifested for
different types of domain walls. A numerical investigation of
this issue was recently put forth in Ref. 16.

The influence of spin-orbit coupling on domain wall
motion has recently been considered extensively in several
theoretical works.16–23 On the experimental stage,24–27 it has
been demonstrated that the presence of spin-orbit coupling
indeed influences the domain wall dynamics in a nontrivial
way including anomalous behavior such as strongly enhanced
domain wall velocities and induced wall motion in the opposite
direction of the electron flow. In order to explain these findings,
it was shown in Ref. 21 that the presence of spin-orbit
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FIG. 1. (Color online) Schematic setup: a spin-polarized current
is passed through a domain wall magnetic nanowire with spin-orbit
coupling. The spin-orbit interaction may be either intrinsic or induced
via a heavy metal proximate host. We consider several types of
domain wall configurations, since the presence of spin-orbit coupling
qualitatively distinguishes the domain wall motion with one type of
magnetization texture from another. More specifically, we consider
two types of Bloch-domain walls relevant for perpendicular magnetic
anisotropy systems in addition to a head-to-head domain wall with
an in-plane magnetization easy anisotropy.

coupling would generate not only a fieldlike torque but also
a so-called Slonczewski-like torque,28 named such due to its
formal resemblance to standard current-induced torques in the
absence of spin-orbit coupling. Alternatively, these two types
of spin-orbit torques may be characterized as out-of-plane and
in-plane components of the total Rashba torque.29

Motivated by this, we will in this paper derive exact
analytical expressions for the domain wall velocity and
Walker breakdown threshold for several types of domain
wall configurations when including both types of spin-orbit
torques in order to investigate how the Slonczewski-like torque
influences the physics at hand. This way, we expand previous
literature17 which has only considered the fieldlike term and
show that the inclusion of the Slonczewski-like torque has
profound impact on the domain wall velocity and the threshold
value of Walker breakdown. In fact, we will show that the
existence of this torque renders the threshold value to be
universal in the sense that it is independent on both the Gilbert
damping α, the nonadiabiticity parameter β, and the chirality
σ of the domain wall.

We will present a detailed derivation of the equations of
motion where possible and show precisely in which manner the
spin-orbit coupling influences both the domain wall velocity
and the Walker breakdown threshold value. Our analytical
expressions show the precise conditions required to realize
domain wall motion against the current flow, as has been
experimentally observed recently,27 and in particular how the
domain wall chirality affects this phenomenon.

Finally, we investigate how the ferromagnetic resonance re-
sponse of a material (or equivalently the dissipation and pump-
ing of energy) is altered due to the above-mentioned spin-orbit
torques. The ferromagnetic resonance experiment is an im-
portant technique for obtaining information about anisotropy,
magnetic damping, and magnetization reversal.30–36 The

influence of spin-polarized current on Gilbert damping and
ferromagnetic resonance have been extensively investigated in
different situations.37–43

Considering a ferromagnetic resonance setup in the pres-
ence of a current bias, we analytically show that the spin-orbit
interactions render the resonance frequency to become asym-
metric with respect to the direction of current injection. This
is different from previous works considering a ferromagnetic
resonance setup in the presence of spin-transfer torques, albeit
without spin-orbit coupling, where the frequency was found
to be symmetric with respect to the current direction.37,43

This paper is organized as follows. In Sec. II, we outline
the theoretical framework to be used in our analysis, namely
the Landau-Lifshitz-Gilbert (LLG) equation augmented to
include the role of spin-orbit coupling combined with a
collective-coordinate description of the domain wall. We then
present our main findings in Sec. III, in four subsections,
where the LLG equation is solved in order to obtain both
the domain wall velocity, the Walker breakdown threshold,
and the ferromagnetic resonance frequency. In Sec. III A we
consider the Bloch(z) wall profile, in Sec. III B the Bloch(z)
wall profile is studied, in Sec. III C a head-to-head domain
wall structure is investigated, and in Sec. III D we present and
discuss the results of absorbed power by a ferromagnetic film
under current injection in the presence of Slonczewski-like
spin-orbit interaction. We finally summarize our results and
findings in Sec. IV.

II. THEORY

The starting point of our analysis is the spatiotemporal
Landau-Lifshitz-Gilbert equation,44 augmented to include the
contribution from torque terms arising due to the presence of
spin-orbit coupling. When a current-bias is applied along x

axis, the full LLG equation takes the form21,45

∂t M = −γ M ×
(

Heff + H so − β

M0
M × H so

)

+ α

M0
M × ∂t M + �∂x M − β�

M0
M × ∂x M. (1)

The above equation describes the time dynamics of the local
magnetic order parameter M(x,t). The effective field Heff is
formally obtained by a functional derivative of the free energy
with respect to the magnetization and will vary depending on,
e.g., the anisotropy configuration of the wire.46 The influence
of spin-orbit interaction is captured as an effective field:

H so = αRmeS

h̄eM0(1 + β2)
ẑ × j , (2)

where inversion symmetry is broken in the z direction and
αR characterizes the strength of the spin-orbit coupling. S

and j are the polarization and density of the injected current,
whereas me and M0 are the electron mass and magnitude of
the magnetization, respectively. The parameter β is known as
the nonadiabaticity parameter in the literature, a convention
we shall stick to although this terminology is not ideal.47

The terms in Eq. (1) have the following physical interpre-
tation. The effective field causes a precession of the magneti-
zation vector M and has two extra contributions in terms of
H so and M × H so in the presence of spin-orbit coupling. The
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former of these has the exact form of an effective fieldlike
torque whereas the latter has the form of a Slonczewksi-like
torque. Interestingly, this term was conjectured to exist in the
experiment of Miron et al.27 in order to explain the results,
but it was only recently theoretically derived in Refs. 21, 29.
A key observation is that the Slonczewski-like spin-orbit
torque depends on the nonadiabaticity parameter β which also
appears for the conventional nonadiabatic spin-transfer torque
[last term in Eq. (1)] as is well known. The term ∝ ∂x M is the
adiabatic spin-transfer torque originating from the assumption
that the spin of the conduction electrons follow the domain
wall profile perfectly without any loss or spin scattering and
� = μBP/eM0(1 + β2).

One of the main goals in this work is to compute the domain
wall velocity and analyze Walker breakdown for a domain wall
nanowire with spin-orbit coupling, considering several types
of experimentally relevant domain walls, both with in-plane
and perpendicular magnetization relative the extension of the
wire.16,25–27 We will take into account both the fieldlike and
the Slonczewski-like spin-orbit induced torques. We underline
again that the various magnetization textures considered in
this paper will give qualitatively different behavior for the
wall velocity and Walker threshold values precisely due to
the spin-orbit interaction which correlates spin space and
real space. For a Bloch (y) domain wall (see Fig. 1), an
exact analytical solution for the domain wall velocity vDW

is permissible and we will derive this result in detail. For other
types of domain walls, a general expression for vDW is not
possible to obtain analytically, thus for completeness, we revert
to a numerical study for these cases. However, it is still possible
to investigate analytically the Walker breakdown threshold
for these domain walls and we show that the chirality of the
domain wall conspires with the presence of spin-orbit coupling
to qualitatively alter the behavior of Walker breakdown in
spin-orbit coupled nanowires.

III. RESULTS AND DISCUSSION

We shall start by investigating domain wall motion in the
presence of multiple spin-orbit torques and consider three
types of domain wall structures as shown in Fig. 1. For
each case, we will focus on the domain wall velocity and
the Walker breakdown threshold value, giving exact analytical
results where possible. We note that such an exact solution for
vDW constitutes the most general analytical expression for the
domain wall velocity up to now, including fully the influence
of spin-orbit coupling. We then study the ferromagnetic
resonance response of a magnetic layer with a Slonczewski-
like spin-orbit interaction with an injected current into the
plane of the layer and, using the absorbed power by the film,
we drive the ferromagnetic resonance expression analytically.

A. Bloch (z) wall

Consider first a domain wall profile relevant for magnetic
nanowires with perpendicular anisotropy25–27 (e.g., Co/Ni
multilayers), namely a so-called Bloch (z) wall which is
parametrized as

m = (sin θ sin φ, sin θ cos φ,σ cos θ ), (3)

and a corresponding effective field:

Heff = 2Aex

M2
0

∇2m − H⊥mxx̂ + Hkmzẑ + Hext. (4)

Here, H⊥ and Hk are the anisotropy fields along the hard
and easy axes of magnetization, respectively, whereas Hext is
an externally applied magnetic field. The parameter σ = ±1
characterizes the chirality of the domain wall: both signs
of σ give allowed equilibrium solutions (φ = 0) of the
LLG equation and describes a spin texture changing from
positive to negative depending on the direction in which one
is moving. Note that σ is also denoted as the topological
charge of the domain wall:46 the winding direction of the
local magnetization dictates the effective “charge” since the
sign of σ will determine the direction in which an external
magnetic field moves the domain wall. The components of the
magnetization vector depend on both space and time according
to15

cos θ = tanh

(
x − X(t)

λ

)
, sin θ = sech

(
x − X(t)

λ

)
. (5)

Equation (5) is obtained by inserting the magnetization profile
m into the LLG equation and solving for θ and φ under
equilibrium conditions [in which case X(t) is a constant
and φ = 0]. The tilt angle φ = φ(t) is in general, however,
time dependent and causes the domain wall to acquire a
finite component along the hard magnetization axis in a
nonequilibrium situation. A collective-coordinate description
of the domain wall motion is obtained if one may identify
the time dependence of the domain-wall center position X(t)
and the tilt angle φ(t). In general, other modes of deformation
can be allowed.46 However, it can be shown that the domain
wall may be treated as rigid [only depending on X(t) and
φ(t)] in a collective-coordinate framework when the easy
axis anisotropy energy K is assumed larger than its hard axis
equivalent K⊥,48 i.e., |K| � |K⊥|.

It is useful to write down an explicitly normalized form of
the LLG equation which we will use for all the domain wall
profiles considered in this work. We normalize all quantities
to a dimensionless form as defined by the following LLG
equation:

∂τ m = −m × (Heff + Hso − βm × Hso)

+αm × ∂τ m + u∂x̃m − βum × ∂x̃m. (6)

In the specific case of a Bloch (z) wall, we then have the
normalized effective field:

Heff = 2A∇̃2m − H⊥mxx̂ + Hkmzẑ, Hso = α̃Ruŷ. (7)

Inserting Eq. (5) into Eq. (6) leads to one pair of equations of
motion for the collective coordinates X and φ. These equa-
tions may be simplified by using Thiele’s approach49 where
one integrates over x and utilizes

∫ ∞
−∞ sin2 θdx = 2λ and∫ ∞

−∞ sin θdx = λπ . We then find the following dimensionless
equations:

α∂τφ − σ∂τX = σu − 1
2H⊥ sin 2φ − 1

2 α̃Rπu sin φ,

∂τφ + ασ∂τX = 1
2βα̃Ruπ sin φ − βuσ.

Here, X = X/λ is the normalized spatial coordinate of the
domain wall center and α̃R is a dimensionless measure of the
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strength of the spin-orbit interaction. In the limiting case of
an absent Slonczewski-like spin-orbit torque where the terms
proportional to β × α̃R are zero, our results are consistent
with Ref. 20. The sin φ terms in Eq. (8) make an exact
analytical solution of the equations untractable. As we shall
see, a similar situation occurs for the head-to-head domain
wall case. Nevertheless, it is possible to make further progress
in the present case with regard to the appearance of so-called
Walker breakdown.15 This phenomenon refers to a threshold
value of the current density for which the domain wall starts
to rotate with a time-dependent φ = φ(τ ) rather than simply
propagating with a fixed magnetization texture, i.e., constant
φ. In general, it is desirable with as large a threshold value as
possible for Walker breakdown. We note in passing here that
the presence of pinning potentials and defects in the sample
may also contribute to the threshold value of the current, but
we leave this issue for a future work.

To investigate the velocity at which breakdown occurs, we
combine the equations of motion into a single equation for the
tilt angle φ:

∂τφ = 1

1 + α2

[
1

2
(β − α)α̃Ruπ sin φ − σu(β − α)

− 1

2
αH⊥ sin 2φ

]
. (8)

There is no Walker breakdown as long as ∂τφ = 0, which holds
when the tilt angle φ satisfies the equation:

sin 2φ = (β − α)u

αH⊥
(α̃Rπ sin φ − 2σ ). (9)

Walker breakdown will occur at a velocity uc such that for
u > uc there is no stable solution for this equation. Now, for
|α̃Rπ | < 2 the right-hand side of Eq. (9) will have equal sign
for its minimum and maximum value as φ varies from 0 to 2π .
Therefore, Walker breakdown will always occur by increasing
u: at some value uc, the minimum value of the right-hand
side of Eq. (9) will be larger than unity and thus render the
equation to be void of any solution. However, if |α̃Rπ | > 2,
the minimum and maximum value of the right-hand side have
opposite signs. This means that there must be a crossing of the
0 line at some values of φ, and thus an intersection with sin 2φ.
In effect, we can always find a stable solution and there will
be no Walker breakdown regardless of the velocity u when∣∣∣∣ α̃Rπ

2

∣∣∣∣ > 1. (10)

In other words, for a sufficiently large spin-orbit interaction,
no Walker breakdown occurs. It is interesting to note that this
condition is universal in the sense that it is independent on the
damping parameter α, the nonadiabiticity parameter β, and
the chirality σ of the domain wall. This observation can be
attributed directly to the presence of the new spin-orbit torque
proportional to β. To see this, consider a scenario where only
the fieldlike spin-orbit torque ∝ M × H so is included. All
terms proportional to β × α̃R are then zero, and we obtain the
equation

sin 2φ = 2σu

H⊥

(
1 − β/α − σ α̃Rπ

2
sin φ

)
, (11)
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FIG. 2. (Color online) Threshold value for the magnitude of the
spin-orbit coupling above which there is no Walker breakdown. In
the more general scenario where both types of spin-orbit torques are
accounted for, the threshold value for α̃R is constant. When only the
fieldlike torque is considered, the threshold is strongly increased in
the regime α/β < 0.5. In the limit α/β → ∞, the asymptote is 2/π .

which must be satisfied to prevent Walker breakdown. As seen,
whether or not the maximum and minimum value of the right-
hand side have equal sign depends on if∣∣∣∣ α̃Rπ

2

∣∣∣∣ > |(1 − β/α)|. (12)

In this regime, we recover the results of Ref. 20. The effect
of the Slonczewski-like spin-orbit torque is then to render
the Walker breakdown universal (independent on α,β,σ ). Let
us also consider the implications this torque term has with
regard to the magnitude of the threshold value for Walker
breakdown. Comparing Eqs. (10) and (12), we see that the
required spin-orbit interaction α̃R to completely remove the
Walker threshold depends on the ratio β/α if one does not
take into account the Slonczewski-like spin-orbit torque. For
β/α 	 1, the required spin-orbit strength becomes very small.
In the more general case where the aforementioned torque is
included, however, the required α̃R has a fixed value. This is
shown in Fig. 2.

We also give numerical results for the wall velocity for this
Bloch-domain wall configuration, using a similar approach as
in Ref. 50. Let us first note that it is possible to infer what
the qualitative effect is of the chirality σ directly from the
equations of motion Eqs. (8). By making the transformation
φ → σφ, it is seen that the equations of motion become
independent on the chirality σ. This means that the domain
wall velocity will be the same regardless of the sign of σ ,
whereas the tilt angle φ evolves in the opposite direction with
time for opposite signs of σ . In Fig. 3, we therefore present
results for σ = 1 without loss of generality and consider two
cases with damping α larger or smaller than the nonadiabaticity
constant β in Figs. 3(a) and 3(b), respectively. As seen, this
qualitatively affects the domain wall velocity.

A particular feature worth noting in Fig. 3(b) is that the
abrupt change in wall velocity at a given u is not necessarily
synonymous with the occurrence of Walker breakdown. To
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FIG. 3. (Color online) Domain wall velocity for a Bloch (z) wall
plotted against the injected current. We have chosen σ = 1 without
loss of generality (see text) and set β = 0.01 and H⊥ = 0.5. In
(a) α > β (α = 0.02) whereas in (b) α < β (α = 0.005). Note the
inverted sign of the y axis, which simply corresponds to the direction
of the wall motion.

see this, consider Fig. 4 where we have plotted the left- and
right-hand side of the Walker breakdown criterion Eq. (9) in
addition to the time evolution of the tilt angle φ as an inset. We
have set α = 0.005 and β = 0.01 and consider two strengths
of the spin-orbit coupling parameter α̃R in Figs. 4(a) and 4(b).
An intersection of the lines in the main panels means that there
exists a solution to Eq. (9) and that Walker breakdown does
not occur. Considering Fig. 4(a) first, we see that increasing
the current density eventually causes Walker breakdown as the
dashed and full lines no longer intersect. As a result, φ is no
longer a constant as seen in the inset and starts to grow with
time. We may therefore conclude that the abrupt change in
wall velocity for α̃R = 0.01 seen in Fig. 3(b) does correspond
to the occurrence of Walker breakdown. However, turning to
Fig. 4(b) it is seen that the dashed and full lines always intersect
even when increasing the current density u above the value
at which the wall velocity abruptly changes in Fig. 3(b) for
α̃R = 1 (around u = 0.14). What is important to note is that
their point of intersection changes discontinuously: the tilt
angle φ remains constant so that there is no Walker breakdown

in the sense of a continuously deforming domain wall. Instead,
there is an abrupt change in the tilt angle where it changes from
one constant value to another.

B. Bloch ( y) wall

Another type of domain wall structure which may appear
in such a system with perpendicular magnetic anisotropy is
the Bloch (y) wall, having the easy magnetization direction
along the y axis whereas the hard axis remains along the wire
direction:

m = (sin θ sin φ,σ cos θ, sin θ cos φ), (13)

and a corresponding effective field:

Heff = 2Aex

M2
0

∇2m − H⊥mxx̂ + Hkmyŷ + Hext. (14)

In this case, the equations of motion for the collective
coordinates X and φ take a different form compared to the
Bloch (z) case:

σ∂τX + α∂τφ = βα̃Ru − 1
2H⊥ sin 2φ − uσ,

(15)
∂τφ − ασ∂τX = βuσ + α̃Ru.

In fact, these equations can now be solved analytically in
an exact manner, using a similar approach as in Ref. 22.
Combining the two above equations yields

∂τφ(1 + α2) = −α

2
H⊥ sin 2φ + u[σ (β − α) + α̃R(1 + αβ)].

(16)

Consider Eq. (16) with respect to φ = φ(τ ). This is a separable
equation and direct integration gives

τ = C0 − 1 + α2√
A2 − α2H2

⊥/4
atan

[
αH⊥/2 − A tan φ√

A2 − α2H2
⊥/4

]
, (17)

where C0 is an integration constant and we define

A ≡ u[σ (β − α) + α̃R(1 + αβ)]. (18)

For brevity of notation, we also introduce B ≡ αH⊥/2. The
integration constant depends on the initial conditions. At
τ = 0, we assume that the domain wall is in its equilibrium
configuration φ = 0, in which case we may write the solution
for the tilt angle as

tan φ = B
A −

√
A2 − B2

A tan
[
atan(αB/

√
A2 − B2)

− τ
√
A2 − B2/(1 + α2)

]
. (19)

Having now obtained the full time dependence of the tilt
angle, we insert this back into the original equation of motion
in order to find the domain wall velocity Ẋ = vDW. The
general expression for the domain wall velocity is rather
large. However, by utilizing the fact that vDW will display
small-scale oscillations it is possible to find a simplified
expression for the average domain wall velocity 〈vDW〉. The
period of oscillation is T = (1 + α2)π/

√
A2 − B2, which
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FIG. 4. (Color online) Plot of left-hand side (lhs) (dashed line) and right-hand side (rhs) (full lines) of Eq. (9) in order to illustrate the
intersection points. When there is no intersection between the lines, Walker breakdown has occurred. We have set β = 0.01, α = 0.005, and
consider (a) α̃R = 0.01 and u ranging from 0.24 to 0.30 along the direction of the arrow, in addition to (b) α̃R = 1 and u ranging from 0.10 to
0.16 along the direction of the arrow. The black arrow between the circles in (b) highlights how the intersection point changes abruptly upon
increasing u. Insets: Time evolution of the tilt angle for the same choices of u.

gives us

〈vDW〉 = 1

T

∫ T

0
dτ

σ

α

⎧⎨
⎩ A2 − B2

A(1 + α2)
sec2

(
atan(αB/

√
A2 − B2) − τ

√
A2 − B2

1 + α2

)

×
[

1 +
(

αB
A −

√
A2 − B2

A tan[atan(αB/
√
A2 − B2) − τ

√
A2 − B2/(1 + α2)]

)2
]−1

⎫⎬
⎭ − u(α̃Rσ + β)/α. (20)

The analytical solution to the above integral and the final result is

〈vDW〉 = σ

α(1 + α2)
sgn{uσ (β − α) + uα̃R(1 + αβ)} × Re

√
[uσ (β − α) + uα̃R(1 + αβ)]2 − α2H2

⊥/4 − u(α̃Rσ + β)/α, (21)

where we have reinstated the original parameters contained in
the quantities A and B.

The equation for 〈vDW〉 shows the exact manner in which
the domain wall velocity depends on the various torque terms
such as the nonadiabatic contribution β and the spin-orbit
terms α̃R , and reveals several important features. It is seen
that for this particular domain wall configuration [Bloch
(y)], the effect of the Slonczewski-like spin-orbit torque
is a small quantitative correction of order O(αβ), which
thus can be neglected. However, the conventional fieldlike
spin-orbit torque has a strong qualitative influence on the wall
dynamics. In fact, it is seen that the α̃R term plays the same
role as the nonadiabatic conventional torque proportional to
β, but with one important difference: the spin-orbit torque
contribution is chirality dependent, i.e., changes sign with σ ,
whereas the β term does not. As a consequence, the wall may
actually propagate in opposite direction of the applied current
depending on the chirality σ of the domain wall, as was shown
recently in Ref. 22.

It is seen from Eq. (21) that there is either an enhancement
of the domain wall velocity or a competition between the
spin-orbit induced torque and β torque depending on the sign

of σ . We show this in Fig. 5 where we consider the four
possible combinations of wall chirality σ (two values, σ =
±1) combined with whether or not α is larger than β (two
possibilities, α > β or α < β). For a positive chirality σ = +1
displayed in Figs. 5(a) and 5(c), the wall moves in the same
direction for all current densities u as the torque terms in
Eq. (21) have the same sign. This is no longer the case for the
opposite chirality σ = −1 shown in Figs. 5(b) and 5(d) where
the wall velocity can actually change sign as u increases. This
is indicative of counterflow domain wall motion where the wall
moves in the opposite direction of the applied spin current.

Walker breakdown for the domain wall occurs for velocities
u � uc where the root in Eq. (21) becomes imaginary, namely

uc = αH⊥
|2σ (β − α) + 2α̃R(1 + αβ)| . (22)

Note that this is the same as uc that we would have found
using the arguments in the previous section in order to
identify the Walker breakdown from the equations of motion
(without actually solving them explicitly) and thus serves
as a consistency check for the correctness of Eq. (21). This
expression is quite generally valid, including the effects of
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FIG. 5. (Color online) The domain wall velocity 〈vDW〉 as a function of the current density u for various chiralities and spin-orbit coupling
strengths. (a) Positive chirality σ = +1 and α > β (α = 0.02). (b) Negative chirality σ = −1 and α > β (α = 0.02). (c) Positive chirality
σ = +1 and α < β (α = 0.005). (d) Negative chirality σ = −1 and α < β (α = 0.005). For all plots, we have used β = 0.01 and H⊥ = 0.5.

both types of spin-orbit torques and both types of conventional
spin-transfer torques. As another consistency check, we ob-
serve that in the absence of spin-orbit coupling (α̃R = 0), one
finds that |uc| = αH⊥/2|β − α| which agrees with Ref. 45.
The effect of the spin-orbit interaction is seen to depend
explicitly on the chirality σ of the domain wall. Although
Walker breakdown is inevitable for the present Bloch (y)
domain wall, in contrast to the Bloch (z) one, the presence
of spin-orbit interactions (α̃R �= 0) can strongly enhance the
threshold velocity due to the competition between the terms
σ (β − α) and α̃R(1 + αβ) in the denominator. When these
terms have different sign (either for σ = −1 and β > α or
σ = 1 and β < α), the spin-orbit coupling can very strongly
enhance the threshold current for Walker breakdown. This
effect could be used to infer information about the value of
α and β precisely due to the nonmonotonic behavior of the
threshold current as a function of α̃R .

We illustrate this behavior in Fig. 6 where we have chosen
σ = +1. As seen, the threshold velocity decreases in a
monotonic fashion with increasing α̃R when the damping is
low, α < β. However, when the two terms in the denominator
differ in sign (which occurs precisely when α > β), the
threshold velocity uc has a nonmonotonic behavior and in
fact strongly increases near α̃R = |β − α|. In this way, one
may obtain information regarding the relative size of α and β

by measuring the threshold velocity.

C. Head-to-head domain wall

The final type of domain wall structure we will consider
appears for in-plane magnetized strips (e.g., NiFe layer16) and
is known as a so-called head-to-head domain wall. In this case,
the easy axis is parallel with the extension of the wire whereas

the hard axis is perpendicular to it:

m = (−σ cos θ, sin θ cos φ, sin θ sin φ), (23)

and a corresponding effective field:

Heff = 2Aex

M2
0

∇2m − H⊥mzẑ + Hkmxx̂ + Hext. (24)

Using again Thiele’s approach as described in the previous
sections, one arrives at exactly the same equations of motion
as in the Bloch (z) case. The formal reason for this can be
traced back to the fact that the effective spin-orbit field H so

is directed along the y axis. The magnetization textures of the
Bloch (z) and head-to-head domain walls may be transformed
into each other via an SO(3) rotation with an angle π/2 of M
around the y axis. Such a rotation leaves H so invariant and
one thus obtains the same equations of motion for both types
of domain walls. Formally, one can see this by multiplying
Eq. (1) from the left side with

U =

⎛
⎜⎝

0 0 −1

0 1 0

1 0 0

⎞
⎟⎠, (25)

and using that

(Ua) × (Ub) = det(U)(U−1)T(a × b). (26)

Since U ∈ SO(3), we have that (U−1)T = U and
det(U) = +1. By direct multiplication, one observes that
U H so = H so, UMBloch(z) = Mhead-to-head, and U Heff

Bloch(z) =
Heff

head-to-head. Note that it is in drastic contrast with the Bloch (y)
case where H so is not invariant under the matrix which rotates
MBloch(z) into MBloch(y). The same arguments and results
related to the domain wall velocity and Walker breakdown
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FIG. 6. (Color online) Critical velocity uc/H⊥ that triggers
Walker breakdown. We have chosen β = 0.02 as a representative
value which demonstrates the fundamental behavior of uc. For
sufficiently low damping α < β shown in (a), the threshold velocity
is lowered monotonically as the spin-orbit interaction α̃R is increased.
When the damping becomes stronger such that α > β, uc is strongly
enhanced in a limited interval of α̃R .

that were discussed in Sec. III A then also hold for the present
head-to-head domain wall case.

We mention here that the equivalence of the Bloch (z) and
head-to-head domain wall case found here is contingent on
the specific setup we have considered in Fig. 1. Although
this model is the standard one and indeed the most frequently
employed setup experimentally, it was recently shown that
such an equivalence does not hold when combining a magnetic
strip/wire with a nonmagnetic conductive layer with spin-orbit
interaction in a nonparallell geometry.16 Such a method
actually provides a manner in which the direction of the
effective spin-orbit field can be changed which could then
serve as a means to distinguish between different types of
domain walls, based on their response to an applied current.

D. Ferromagnetic resonance (FMR) in the presence
of spin-orbit torques

We now turn our attention to another setup where the aim is
to identify the ferromagnetic resonance response of a material
where spin-orbit interactions play a prominent role. To do so,
we consider the setup shown in Fig. 7 where a spin current with

FIG. 7. (Color online) Schematic setup of the free ferromagnetic

(FM) layer with a general saturation magnetization direction �̈MS ,
described by polar and azimuthal angles θM̈ and ϕM̈ , respectively. The
thickness of free ferromagnetic layer is denoted by d . The externally

applied static magnetic field �̈H0, polarization vector of injected charge

current �̈S, spin-orbit coupling torque vector �̈Hso, and finally normal
unity vector �̈n are shown. The ferromagnetic film is located in the ẍÿ

plane so that z̈ axis is normal to the ferromagnetic film. The spin-orbit
coupling is assumed to be induced via a substrate layer into the free
ferromagnetic layer. The double dot represents the vector quantities
in the nonrotated coordinate system (laboratory framework).

polarization magnitude and unit vector direction S ∈ [0,1] and
�̈S, respectively, is injected into the ferromagnetic layer where
spin-orbit coupling is present. This directly influences the
susceptibility tensor and thus both the ferromagnetic resonance
frequency/linewidth and the absorbed power by the system.51

To facilitate the analytical calculations, we will operate with
two different coordinate systems. The laboratory (stationary)
framework ẍÿz̈ is shown in Fig. 7, where the ẍÿ plane
spans the ferromagnetic layer, and xyz denotes a rotated
coordinate system of which we will specify the direction and
purpose below. A current is injected into the ferromagnetic
layer acting with a spin-transfer torque on the magnetization

vector �̈M. This torque is modified due to the presence of
spin-orbit coupling which is taken into account via a field
�̈Hso as in the domain wall treatment. The time-dependent

LLG motion equation describing the dynamic of ferromagnetic
layer magnetization vector then takes the following form in this
new notation:

∂ �̈M
∂t

= −γ �̈M × �̈Ht + α

M̈S

�̈M × ∂ �̈M
∂t

+ γ

M̈S

�̈M × �̈M × (β �̈Hso + Ps
�̈S), (27)

�̈Hso = αRmeS

h̄eM̈S(1 + β2)
(�̈n × �̈Je), Ps = h̄SJe

2eM̈Sd
.

Here, γ is the electron gyromagnetic ratio and α is the Gilbert
damping constant. Moreover, β is the nonadiabaticity param-
eter discussed previously, Ps is the spin-torque parameter, S

is the polarization of injected current into the ferromagnetic
layer, and a normal vector to the plane of ferromagnetic layer
is represented by �̈n (see Fig. 7).

We now introduce a rotated coordinate system xyz where
the saturation magnetization direction is parallel with the z

axis. The orientation of the rotated system xyz compared
to the stationary one ẍÿz̈ is determined by calculating the
equilibrium orientation of the magnetization order parameter
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and setting the z axis to be parallel with it. The details of the
calculations will be discussed in what follows.

We define a transformation matrix which rotates the fixed
coordinate system so that its z axis is oriented along �̈MS .
Therefore, all other vector quantities should be rotated via
the defined transformation to be described in this new rotated
coordinate system. If we describe �̈MS by polar and azimuthal
angles, i.e., θM̈ and ϕM̈ , in the fixed original coordinate system,
a rotation around the z̈ axis equal to ϕM̈ and then around
the rotated ÿ axis equal to θM̈ are required for aligning z̈

axis and �̈MS orientations. Hence, the rotation matrices can be
respectively given by (see Ref. 52 for more details)

Rz(−ϕM̈ ) =

⎛
⎜⎝

cos ϕM̈ − sin ϕM̈ 0

sin ϕM̈ cos ϕM̈ 0

0 0 1

⎞
⎟⎠ ,

Ry(θM̈ ) =

⎛
⎜⎝

cos θM̈ 0 − sin θM̈

0 1 0

sin θM̈ 0 cos θM̈

⎞
⎟⎠ .

The total rotation matrix is thus the multiplication of Ry and
Rz, i.e.,

Rt = RyRz

=

⎛
⎜⎝

cos θM̈ cos ϕM̈ − cos θM̈ sin ϕM̈ − sin θM̈

sin ϕM̈ cos ϕM̈ 0

sin θM̈ cos ϕM̈ − sin θM̈ sin ϕM̈ cos θM̈

⎞
⎟⎠ . (28)

We characterize each vector quantity by its polar and
azimuthal angle in the fixed original coordinate system shown
in Fig. 7. Since we assume a homogeneous magnetization

texture (macrospin approximation), we have �∇2 �̈M = 0. The
total effective field entering the LLG equation may now be
decomposed into the following terms:

�Ht = �H dip + �hdip(t) + �Ha + �ha(t) + �Hso

+ b �S + �H0 + �hext(t)

≡ �H + �h(t). (29)

Above, { �H dip,�hdip(t)} and { �Ha,�ha(t)} are the static and
dynamic parts of the dipole and anisotropy fields, respectively,
�Hso is the spin-orbit field, b �S is the spin-torque effective

field (which is usually negligible), �H0 is the static externally
applied field, and finally �hext(t) is a small rf field applied
perpendicularly to the saturation magnetization direction z

in order to probe the ferromagnetic resonance. To show an
example of how the quantities in the two coordinate systems
are related, note that the x, y, and z components of the
externally applied static magnetic field �H0 in the rotated
coordinate system are given by

H0x = Ḧ0
{
cosθM̈ cos ϕM̈ sin θḦ0

cos ϕḦ0

− cos θM̈ sin ϕM̈ sin θḦ0
cos ϕḦ0

− sin θM̈ cos θḦ0

}
,

(30)

H0y = Ḧ0
{
sin ϕM̈ sin θḦ0

cos ϕḦ0

+ cos ϕM̈ sin θḦ0
cos ϕḦ0

}
, (31)

H0z = Ḧ0
{
sinθM̈ cos ϕM̈ sin θḦ0

cos ϕḦ0

− sin θM̈ sin ϕM̈ sin θḦ0
cos ϕḦ0

− cos θM̈ cos θḦ0

}
.

(32)

As mentioned above, the dipole field can be divided into
static �H dip and dynamic �hdip(t) parts. In the rotated coordinate
system they may be obtained as38

�H dip = M cos θM̈

⎛
⎜⎝

cos θM̈ sin ϕM̈

− cos ϕM̈

sin θM̈ sin ϕM̈

⎞
⎟⎠ ,

�hdip(t) = 4πmy(t) sin θM̈

⎛
⎜⎝

cos θM̈ sin ϕM̈

− cos ϕM̈

sin θM̈ sin ϕM̈

⎞
⎟⎠ ,

whereM ≈ 4πMS − Ha . Assuming a weak rf magnetic field
applied transverse to the ẑ direction, we may consider the
components of magnetization in the rotated coordinate system
as Mz = MS � Mx,My . In this case, the following time-
dependent coupled differential equations for the precessing
magnetization components are obtained:

∂Mx

∂t
= −γMyH

t
z + γMx

(
βHso

z + PsSz

)
+ γMS

[
Ht

y − (
βHso

x + PsSx

)] − α
∂My

∂t
,

∂My

∂t
= γMxH

t
z + γMy

(
βHso

z + PsSz

)
− γMS

[
Ht

x + (
βHso

y + PsSy

)] + α
∂Mx

∂t
,

∂Mz

∂t
= ∂MS

∂t
= 0 = γMx

[−Ht
y + (

βHso
x + PsSx

)]
+ γMy

[
Ht

x + (
βHso

y + PsSy

)]
.

Setting the transverse part of the magnetization and fields equal
to zero in the above equations for ∂tMx and ∂tMy , one obtains
the equilibrium conditions which specify the orientation of the
z axis:

Hx + (
βsoH

so
y + βsSy

) = 0,
(33)

Hy − (
βsoH

so
x + βsSx

) = 0.

This is consistent with the equation for ∂tMz and our
preassumption, namely Mz � Mx,My . In order to obtain
the solution for the transverse components Mx and My to
lowest order, we now substitute these conditions back into the
equations of motion for the magnetization components above
and obtain

∂Mx

∂t
= −γMyHz + γMShy(t) − α

∂My

∂t

+ γMx

(
βHso

z + PsSz

)
,

(34)
∂My

∂t
= +γMxHz − γMShx(t) + α

∂Mx

∂t

+ γMy

(
βHso

z + PsSz

)
.

In our calculations we have set the time-dependent fields
sufficiently small so that those terms including higher orders
of time-dependent components are negligible. Assuming that
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the external time-dependent magnetic field induces the same
frequency in all time-dependent components of other vector
quantities (including responses) as itself, �, we get, e.g.,
�hdip(t) = �hdipe−i�t . By substituting this time dependency into
Eqs. (34) we arrive at M̃(t) = χh̃ext(t) in which M̃(t) =
(Mx,My)T , h̃ext(t) = (hext

x ,hext
y )T , and

χ =
(

χxx χxy

χyx χyy

)
. (35)

χ is known as the susceptibility tensor which determines the
behavior of magnetization in response to the external time-
dependent magnetic field. The components of the obtained
susceptibility tensor in the presence of spin-orbit coupling
read

χxx = +�{γWy� − �α� − i(γ�Wy + �α�)},
χxy = −�{�� + �� − i(�� − ��)},
χyx = +�{�� + �� − i(�� − ��)}
χyy = +�{γWx� − �α� − i(γ�Wx + �α�)},

where we have defined the following parameters:

� = γMS

�2 + �2
, � = γ

(
βsoH

so
z + βsSz

)
,

� = ϒ2 − �2(1 + α2), ϒ =
√

γ 2WxWy + �2,

� = 2�� − γα�(Wx + Wy),

Wx = Hz + M sin θM̈ cos θM̈ sin ϕM̈,

Wy = Hz + M sin θM̈ cos ϕM̈.

The susceptibility tensor components may be used to compute
physical quantities of interest such as the absorbed power
(which is experimentally relevant51) by the ferromagnetic
sample with volume V at frequency �. In turn, this gives a clear
signal of ferromagnetic resonance in the absorption spectrum.
This energy dissipation is given by P abs

power =Im{Ppower} where
Ppower is defined by

Ppower = −�

2

∫
V

dV �hext∗ · �M = −�

2

∫
V

dV �hext∗ · χ �hext

= −�

2

∫
V

dV
{∣∣hext

x

∣∣2
χxx + hext

x ∗ hext
y χxy

+hext
y ∗ hext

x χyx + ∣∣hext
y

∣∣2
χyy

}
.

This expression simplifies if the rf magnetic field only has
one component, e.g., �h(t) = hext

x (t), in which case the power
absorbed at radio frequency � can be expressed by

P abs
power = �

2

∫
V

dV
γMS |hext

x |2
�2 + �2

(γ�Wy + �α�).

Although the above expressions may be numerically evaluated
in our system for a specific parameter choice, we focus below
on analytical insights that may be gained. In particular, we
are interested in the role played by spin-orbit interactions and
the magnitude/direction of the injected current. So far, our
treatment has been general and accounted for several terms
contributing to the susceptibility tensor. In order to identify
the role played by current-dependent spin-orbit coupling in
the ferromagnetic resonance, we need to derive an analytical

expression for the ferromagnetic resonance frequency �FMR.
This is defined as the frequency where the P abs

power has a
maximum. In their general form shown above, this cannot be
done analytically in an exact manner. However, progress can be
made by considering the denominator of P abs

power. This quantity
has the following form when all the frequency dependence is
written explicitly:

�2 + �2 = [ϒ2 − �2(1 + α2)]2 + �2[2� − γα(Wx +Wy)]2.

(36)

Following the standard procedure of neglecting the second
term above, one may identify the resonance frequency simi-
larly to Ref. 38 as �FMR = ϒ . We have also verified that this
holds numerically for a realistic parameter set.

To see how the spin-orbit coupling affects �FMR, one
should note in particular its dependence on the current J . It
is instructive to consider first the scenario with zero spin-orbit
coupling, in which case the resonance frequency may be
written as

�FMR =
√

c1 + c2J 2, (37)

where c1 and c2 are determined by the quantities in Eq. (36)
in the limit α̃R → 0. Importantly, they are independent on the
current bias J , which means that the resonance frequency is
completely independent on the direction of the applied current
as it is only the magnitude J 2 that enters. Therefore, the current
direction cannot alter the �FMR. Turning on the spin-orbit
coupling so that α̃R �= 0, one may in a similar way show from
the above equations that the resonance frequency now can be
written as

�FMR =
√

(d1 + DJ )(d2 + DJ ) + d3J 2, (38)

where again the coefficients di and D are determined from
Eq. (36). It then follows from Eq. (38) that the resonance
frequency will be asymmetric with respect to the applied
current direction when spin-orbit coupling is present. In
particular, one obtains different values for �FMR by reversing
the current J → (−J ) so that the Z2 symmetry in Eq. (37) is
lost. The main signature of spin-orbit coupling in the current-
biased ferromagnetic resonance setup under consideration is
then an asymmetric current dependence which should be dis-
tinguishable from the scenario without spin-orbit interactions.
It is interesting to note that the current dependence on the
ferromagnetic resonance and the linewidth allows one to exert
some control over the magnetization dissipation/absorption in
the system via J . The presence of spin-orbit interactions en-
hances this control since it introduces a directional dependence
which is absent without such interactions.

IV. SUMMARY

In summary, we have considered the influence of existence
of spin-orbit interactions on both domain wall motion and
ferromagnetic resonance of a ferromagnetic film. Due to the
coupling between the momentum and spin of the electrons,
the degeneracy between domain wall textures is broken which
in turn leads to qualitatively different behavior for various
wall profiles, e.g., Bloch vs Néel domain walls. By taking into
account both the field- and Slonczewski-like spin-orbit torque,
we have derived exact analytical expressions for the wall
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velocity and the onset of Walker breakdown. One of the most
interesting consequences of the spin-orbit torques is that they
render Walker breakdown to be universal for some wall profiles
in the sense that the threshold is completely independent on
the material-dependent damping α, nonadiabaticity β, and
the chirality σ of the domain wall. We have also shown that
domain wall motion against the current flow is sustained in the
presence of multiple spin-orbit torques and that the wall profile
will determine the qualitative influence of these different
types of torques. Finally, we calculated the ferromagnetic
resonance response of a ferromagnetic material in the presence
of spin-orbit torques, i.e., a setup with a current bias. We found

a key signature of the spin-orbit interactions in the resonance
frequency, namely that the latter becomes asymmetric with
respect to the direction of current injection. This is different
from usual ferromagnets in the presence of spin-transfer
torques in the absence of spin-orbit interactions, where the
frequency is found to be symmetric with respect to the current
direction.
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