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Co monolayers and adatoms on Pd(100), Pd(111), and Pd(110): Anisotropy of magnetic properties
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We investigate to what extent the magnetic properties of deposited nanostructures can be influenced by
selecting as a support different surfaces of the same substrate material. Fully relativistic ab initio calculations
were performed for Co monolayers and adatoms on Pd(100), Pd(111), and Pd(110) surfaces. Changing the
crystallographic orientation of the surface has a moderate effect on the spin magnetic moment, a larger effect
on the orbital magnetic moment, but sometimes a dramatic effect on the magnetocrystalline anisotropy energy
and on the magnetic dipole term Tα . The dependence of Tα on the magnetization direction α can lead to a
strong apparent anisotropy of the spin magnetic moment as deduced from the x-ray magnetic circular dichroism
sum rules. For systems in which the spin-orbit coupling is not very strong, the Tα term can be understood as
arising from the differences between components of the spin magnetic moment associated with different magnetic
quantum numbers m.
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I. INTRODUCTION

The magnetic properties of surface-deposited nanostruc-
tures have been in the ongoing focus of many experimental
and theoretical investigations as they often exhibit interesting
and sometimes unexpected phenomena. One of the main
features in this context is that the local magnetic moments
and their mutual interaction as well as the magnetocrystalline
anisotropy energy (MAE) are in general different and often
much larger in nanostructures than in corresponding bulk
systems. Various aspects of the magnetism of many different
nanostructures were studied in the past to identify the key
factors which could then be used to tune the properties of
such systems in a desired way. It has been known for a
long time that such important key factors are, for example,
reduction in atomic coordination number as well as symmetry
breaking, which play a crucial role for magnetic properties of
surfaces and deposited nanosystems. Their effect is reflected,
for instance, in the trend of surfaces and clusters to have larger
atomic magnetic moments and stronger magnetocrystalline
anisotropy when compared to bulk systems.1–3 Naturally,
however, these factors alone are far from sufficient to fully
determine the magnetism of nanostructures as also other
factors such as the chemical composition play a significant
role. An Fe monolayer, for instance, has a larger spin magnetic
moment when deposited on Au(111) than when deposited
on Pt(111), whereas for a Co monolayer it is the other way
around.3 The situation is even more diverse for the MAE where
different substrates may lead to different properties of systems
of otherwise identical geometries. For example, Co2 and Ni2
dimers on Pt(111) have out-of-plane magnetic easy axis but
the same dimers on Au(111) have an in-plane magnetic easy
axis.3

Thus, a deeper theoretical understanding of the magnetism
of nanostructures is needed to support the interpretation of
corresponding experiments. Here, one of the most widely used
experimental techniques in this field is the x-ray magnetic
circular dichroism (XMCD) spectroscopy in combination with
its theoretically derived sum rules.4–6 The strength of these
sum rules is that they give access to spin magnetic moments

μspin and orbital magnetic moments μorb separately, and this
in a chemically specific way.7,8 However, the XMCD spin sum
rule does not provide μspin alone but only its combination
μspin + 7Tα , where Tα is the magnetic dipole term (for the
magnetization M parallel to the α axis, α = x,y,z).7 For bulk
systems, Tα can be usually neglected, but for surfaces and
clusters the Tα term can have significant influence, as it has
been demonstrated experimentally9,10 and theoretically.11–13

The anisotropy of the magnetic dipole term was predicted
on general grounds14 and some estimates concerning the
magnitude of this anisotropy in noncubic bulk systems were
given based on atomiclike model Hamiltonians14 or on ab
initio calculations.15

Magnetic nanostructures may be prepared by combining
and arranging different magnetic elements on different sub-
strates. In this respect, one can also address surfaces of differ-
ent crystallographic orientations and it is important to know
how the magnetic properties can be controlled by selecting
for the substrate crystallographically different surfaces of the
same material and whether one can expect different effects
for complete monolayers and for adatoms. Connected with
this is the question about the effects on the Tα term and how
this influences the values of magnetic moments deduced from
the XMCD sum rules. For planning and interpreting related
experiments, it would thus be very useful not only to know the
Tα values from ab initio calculations, but also to have a simple
and intuitive interpretation of the Tα term.

In order to learn more about this, we undertook a systematic
study of Co monolayers and adatoms on Pd(100), Pd(111),
and Pd(110) surfaces. Investigating such a comprehensive
set of systems via the same computational scheme allows
us to make direct comparisons which would otherwise be
hindered by technicalities if individual results for different
systems were taken over from other available studies which
rely on different computational schemes. Fully relativistic
ab initio calculations were performed to obtain μspin, μorb,
and Tα for different magnetization directions. The MAE was
determined for all these systems as well. The accuracy of an
approximative expression for the Tα term was examined to
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FIG. 1. (Color online) Structure diagrams for a Co monolayer on
Pd(100), Pd(111) and Pd(110). The blue and yellow circles represent
the Co and Pd atoms, respectively. The orientation of the x and y

coordinates used throughout this paper is also shown.

verify that it captures the essential physics and that it can be
used as a basis for a more intuitive understanding of the Tα

term. It is shown in the following that monolayers and adatoms
on different crystallographic surfaces may have indeed quite
different magnetic properties, especially as concerns the MAE.
Moreover, it is also demonstrated how the dependence of the
Tα term on the magnetization direction leads to a surprisingly
strong apparent anisotropy of μspin as deduced from the XMCD
sum rules.

II. METHODS

A. Investigated systems

We investigated Co monolayers on Pd(100), Pd(111), and
Pd(110) and also Co adatoms on the same surfaces. The
corresponding structure diagrams are shown in Fig. 1 (for
adatoms, obviously only one Co atom is kept). Two hollow
adatom positions are possible for the (111) surface, differing by
the position of the adatom with respect to the subsurface layer;
we consider the fcc position in this work (unless specified
otherwise).

The Pd substrate has fcc structure with lattice constant a =
3.89 Å. To determine the distances between the Co atoms and
the substrate, we relied in most cases on the “constant volume
approximation”: the vertical Co-Pd interplanar distance zCo-Pd

is taken as an average between the interlayer distance in bulk
Pd and the interlayer distance in a hypothetical pseudomor-
phically grown fcc Co film compressed vertically in such a
way that the atomic volume of Co is the same as in bulk Co.16

In addition, we took also into account relevant experimental
data and results of ab initio geometry relaxations when
available. For example, the constant volume approximation
yields zCo-Pd = 1.70 Å for a Co monolayer on Pd(100) while
we took zCo-Pd = 1.65 Å instead, following the surface x-ray
diffraction experiment of Meyerheim et al.17 For the other
two surfaces, we used the constant-volume-approximation
distances, namely, zCo-Pd = 1.96 Å for Co on Pd (111) and
zCo-Pd = 1.20 Å for Co on Pd(110). In the case of the (111)
surface, we can compare our distance with an EXAFS-derived
experimental distance zCo-Pd = 2.02 Å (Ref. 18) and with an ab
initio equilibrium distance zCo-Pd = 1.91 Å (Ref. 19). It follows
from this comparison that the constant volume approximation
leads to reasonable distances.

Systems with interplanar distances as given above will
be called systems with “optimized geometries.” Apart from
that, we investigate for comparison also systems where the

TABLE I. Vertical distances zCo-Pd in Å between the plane
containing Co atoms and plane containing Pd atoms for systems
investigated in this study.

Surface Optimized geometry Bulklike geometry

(100) 1.65 1.95
(111) 1.96 2.25
(110) 1.20 1.38

Co atoms are located in ideal positions of the underlying Pd
lattice. For this, we use the designation “bulklike geometry.”
The interplanar distances are summarized in Table I.

For adatoms we use the same zCo-Pd distances as for
monolayers. This is a simplification because the constant
volume approximation will work worse for adatoms than for
monolayers. For example, the ab initio zCo-Pd distance for
a Co adatom on Pd(111) is 1.66 Å (Ref. 20) in contrast to
our optimized geometry value of 1.96 Å. However, by using
identical zCo-Pd distances for monolayers and adatoms, the net
effect due to the change in Co coordination can be studied. It
will be shown that the effect of varying the distances is in fact
smaller than the effect of monolayer-to-adatom transition.

B. Computational scheme

The calculations were performed within the ab initio spin
density functional framework, relying on the local spin density
approximation (LSDA) with the Vosko, Wilk, and Nusair
parametrization for the exchange and correlation potential.21

The electronic structure is described, including all relativistic
effects, by the Dirac equation, which is solved using the
spin-polarized relativistic multiple scattering or Korringa-
Kohn-Rostoker (SPR-KKR) Green’s function formalism22 as
implemented in the SPR-TB-KKR code.23 The potentials were
treated within the atomic sphere approximation (ASA) and for
the multipole expansion of the Green’s function, an angular
momentum cutoff �max = 3 was used.

The electronic structure of Co monolayers on Pd surfaces
was calculated by means of the tight-binding or screened KKR
technique.24 The substrate was modeled by slabs of 13–14
layers (i.e., a thickness of 17–27 Å, depending on the surface
orientation), the vacuum was represented by 4–5 layers of
empty sites. The adatoms were treated as embedded impurities:
first, the electronic structure of the host system (clean surface)
was calculated and then a Dyson equation for an embedded
impurity cluster was solved.25 The impurity cluster contains
135 sites if not specified otherwise; this includes a Co atom,
50–60 Pd atoms, and the rest are empty sites.

It should be stressed that the embedded clusters define
the region where the electronic structure and potential of the
host is allowed to relax due to the presence of the adatom
and not the size of the considered system. In this respect,
the Green’s function approach differs from the often used
supercell approach: there is an unperturbed host beyond the
relaxation zone in the former approach, while in the latter
approach, the supercell is terminated either by vacuum or by
another (interfering) relaxation zone pertaining to an adjacent
adatom. The sizes of the embedded clusters and the sizes of
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the supercells thus have a different meaning and can not be
directly compared.

The MAE is calculated by means of the torque T
(n̂)
û which

describes the variation of the energy if the magnetization
direction n̂ is infinitesimally rotated around an axis û. To
present the relation between the MAE and the torque for
systems with no symmetry, we start with the expression for
the total energy expanded up to the second order in directions
cosines:26

E(θ,φ) = E0 + K2,1 cos 2θ + K2,2(1 − cos 2θ ) cos 2φ

+ K2,3(1 − cos 2θ ) sin 2φ + K2,4 sin 2θ cos φ

+ K2,5 sin 2θ sin φ. (1)

The difference in energy between in-plane and out-of-plane
magnetization is then

E(90◦,φ) − E(0◦,φ)

= −2K2,1 + 2K2,2 cos 2φ + 2K2,3 sin 2φ

= ∂E(θ,φ)

∂θ

∣∣∣∣
θ=45◦

. (2)

So, the MAE we are interested in can be obtained just by
evaluating the torque for θ = 45◦.27 The torque itself was
calculated by relying on the magnetic force theorem.28

Apart from the magnetocrystalline anisotropy induced by
the spin-orbit coupling (SOC), the magnetic easy axis is
also determined by the so-called shape anisotropy caused
by magnetic dipole-dipole interactions. The shape anisotropy
energy is usually evaluated classically by a lattice summation
over the magnetostatic energy contributions of individual
magnetic moments, even though it can be in principle obtained
ab initio via a Breit Hamiltonian.29 In this paper, we always
deal only with the magnetocrystalline contribution to the
magnetic anisotropy unless stated otherwise.

III. RESULTS

A. Magnetic moments and magnetocrystalline anisotropy

To assess the effect of selecting different crystallographic
surfaces and of going from a monolayer to an adatom, we
calculated magnetic moments and the MAE for all these
systems. The results are summarized in Table II. For each
system, the data are shown first for the optimized geometry and
then for the bulklike geometry (numbers in the parentheses).
The x, y, and z superscripts in the column header labels
indicate the direction of the magnetization M.

The spin magnetic moment μspin is shown only for M ‖
z because it is practically independent on the magnetization
direction: by varying it, μspin can be changed by no more than
0.2%. On the other hand, for μorb the differences can be quite
large. The second in-plane magnetization direction M ‖ y was
investigated only for the (110) surface because there is only
very small “intraplanar anisotropy” for the (100) and (111)
surfaces (this issue is addressed in more detail in Sec. III C).
For bulk hcp Co we get μspin = 1.61 μB and μorb = 0.08 μB .

Changing the surface orientation has a moderate effect on
μspin: the differences in μspin when going from one surface to
another are at most 9%. However, the situation is quite different
for μorb where the differences are 20%–50%. The sensitivity
in μorb finds its counterpart in the sensitivity of the MAE. For
example, the magnetic easy axis for a Co monolayer is in plane
for the (100) and (110) surfaces but out of plane for the (111)
surface. For the adatom, the easy axis is in plane for the (110)
surface, but out of plane for the (100) and (111) surfaces. So,
in this respect the choice of the crystallographic surface can
have a dramatic influence.

Another finding emerging from Table II is that as concerns
μspin, the difference between monolayers and adatoms is only
quantitative in most cases. A surprisingly small difference in
this respect is found for the (110) surface. As the same Co-Pd

TABLE II. Magnetic properties of Co monolayers and adatoms on Pd(100), Pd(111), and Pd(110). The first column specifies whether the
values are for a monolayer or for an adatom, and the second column contains spin magnetic moment for the Co atom for M ‖ z (in units of
μB ). The third, fourth, and fifth columns contain orbital magnetic moments for the Co atom for M ‖ z, M ‖ x, and M ‖ y, respectively. The
last three columns contain the MAE between indicated magnetization directions (in meV per Co atom). Numbers without parentheses stand
for systems with optimized Co-Pd distances, and numbers in parentheses stand for systems with a bulklike geometry (see Sec. II A).

μ(z)
spin μ

(z)
orb μ

(x)
orb μ

(y)
orb E(x) − E(z) E(y) − E(z) E(x) − E(y)

Co on Pd(100)
Monolayer 2.09 0.132 0.203 −0.73

(2.07) (0.190) (0.241) ( −0.69)
Adatom 2.29 0.299 0.279 0.26

(2.32) (0.610) (0.473) (2.69)

Co on Pd(111)
Monolayer 2.02 0.135 0.136 0.36

(1.99) (0.154) (0.176) (0.21)
Adatom 2.35 0.605 0.355 5.50

(2.34) (0.780) (0.575) (6.38)

Co on Pd(110)
Monolayer 2.15 0.192 0.183 0.210 −0.15 −0.43 0.28

(2.18) (0.215) (0.220) (0.289) ( −0.48) ( −0.97) (0.49)
Adatom 2.20 0.270 0.347 0.201 −1.51 1.10 −2.61

(2.25) (0.349) (0.472) (0.255) ( −1.88) (2.01) ( −3.89)
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distances have been used for monolayers and adatoms, one
observes here the net effect of the change in Co coordination.
For μorb, the difference between monolayers and adatoms
is obviously much larger than for μspin. For the MAE, this
difference can again be substantial: The magnetic easy axis
for a Co monolayer on Pd(100) is in plane, while for a Co
adatom on the same surface it is out of plane. Similarly, the
magnetic easy axis for a monolayer on Pd(110) is parallel to
the y axis, while for an adatom it is parallel to the x axis.

Changing the distance between Co atoms and the surface
clearly affects the magnetic properties (cf. the values with and
without parentheses in Table II). However, it is noteworthy
that the effect of geometry relaxation is smaller than the effect
of the transition from the monolayer to the adatom.

We calculated also the magnetic shape anisotropy for
the monolayers (classically, via a lattice summation, taking
into account also moments on Pd atoms). As expected, this
contribution favors always an in-plane orientation of the
magnetization. For Co monolayers on Pd(100) and Pd(111),
we get E

(x)
dip-dip − E

(z)
dip-dip = −0.1 meV. For Co monolayers

on Pd(110), there is a small difference regarding the x and
y directions: we get E

(x)
dip-dip − E

(z)
dip-dip = −0.07 meV and

E
(y)
dip-dip − E

(z)
dip-dip = −0.09 meV. By comparing these values

with the values shown in Table II, we see that the shape
anisotropy energy is smaller in magnitude than the magne-
tocrystalline anisotropy energy and thus the shape anisotropy
does not change the orientation of the magnetic easy axis as
determined by the magnetocrystalline anisotropy.

The large amount of data gathered here for quite a complete
set of systems allow a comprehensive look at the relation
between the MAE and the anisotropy of μorb. In this respect,
Bruno’s formula30

E(α) − E(β) = −ξ

4

[
μ

(α)
orb − μ

(β)
orb

]
(3)

connecting the differences of total energies to the differences
of orbital magnetic moments for two orientations of the
magnetization α and β proved to be very useful31 despite
its limitations,32 which become more severe in the case of
multicomponent systems with large SOC parameter ξ for the
nonmagnetic component.33,34 Moreover, this proportionality
between MAE and μorb was questioned also on general
grounds, using a model Hamiltonian.35 To assess the situation
for 3d-4d alloys, we compare the differences 	μorb and 	E,
using all the appropriate values given in Table II. The outcome
is shown in Fig. 2, together with a straight line representing
Eq. (3). We take ξ = 85 meV for the SOC parameter [which
appears to be a rather universal value for Co as our calculations
yield ξ of 85.4, 84.5, 84.9, and 85.1 meV for bulk hcp Co
and for a Co monolayer on Pd(100), Pd(111), and Pd(110),
respectively].

It follows from Fig. 2 that Bruno’s formula (3) works quite
well for adatoms (albeit with some “noise”) but not so well
for monolayers, where relying solely on Eq. (3) might even
lead to a wrong sign of the MAE (in case of small absolute
values). This may be connected with the fact that if the MAE
is not large, small absolute deviations from the rule given
in Eq. (3) can lead to large relative errors. The deficiencies
of the Bruno formula are not removed if we use instead
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FIG. 2. (Color online) Dependence of the MAE for Co mono-
layers and adatoms on the difference of orbital magnetic moments
for respective magnetization directions. The dashed line represents
Bruno’s formula in Eq. (3).

a more general formula due to van der Laan36 (where the
assumption that the majority spin band is completely filled has
been relaxed); the values of the MAE obtained via the van
der Laan formula change with respect to values obtained from
Eq. (3) by 10%–20%, sometimes improving but sometimes
worsening the agreement with the ab initio values of Table II.

We would like to point out two issues which are important
regarding both μorb and the magnetocrystalline anisotropy.
First, there are mutual effects between SOC strength and hy-
bridization of electronic states of the Co atoms with the states
of the surrounding Pd atoms, as this determines the μorb values
of the adsorbed atoms. The second issue is the anisotropy of
the electronic structure at the surface which is responsible for
the anisotropy of μorb as well as for the anisotropy of the total
energy at different directions of magnetization in the system.
Concerning different crystallographic orientations, one should
expect different hybridizations for different surfaces simply
because of the differences in the geometries: while the nearest
Co-Pd distances are more or less the same for all three
crystallographic orientations (they vary within 5% for the
optimal geometry and are identical for the bulklike geometry),
the coordination numbers differ. For Co on Pd(111), each
Co atom has only three Pd atoms as its neighbors, so the
Co-Pd hybridization is relatively weak, for Co on Pd(100)
the hybridization will be stronger because there are four Pd
atoms around a Co atom, and the strongest hybridization can
be expected for Co on Pd(110) where each Co atom has five Pd
atoms in its neighborhood (the fifth Pd atom is hidden below
the Co atom in the rightmost drawing in Fig. 1).

The effect of different hybridization schemes can be seen
when inspecting the density of states (DOS). We present the
DOS for the Co atoms and also for the Pd atoms in the
uppermost layer (nearest to the Co atoms) in Fig. 3. We
display only the results for M ‖ z, the corresponding curves
for M ‖ x or M ‖ y would be hardly distinguishable from
them at this scale (even though there are differences on a scale
of about 0.1 eV). Here, a special attention should be paid to the
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FIG. 3. (Color online) Spin-polarized DOS for Co monolayers and adatoms on Pd surfaces (in states per eV). Full lines represent DOS
related to Co atoms, dashed lines represent DOS related to Pd atoms which are nearest neighbors to Co atoms, dotted lines represent DOS for
bulk Pd.

minority spin states because we found that the anisotropy of
μorb comes by more than 90% from the minority spin states and
the same trend can be expected regarding the MAE because of
the validity of the Bruno formula for our systems. One can see
that there are indeed big differences in the minority spin DOS
around the Fermi energy EF for different orientations of the
Pd substrate. Sometimes there is a peak in the minority DOS
at EF , sometimes a valley, sometimes a slope. The differences

in the DOS suggest that from the electronic structure point of
view, one is actually dealing each time with quite a different
system, so it is not surprising that the differences in the MAE
are large.

To get a more complete picture, we explore also how the
calculated MAE depends on the position of the top of the
valence band Eband, i.e., on the band filling. The results are
shown in Fig. 4. One can see that the dependence of the MAE
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FIG. 4. (Color online) Dependence

of the MAE on the position of the top
of the valence band. For systems on
Pd(110), the anisotropy energies E(x) −
E(z) and E(y) − E(z) are investigated sep-
arately. The left panel is for monolayers,
the right panel is for adatoms. The mean-
ing of the lines is the same for both panels
(see the legend).

on Eband differs for different Pd surface orientations. This is
again an indication for different character of the investigated
systems in this respect. It is worth noticing that for the system
with by far the largest MAE, namely, Co adatom on Pd(111),
the dependence of the MAE on Eband is very steep around the
true Fermi level and that the corresponding minority spin DOS
has a sharp peak at EF .

B. Induced magnetic moments

Palladium is not magnetic as an element but it is quite
polarizable.37,38 Spin magnetic moments induced in the Pd
substrate by Co monolayers and adatoms are shown in Table III
for all three surface orientations. In the case of Co monolayers,
the induced moments are shown for the first three atomic layers
of Pd below the Co layer [denoted as Pd(1), Pd(2), and Pd(3) in
Table III]. Note that the interlayer distances are 1.95, 2.25, and
1.38 Å for the (100), (111), and (110) surfaces, respectively

TABLE III. Spin magnetic moments for Pd atoms which are first-,
second-, and third-nearest neighbors of Co atoms, in units of μB . As
in Table II, the numbers without parentheses stand for systems with
optimized geometry and the numbers in parentheses stand for systems
with bulklike geometry.

Pd(1) Pd(2) Pd(3)

Co on Pd(100)
Monolayer 0.29 0.17 0.11

(0.25) (0.16) (0.10)
Adatom 0.18 0.06 0.04

(0.15) (0.06) (0.04)

Co on Pd(111)
Monolayer 0.32 0.16 0.03

(0.25) (0.15) (0.06)
Adatom 0.16 0.02 0.04

(0.12) (0.02) (0.03)

Co on Pd(110)
Monolayer 0.29 0.22 0.17

(0.29) (0.24) (0.19)
Adatom 0.15 0.04 0.04

(0.15) (0.05) (0.04)

(Table I). The relatively large μspin for the Pd(2) and Pd(3)
sites in the case of the (110) surface reflects the relatively
small interlayer distance for this crystallographic orientation.

In the case of adatoms, the description is formally more
complicated because Pd atoms belonging to the same coordi-
nation shell around the Co atom are not all equivalent: some
of them belong to the surface layer, some to the subsurface
layer, and so on. In order not be overwhelmed by too much
data, we display here only moments averaged over all atoms
of a given coordination shell. Symbols Pd(1), Pd(2), and Pd(3)
in Table III stand now for the first, second, and third shells of
Pd atoms around the Co adatom. Moreover, we also calculated
the orbital magnetic moments for the Pd atoms in all systems
and we found that μorb amounts to about 8%–17% of the
corresponding μspin.

In this section, we deal only with magnetic moments on
those Pd atoms which are close to the Co atoms. The issue
of more distant Pd atoms and of the total charge contained
in the polarization cloud is dealt with in the Appendix. Here,
we would only like to stress that it follows from the analysis
outlined in the Appendix that our model system is clearly
adequate to yield reliable values of induced magnetic moments
for the Pd(1), Pd(2), and Pd(3) sites.

C. Azimuthal dependence of the MAE

In general, the MAE defined as the difference between
total energies for in-plane and out-of-plane orientation of the
magnetization will depend on the azimuthal angle φ. This de-
pendence is often ignored but it may sometimes be significant
for low-symmetry surfaces. In our case, the intraplanar MAE
E(x) − E(y) is quite comparable to E(x) − E(z) or E(y) − E(z)

for the (110) surface, not only for the monolayer but also for
the adatom (see Table II). To get a more complete picture,
we inspect the azimuthal dependence of E(‖)(φ) − E(z), where
E(‖)(φ) is the total energy if M is in the surface plane (θ = 90◦)
with the azimuthal angle φ. Our results for a Co adatom on
all three Pd surfaces are shown in Fig. 5. The data reported
here were obtained for the optimized geometry, but the trends
would be similar for any zCo-Pd distance.

One can see from Fig. 5 that the E(‖)(φ) − E(z) curves
follow the symmetry of the appropriate surface, as ex-
pected. The amplitude of these curves is the most interesting
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FIG. 5. (Color online) Difference between total energies for in-plane and out-of-plane magnetization for a Co adatom on Pd (100), (111),
and (110) surfaces (optimized geometry). Points are results of the calculation, dashed lines are sinusoidal fits. The orientation of the x and y

axes is as in Fig. 1.

information here. For high-symmetry surfaces, it is almost
negligible: 0.008 meV or 3% of the average value for Co on
Pd(100) and 0.06 meV or 1% of the average value for Co
on Pd(111). For the (110) surface, however, the amplitude is
2.6 meV and to speak about a common uniaxial MAE does
not make sense in this case, as illustrated by the fact that the
magnetic easy axis is in plane for φ = 0◦ and out of plane for
φ = 90◦.

D. Relation between magnetic dipole term and m-decomposed
spin magnetic moment

The spin magnetic moment sum rule for the L2,3 edge
XMCD spectra can be written for a sample magnetized along
the α direction as7

3

I

∫ (
	μL3 − 2	μL2

)
dE = μspin + 7Tα

nh

, (4)

where 	μL2,3 are the differences 	μ = μ(+) − μ(−) between
absorption coefficients for the left and right circularly polar-
ized light propagating along the α direction, I is the integrated
isotropic absorption spectrum, μspin is the local spin magnetic
moment (only its d component enters here), nh is the number
of holes in the d band, and Tα is the expectation value of the
intra-atomic dipole operator for the valence d electrons. It is
often called the magnetic dipole term in the literature dealing
with the XMCD. It can be also related to the magnetic dipole
contribution to the magnetic hyperfine field.39 The Tα term can
be written as40,41

Tα = −μB

h̄
〈T̂α〉

= −μB

h̄

〈 ∑
β

QαβSβ

〉
, (5)

where

Qαβ = δαβ − 3r0
αr0

β (6)

is the quadrupole moment operator and Sα is the spin operator.
If z is the quantization axis, the eigenvalues of Sz are ±(1/2)h̄.

It follows from Eq. (5) that Tα is a measure for the
quadrupole moment of the spin density. An approximate
expression in terms of more intuitive quantities can be obtained

if the SOC is neglected. Then, it can be shown that14,41

Tα = 1

2
(−μB)

∑
mm′

[N↑
mm′ − N

↓
mm′ ]〈Y2m|Q̂αα|Y2m′ 〉, (7)

where N
(s)
mm′ is a spin-dependent number of states matrix

defined as

N
(s)
mm′ =

∫ EF

−∞
dE

∫
BZ

dk
∫

r2dr a
(s) ∗
Ek�m(r) a

(s)
Ek�m′(r).

The coefficients a
(s)
Ek�m(r) determine the expansion of the wave

function in the angular momentum basis

ψEk(r) =
∑
�m

∑
s

a
(s)
Ek�m(r) Y�m(r̂) χ (s), (8)

where a simplified two-component formulation instead of the
full Dirac approach was used. We restrict ourselves to the
� = 2 component only (therefore we omit the � subscript from
the N

(s)
mm′ notation).

The diagonal components of the 〈Y2m|Q̂αα|Y2m′ 〉 matrix
were published in Refs. 14 and 40. Most of the nondiagonal
components are zero. We summarize all the nonzero com-
ponents (including the diagonal ones) in Table IV. Equation
(7) makes it possible to associate the somewhat abstract Tα

term with the spin magnetic moment resolved into components
according to the magnetic quantum number m:

μ(m)
spin = (−μB)(N↑

mm − N↓
mm).

TABLE IV. Nonzero components of the quadrupole operator in
the basis of real spherical harmonics.

Qxx Qyy Qzz

〈Yxy |Q̂αα|Yxy〉 − 2
7 − 2

7
4
7

〈Yyz|Q̂αα|Yyz〉 4
7 − 2

7 − 2
7

〈Y3z2−r2 |Q̂αα|Y3z2−r2 〉 2
7

2
7 − 4

7

〈Yxz|Q̂αα|Yxz〉 − 2
7

4
7 − 2

7

〈Yx2−y2 |Q̂αα|Yx2−y2 〉 − 2
7 − 2

7
4
7

〈Yx2−y2 |Q̂αα|Y3z2−r2 〉 2
√

3
7 − 2

√
3

7 0
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Namely, if we retain in the sum (7) only the terms which are
diagonal in m, we get

Tα =
∑
m

1

2
〈Y2m|Q̂αα|Y2m〉 μ(m)

spin. (9)

In the absence of SOC, Eq. (9) thus presents an exact
expression for Tz and an approximate expression for Tx

and Ty (due to the existence of the nondiagonal terms
〈Yx2−y2 |Q̂xx |Y3z2−r2〉 and 〈Yx2−y2 |Q̂yy |Y3z2−r2〉, see Table IV).
As argued by Stöhr,14,41 for high-symmetry systems the
nondiagonal terms drop out of the sum in Eq. (7) altogether.
Moreover, if the xz and yz orbitals are degenerate so that
μ(xz)

spin = μ
(yz)
spin, it can be shown [e.g., by a direct substitution

from Table IV to Eq. (9)] that Tz = −2Tx = −2Ty (cf.
Refs. 39, 42, and 43).

The scheme outlined above gives a concrete meaning to
the common statement that the magnetic dipole term Tα is
related to the anisotropy of the spin density distribution. In
particular, if all the m components of μspin are the same, Tα

will be zero [as it follows trivially from Eq. (9) and Table IV].
It is also evident from Eq. (9) and Table IV that the Tα term
will generally depend on the magnetization direction α.

To get a more quantitative feeling of how the various
contributions add together to generate Tα , we present in
Table V the m-decomposed magnetic moment μ(m)

spin and
individual terms of the sum in Eq. (9) for Co monolayers
on Pd surfaces. One can see that the Tα term is formed by a
competition between those m components which contain the

TABLE V. Spin magnetic moment decomposed according to
the magnetic quantum number m together with the corresponding
T (m)

α = 1
2 μ(m)

spin〈Y2m|Q̂αα|Y2m〉 terms of the decomposition (9) for
Co monolayers on Pd (optimized geometry). The sums of these
components are shown in the last row for each system and they
correspond to the total μspin, Tz, Tx , and Ty of the d electrons
[evaluated using the approximative expression (9) in the case of Tα].

Component μ(m)
spin T (m)

z T (m)
x T (m)

y

Co on Pd(100)
xy 0.319 0.092 −0.046 −0.046
yz 0.465 −0.066 0.133 −0.066
3z2 − r2 0.365 −0.104 0.052 0.052
xz 0.465 −0.066 −0.066 0.133
x2 − y2 0.449 0.128 −0.064 −0.064
Sum 2.062 − 0.018 0.009 0.009

Co on Pd(111)
xy 0.339 0.097 −0.048 −0.048
yz 0.428 −0.061 0.122 −0.061
3z2 − r2 0.490 −0.140 0.070 0.070
xz 0.428 −0.061 −0.061 0.122
x2 − y2 0.339 0.097 −0.048 −0.048
Sum 2.023 −0.069 0.034 0.034

Co on Pd(110)
xy 0.397 0.113 −0.057 −0.057
yz 0.346 −0.049 0.099 −0.049
3z2 − r2 0.515 −0.147 0.074 0.074
xz 0.527 −0.075 −0.075 0.151
x2 − y2 0.343 0.098 −0.049 −0.049
Sum 2.128 −0.060 −0.009 0.069

α coordinate and those which do not (they contribute with an
opposite sign, as it follows also from Table IV). One could also
say that, intuitively, the magnetic dipole term Tα reflects the
difference between the spin magnetic moment as seen from
the α direction and as seen from the direction perpendicular
to α.

Equation (9) gives an insight into Tα provided that the
underlying approximations, the neglect of the SOC and of
the nondiagonal terms in Table IV, are not too crude. To
check whether this really is the case, we compare the values
of Tα calculated via the exact relation in Eq. (5) and via
the approximative Eq. (9). Special attention is paid to the
differences between the Tα terms for different orientations of
M because the 7(Tα − Tβ) quantities determine the apparent
anisotropy of μspin, i.e., its dependence on the direction of
M as deduced from the XMCD sum rule in Eq. (4). The
outcome for both monolayers and adatoms is summarized in
Table VI. Let us recall that for bulk hcp Co, the magnetic
dipole term is very small (we get Tz = −0.002 μB). Note that
all values presented in Tables V and VI were obtained from
fully relativistic calculations, including the SOC.

One can see from our results that the approximative
expression for Tα works quite well for the Co-Pd systems:
quantitative deviations sometimes occur but the main trend is
well maintained. One can expect that for systems with a strong
SOC, the deviations between Eqs. (5) and (9) will be larger.

The last two columns of Table VI contain the values of
7(Tx − Tz) and, for the case of the (110) surface, also of
7(Ty − Tz). These values are comparable to μspin, which means
that even though μspin practically does not depend on the
magnetization direction at all, its combination μspin + 7Tα

probed by the XMCD sum rule may strongly depend on
the magnetization direction. Perhaps, we should note in this
context that the number of holes nh does not depend on the
magnetization direction (we found relative variations to be
less than 0.1%), so it can not hinder the use of the sum
rule (4) in this respect. Likewise, choosing different Pd surface
orientations changes nh by less than 5%.

Once we have demonstrated that Eq. (9) presents a good
approximation for Tα , we could speculate whether it is possible
to promote the simple picture further. An inspiration can be
sought in the dependence of local spin magnetic moments
on the coordination numbers: lower coordination number
generally means higher total (“isotropic”) magnetic moment
for the atom in question.1,2,44 Within this philosophy, one could
think of relating the m-resolved spin magnetic moments to
“directional coordination numbers,” with directions specified
by appropriate spherical harmonics. Using a simple linear
ansatz, one could then find a decomposition of the total μspin

into its m-dependent components and use Eq. (9) to estimate
Tα . Because of the crucial role of the (directional) coordination
numbers in this scheme, applying this procedure makes sense
only for monolayers, not for adatoms where there are no
neighbors of the same atomic type.

To test the hypothesis, we define directional m-dependent
coordination numbers cm as overlap integrals of the electron
densities projected on appropriate spherical harmonics,

cm =
∑

j

∫
d r g(|r − Rj |) |Y2m(r̂)|2 g(r). (10)
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TABLE VI. Magnetic dipole term for Co monolayers and adatoms on Pd(100), Pd(111), and Pd(110) (optimized geometries) for different
magnetization directions. For each system, the first line (“exact”) contains values calculated using Eq. (5) and the second line (“approx.”)
contains values calculated using Eq. (9). The Ty terms were evaluated only for the (110) surface.

Tz Tx Ty 7(Tx − Tz) 7(Ty − Tz)

Co on Pd(100)
Monolayer Exact −0.017 0.010 0.188

Approx. −0.018 0.009 0.184
Adatom Exact −0.024 0.015 0.275

Approx. −0.026 0.013 0.276

Co on Pd(111)
Monolayer Exact −0.066 0.035 0.707

Approx. −0.069 0.034 0.723
Adatom Exact −0.146 0.080 1.577

Approx. −0.154 0.077 1.618

Co on Pd(110)
Monolayer Exact −0.057 −0.008 0.068 0.339 0.872

Approx. −0.060 −0.009 0.069 0.360 0.904
Adatom Exact −0.112 −0.020 0.141 0.644 1.768

Approx. −0.117 0.011 0.106 0.900 1.566

The sum
∑

j goes over neighboring magnetic atoms located at
positions Rj . Substrate atoms could be included in this sum as
well (with an ad hoc weighting coefficient) but this has no big
influence on the outcome. Concerning the electron density, as
a first guess we model it by a normalized Gaussian curve

g(r) = exp

[
− 4 ln 2

(
r

w

)2]
,

with full width at half maximum w equal to the Wigner-
Seitz radius. Directional m-dependent coordination numbers
obtained in this way for Co atoms in the monolayers are
presented in Table VII.

Analogously to previous studies on free1 and supported
clusters,2,44 we further assume a linear dependence of μ(m)

spin on
cm:

μ(m)
spin = −acm + b. (11)

One can think of several ways to determine the a and b

coefficients: we adopted here one that is technically simple
and does not require much input information. In particular,
considering the calculated values of μ(m)

spin shown in Table V, we
set the coefficients a and b in Eq. (11) by requiring that for each
investigated system (characterized by a set of cm coefficients)
the lowest μ(m)

spin should be 0.35 μB and the largest μ(m)
spin should

be 0.50 μB . After that, we apply an overall normalization so

TABLE VII. Directional coordination numbers cm for Co atoms
in monolayers on Pd(100), Pd(111), and Pd(110) evaluated according
to Eq. (10), in a basis of real spherical harmonics.

m Pd(100) Pd(111) Pd(110)

xy 0.0464 0.0536 0.0104
yz 0.0108 0.0179 0.0104
3z2 − r2 0.0173 0.0283 0.0095
xz 0.0108 0.0177 0.0015
x2 − y2 0.0192 0.0536 0.0256

that the total μspin is always 2.07 μB (which is the average value
of μspin for Co monolayers on all three surfaces). The values of
μ(m)

spin obtained thereby are then substituted into formula (9) to
get model values for Tα . The results are shown in Table VIII. If
the model is changed a bit, e.g., if the width w of the Gaussians
in Eq. (10) is varied by 50%–200%, or if the coefficients a, b

in Eq. (11) are determined by using information more specific
to each of the surfaces, or if the Pd atoms are partially included
in defining the cm coefficients, the results shown in Table VIII
do not change significantly.

When comparing the model values in Table VIII with
the calculated values in Table V, one sees that the simple
framework of directional coordination numbers accounts for
some trends in Tα . In particular, the sign of Tα is always
reproduced correctly [apart from the very small value of Tx

for Co on Pd(110)]. For Co on Pd(111), the model works very
well. For Co on Pd(110) and Co on Pd(100), the values are
quantitatively not so good but the dependence of the Tα term
on the magnetization direction is well described.

IV. DISCUSSION

We investigated how the magnetic properties of Co adatoms
and monolayers can be manipulated by selecting different
supporting Pd surfaces. We found that this has a moderate
effect on μspin, larger effect on μorb, and dramatic effect on

TABLE VIII. Model values of the magnetic dipole term Tα for Co
monolayers on Pd(100), Pd(111), and Pd(110) obtained by assuming
a linear dependence of μ(m)

spin on the directional coordination numbers
cm.

Surface T (m)
z T (m)

x T (m)
y

(100) −0.041 0.020 0.020
(111) −0.070 0.035 0.035
(110) −0.035 0.006 0.028
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the MAE and on the Tα term. For the adatoms, the effect is
larger than for the monolayers. Moreover, the transition from
monolayers to adatoms has a larger effect than a moderate
variation in the height of the Co layer above the substrate. If
the SOC is not very strong, the Tα term can be understood
as arising from a competition between those m-decomposed
components of μspin which are associated with the α coordinate
and those which are not.

In the past, the influence of the orientation of superlattices
(multilayers) on magnetic properties was already investigated,
however, the focus was mainly on the role of defects and
interface abruptness.45 Here, we deal with perfect monolayers
and surfaces and investigate how sole selection of a different
surface can affect various quantities related to magnetism.
Likewise, the importance of the Tz term for an XMCD sum-rule
analysis has been highlighted before when it was found that the
absolute value of 7Tz amounts to about 20% of μspin for some
low-dimensional systems12 or that for atomic clusters μspin

can show a different behavior with changing cluster size when
compared to μspin + 7Tz.13 In this study, the importance of
the anisotropy of the magnetic dipole term in nanostructures is
stressed and quantitatively assessed for a set of related adatoms
and monolayers for the first time.

It should be noted that the anisotropy of Tα which we
highlight here is primarily connected with the breaking of the
crystal symmetry at the surface and occurs even without SOC.
Moreover, we demonstrated that a semiquantitative estimate of
this anisotropy can be made by assuming a linear dependence
of μ(m)

spin on m-dependent coordination numbers cm. We also
verified that a simplified relation linking Tα to a weighted
sum of m-resolved components of μspin is satisfied for Co-Pd
systems to a great accuracy. We assume that this will be the
case for other systems containing 3d and 4d elements as well.
This justifies a posteriori the use of this approach to estimate
Tα of a Co monolayer by Stöhr and König.14

For the monolayers, the changes in μspin when going from
one surface to another reflect the corresponding changes in the
coordination numbers: μspin is largest for the (110) monolayer
where each Co atom has only two nearest-neighboring Co
atoms, next comes the (100) monolayer with four Co neigh-
bors, and the lowest μspin is obtained for the (111) monolayer
with six Co neighbors. This complements an analogous trend
found earlier for free1 and supported clusters.2,3,44 The mag-
netic moments induced at individual Pd atoms are larger for Co
monolayers than for Co adatoms, which reflects the fact that for
monolayers, Pd atoms are polarized by more than one Co atom.

The sizable intraplanar anisotropy E(x) − E(y) which we
get for a Co monolayer on Pd(110) was expected as this
system could be viewed as a set of Co wires which are surely
anisotropic in this respect. However, we get a very strong
azimuthal dependence of the MAE also for the adatom on
the (110) surface which is not so obvious as this can be only
caused by the underlying substrate. The (110) fcc surface has a
rectangular symmetry with a clearly present x-y anisotropy. At
the same time, however, the magnetic moments at Pd atoms are
not very large (Table III), neither is the SOC parameter ξ for
Pd in comparison to, e.g., 5d elements. So, one might assume
that the influence of the substrate x-y asymmetry would not be
very strong in this case. Thus, the large E(x) − E(y) anisotropy
energy for a Co adatom on Pd(110) can be seen as an example

of the high sensitivity of the MAE. We should note that a strong
azimuthal dependence of the MAE for adatoms was observed
also for the CuN/Cu(001) surface.46 However, in that case, the
magnetic adatom was in a bridge position meaning that the
x-y symmetry breaking was more immediate than in the case
of an adatom in a hollow position. As a final remark, we would
like to mention that the calculated azimuthal dependencies of
the MAE can be accurately fitted by smooth sinusoidal curves
(see Fig. 5), which indicates a very good numerical stability
of the computational procedure.

The intraplanar anisotropy for a Co adatom on the Pd(111)
surface can be compared to similar systems investigated in
the past. In particular, for a Co adatom on Pt(111), the
amplitude of the E(‖)(φ) − E(z) curve is about 2% of the
average value,47 i.e., similar to the current case. For a 2 × 2
surface supercell coverage of Fe on Pt(111), this amplitude
is 10%–25% (depending on the geometry relaxation);48 this
relatively large value with respect to our case is very probably
due to the fact that the 2 × 2 surface supercell is already quite
distinct from the isolated adatom we discuss here.

In the past, a lot of attention was paid to Co/Pd multilayers,
especially in connection with the MAE. In some respects,
multilayers and monolayers behave in a similar way. For ex-
ample, concerning how much the out-of-plane magnetization
is preferred by the Pd(111)-related system in comparison with
the Pd(100)-related systems. In particular, according to our
calculations, a Co monolayer on Pd(100) has an in-plane
magnetic easy axis, a Co monolayer on Pd(111) has an
out-of-plane magnetic easy axis, and the difference between
the respective MAE values is about 1 meV. According to an
earlier work on Co/Pd multilayers,49 both Co1Pd3 (100) and
Co1Pd2 (111) multilayers have an out-of-plane magnetic easy
axis, but the MAE per unit cell is by about 0.9 meV larger for
the (111) multilayer than for the (100) multilayer.

Likewise, the dependence of the MAE on Eband seems to
have a similar character for the multilayers (or slabs) and
for the monolayers: the E(x) − E(z) value is decreasing with
increasing Eband for the (100) crystallographic orientation
(cf. Pd2Co1Pd2 slab studied by Wang et al.)50 and relatively
unchanging with Eband in the vicinity of EF for the (111)
orientation (cf. Co1Pd2 multilayer studied by Daalderop
et al.),51 which resembles our results shown in Fig. 4. However,
as mentioned in the Introduction, one has to be careful when
comparing theoretical results obtained by different studies
because the MAE is quite sensitive to the technical details of
the calculation. One should also bear in mind that the results
on Co/Pd multilayers and slabs depend on the number of the
interlaying Pd layers (cf. Ref. 52 for the sensitivity of the MAE
to the slab thickness).

The theoretical values for the anisotropy of Tα shown
in Table VI can be compared with experimental data for a
similar system, namely, a single Co(111) layer sandwiched
between two thick Au layers. By extrapolating results obtained
via angle-dependent XMCD measurements, Weller et al.53

obtained 7Tx = 0.43 μB and 7Tz = −0.86 μB . Our values
for a Co monolayer on Pd(111), 7Tx = 0.24 μB and 7Tz =
−0.46 μB (see Table VI), are fully consistent with this. One
should also note that our values for a Co monolayer on Pd(111)
are quite similar to earlier results for a Co layer sandwiched
between few Pd(111) layers (where 7Tα is 0.18 μB and
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−0.34 μB for an in-plane and out-of-plane orientation of the
magnetization, respectively),39 which suggests that comparing
theoretical data for a monolayer with experimental data for a
sandwich is relevant in this case.

We expect that our values for μorb will be systematically
smaller than experimental values because we rely on the
LSDA which usually underestimates μorb.54,55 The same may
be also true for the MAE. However, this does not affect our
conclusions.

We used potentials subject to the ASA which may limit the
numerical accuracy of our results, particularly as concerns the
MAE. On the other hand, our results do not differ too much
from results of full-potential calculations, especially in the
case of monolayers. For a Co monolayer on Pd(100), we get
an in-plane magnetic easy axis with an MAE of −0.73 meV
per Co atom while Wu et al.56 obtained for the same zCo-Pd

distance (1.65 Å) a theoretical MAE of −0.75 meV. Magneto-
optic Kerr measurements17 as well as XMCD experiments57

showed that the magnetic easy axis of ultrathin Co films on
Pd(100) is indeed in plane (the experiment includes also an
in-plane contribution from the shape anisotropy). Note that the
theoretical MAE of −0.18 meV given in Ref. 17 was obtained
for a partially disordered Co monolayer simulating the growth
conditions, so it can not be directly compared to our results
obtained for an ideal monolayer.

For a Co monolayer on Pd(111), we get a μspin value of
2.01 μB in a Co ASA sphere with a radius of 1.46 Å while the
full-potential calculations of Wu et al.19 led to a μspin value
of 1.88 μB obtained within a Co muffin-tin sphere with a
radius of 1.06 Å. Both calculations thus again give consistent
results. For Pd atoms just below the Co layer, we get a μspin

value of 0.32 μB in a sphere with a radius of 1.49 Å while
the corresponding μspin value of Wu et al.19 obtained within a
sphere having a radius of 1.32 Å is 0.37 μB . In this last case,
one has to bear in mind that Wu et al.19 used a thin slab of
only five Pd layers sandwiched between two Co layers which
clearly favors a larger Pd polarization in comparison with just
a single Co-Pd interface considered in this work.

For adatoms, the ASA may be more severe than for mono-
layers, nevertheless, the agreement between our calculations
and the results obtained via a full potential calculation is pretty
good (see the end of the Appendix). As a whole, the accuracy of
our calculations is sufficient to warrant the conclusions which
rely on comparing a large set of data and not only on results
for a singular system.

It follows from our results that one can change the magnetic
easy axis from in-plane to out-of-plane direction just by using
as a substrate another surface of the same element. This
could be used as yet another ingredient for engineering the
MAE of nanostructures, which has become a great challenge
recently.58 We also showed that the magnetic dipole Tα term
can mimic a large anisotropy of μspin when determined from
the XMCD sum rules. Hence, the anisotropy of Tα has to be
taken fully into account when analyzing XMCD experiments
on nanostructures.

V. CONCLUSIONS

Co monolayers and adatoms adsorbed on different surfaces
of Pd exhibit quite different magnetic properties. Changing

the surface orientation has a moderate effect on μspin but
a large effect on μorb (the differences in μspin when going
from one surface to another are less than 10%, while the
differences in μorb are 20%–50%). The effect on the MAE
may be crucial: selecting a different surface can change the
direction of the magnetic easy axis. Similar trends occur when
comparing monolayers and adatoms: For μspin, the differences
between monolayers and adatoms are only quantitative, for
μorb the differences are large, and for MAE the differences
are substantial. For the monolayers, the changes in μspin when
going from one surface to another reflect the corresponding
changes in the coordination numbers. A surprisingly strong
azimuthal dependence of the MAE is predicted for a Co adatom
on Pd(110). For high-symmetry surfaces, on the other hand,
varying the azimuthal angle changes the MAE of adatoms by
less than a few percent.

The magnetic dipole term Tα which characterizes the
anisotropy of the spin density distribution depends substan-
tially on crystallographic orientation of the substrate and
also on the direction of the magnetization. As a result of
this, a strong apparent anisotropy of μspin as deduced from
the XMCD sum rules may be falsely observed. For systems
with small spin-orbit coupling such as Co/Pd, the Tα term
can be accurately described by an approximative formula
which relates Tα to the differences between components of
the spin magnetic moment resolved according to the magnetic
quantum number m. For interpretation of the trends of Tα

with the substrate crystallographic orientation, the concept of
directional m-dependent coordination number is helpful.
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APPENDIX: EFFECT OF THE SIZE OF THE RELAXATION
ZONE

When studying the magnetism of adatoms, one should
address the question as to which extent the host around the
adatom has to be allowed to polarize. Zeller showed37 that
the polarization cloud around a magnetic impurity in bulk Pd
extends at least up to 1000 atoms. Šipr et al.52 showed that
the convergence of the MAE with respect to the slab thickness
and/or with respect to the size of the supercell which simulates
the adatom is much slower than the convergence of magnetic
moments. In view of these facts, it is desirable to explore more
deeply the situation for the systems considered in this work.

As a test case, we select a Co adatom on Pd(111). To
facilitate the comparison with calculations done by other
methods, we put the Co adatom in an hcp hollow site, with
the vertical distance between the Co adatom and the Pd
surface layer as zCo-Pd = 1.64 Å. Our system is thus similar to
the system investigated by Błoński et al.20 (the main difference
with respect to Ref. 20 is that we do not consider any buckling
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FIG. 6. (Color online) Sum of the spin magnetic moments at the
Co adatom and at those substrate Pd atoms which are enclosed in
hemispherical zones of the given radii, for four embedded cluster
sizes (identified by numbers of Pd atoms contained in them).

of the substrate). To check the convergence with respect to
the size of the zone where the electronic structure is relaxed,
we probed a series of embedded cluster sizes, starting with
relaxing the electronic structure just in three Pd atoms (i.e.,
up to the distance of 2.3 Å from the Co adatom) and ending
with relaxing it in 220 Pd atoms (up to 11.7 Å from the Co
adatom). To safely accommodate this large embedded cluster,
we model the Pd substrate by a slab of 19 layers [contrary
to 13 layers used in other calculations involving the Pd(111)
surface in this work]. The largest embedded cluster with 220
Pd atoms contains Pd atoms located within the fifth layer below
the surface and comprises 329 sites altogether.

First, we investigate the convergence of the spin magnetic
moments. This can be achieved by inspecting the total μspin

contained inside a hemisphere stretching from the adatom up
to a certain radius. The dependence of this total μspin on the
radius of the hemisphere forms an “integral magnetic profile.”
This is presented in Fig. 6 for four embedded cluster sizes
containing 7, 46, 133, and 220 Pd atoms, respectively. The
total μspin for a sphere with zero radius is obviously just the
μspin value of the Co adatom. With increasing sphere radius,
the spin magnetic moments of enclosed Pd atoms are added
to it. If the radius of the hemisphere becomes larger than
the radius of the embedded cluster, the total μspin obviously
does not change any more because the Pd atoms outside the
embedded impurity cluster are nonmagnetic.

It follows from Fig. 6 that the spin magnetic moment of the
adatom as well as magnetic moments induced in the nearest
Pd atoms are actually already well described by relatively
small embedded clusters. However, the total μspin converges
only very slowly with increasing size of the relaxation zone
because even quite distant Pd atoms still contribute with their
nonzero μspin. Our results suggest that the magnetic moments
on all the Pd atoms do not arise due to a direct interaction with
the Co adatom. Rather, the adatom induces a magnetization in
its nearest neighbors, then these further induce magnetization
in the next coordination shell and so on. The emerging picture
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FIG. 7. The MAE of a Co adatom in an hcp position on Pd(111)
for different sizes of the embedded clusters.

of how the magnetism spreads through the Pd host is thus
consistent with the picture suggested by Polesya et al.38 in
terms of an exchange-enhanced magnetic susceptibility (see
Fig. 4 of Ref. 38 and the associated text). A plot analogous
to Fig. 6 could also be drawn for μorb exhibiting the same
features as seen in Fig. 6.

Our results on the convergence of the magnetic moments
may raise objections about the convergence of the MAE. If
embedded clusters containing as much as 220 Pd atoms still
do not fully account for the host polarization, can one get
reliable results for the MAE, which is sensitive to the way
the substrate is treated?52 To check this, we calculated the
MAE for a series of embedded cluster sizes (Fig. 7). One can
see that in fact the MAE converges quickly with increasing
size of the embedded cluster. Already with a relaxation zone
including only 46 Pd atoms, which corresponds to a radius of
the hemisphere of 6.9 Å containing Pd from up to the third
Pd layer below the surface, the accuracy of the MAE is better
than 1%. This means that all the results presented in this work
are well converged.

The data in Fig. 7 demonstrate that it is sufficient to include a
rather small polarization cloud within the Pd host in order to get
convergence in the MAE values. More distant Pd atoms do not
contribute to the MAE, even if they are magnetically polarized.
This conclusion is not in contradiction with an earlier result
that reliable values of the MAE can be obtained only if the host
is represented by slabs of at least 10 layers52 because that result
concerned the total “physical” size of the model system while
in this appendix we focus only on the size of the zone where
the electronic structure is allowed to relax to the presence of
an adatom (or of an adsorbed monolayer).

To complete this part, we should compare our results
with the results of Błoński et al.,20 which were obtained by
performing a plane-wave projector-augmented wave (PAW)
calculation for a supercell comprising five-layer-thick slabs
and a 5 × 5 surface unit cell. As concerns the Co adatom itself,
μspin and μorb for the in-plane magnetization direction and
μorb for the out-of-plane magnetization direction are 2.48 μB ,
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0.15 μB , and 0.27 μB in this work and 2.24 μB , 0.19 μB , and
0.22 μB in Błoński et al.20 As concerns the MAE calculated
via the magnetic force theorem (torque method), it is 1.90 meV
out of plane in this work and 0.72 meV out of plane in Błoński

et al.20 The value for the induced μspin in the nearest Pd atoms
is 0.28 μB in this work and 0.33 μB in Błoński et al.20 All
these values are in good agreement, considering the differences
between both approaches.
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34O. Šipr, J. Minár, S. Mankovsky, and H. Ebert, Phys. Rev. B 78,
144403 (2008).

35R. Skomski, A. Kashyap, and A. Enders, J. Appl. Phys. 109, 07E143
(2011).

36G. van der Laan, J. Phys.: Condens. Matter 10, 3239 (1998).
37R. Zeller, Modelling Simul. Mater. Sci. Eng. 1, 553 (1993).
38S. Polesya, S. Mankovsky, O. Šipr, W. Meindl, C. Strunk, and
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