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Landau-Lifshitz theory of the longitudinal spin Seebeck effect
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Thermal-bias-induced spin angular momentum transfer between a paramagnetic metal and ferromagnetic
insulator is studied theoretically based on the stochastic Landau-Lifshitz-Gilbert (LLG) phenomenology.
Magnons in the ferromagnet establish a nonequilibrium steady state by equilibrating with phonons via bulk
Gilbert damping and electrons in the paramagnet via spin pumping, according to the fluctuation-dissipation
theorem. Subthermal magnons and the associated spin currents are treated classically, while the appropriate
quantum crossover is imposed on high-frequency magnetic fluctuations. We identify several length scales in the
ferromagnet, which govern qualitative changes in the dependence of the thermally induced spin current on the
magnetic film thickness.
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I. INTRODUCTION

Over the past three decades, spintronics has evolved from a
focus on equilibrium phenomena in magnetic heterostructures,
such as giant magnetoresistance1 and interlayer exchange
interactions,2 to dynamic processes, such as spin-transfer
torque3,4 and spin pumping,5,6 and, more recently, nonequilib-
rium thermodynamics, heralded by the spin Seebeck effect7–9

and thermally induced motion of domain walls.10,11 From a
practical standpoint, magnetic nanostructures are useful for
field sensing and nonvolatile information storage,12 where
magnetoresistance is paramount for the readout, while current-
induced spin torques are useful for fast and scalable bit
switching.13

One rapidly developing avenue of research concerns out-
of-equilibrium spin phenomena in insulating systems, where
spin is carried by collective excitations, such as spin waves
(magnons), rather than electronic quasiparticles. To this end,
spin waves in the ferrimagnetic insulator yttrium iron garnet
(YIG) appear particularly promising as they suffer from a
remarkably low Gilbert damping (at microwave frequencies),
α ∼ 10−4, and the host material has Curie temperature of
∼500 K, thus remaining magnetic at room temperature.14

Spin waves in YIG have recently been shown to undergo
room-temperature Bose-Einstein condensation under non-
linear microwave pumping,15 exhibit large spin pumping
into adjacent conductors,16–18 manifest the longitudinal spin
Seebeck effect,19 and efficiently move domain walls under
small thermal gradients.11 These phenomena hold promise for
integrated circuits based on nonvolatile magnetic elements20

with essentially no Ohmic losses and thus very low dissipation.
Furthermore, thermal control of magnetic dynamics and

spin currents21 provides an attractive alternative to voltage
control, especially since magnons, which are neutral objects,
can respond more directly to temperature gradients. The
spin Seebeck effect, i.e., the generation of thermal spin
current between magnetic insulators and normal metals, is
the basic phenomenon of central interest in this context.
The purpose of this paper is to develop a systematic
semiphenomenological approach to this problem, based on
the Landau-Lifshitz-Gilbert (LLG) theory of ferromagnetic
dynamics,22 departing from the spin-pumping6 perspec-
tive on the interaction between electrons and magnons at

ferromagnetic-insulator|normal-metal interfaces put forward
in Ref. 8. In Sec. VIII, we comment on how the theory could
be expanded to account for magnon and phonon kinetics when
the standard LLG phenomenology fails.

II. FERROMAGNETIC BULK DYNAMICS

In the ferromagnetic bulk, away from the Curie temperature,
magnetic dynamics are described by the stochastic LLG
equation22

∂tm = −γ m × (Heff + hl) + αm × ∂tm, (1)

where m = M/Ms is the unit-vector magnetization direction
(Ms = |M| being the saturated magnetization magnitude), γ

(minus) is the gyromagnetic ratio (γ > 0 for free electrons),
α is the dimensionless Gilbert damping constant,

Heff ≡ −δMF = Haz + Ax∇2m + Hr (2)

is the effective field (consisting of applied field Ha in the z

direction, exchange field ∝Ax , and relativistic corrections Hr

that include dipolar interactions and crystalline anisotropies),
and hl is the random Langevin field with correlator23

〈hl,i(r,t)hl,j (r′,t ′)〉 = 2α

γMs

kBT (r)δij δ(r − r′)δ(t − t ′), (3)

in accordance with the fluctuation-dissipation theorem. We are
interested at intermediate temperatures: much lower than the
Curie temperature, such that the Landau-Lifshitz phenomenol-
ogy based on the directional magnetization dynamics [SO(3)
nonlinear σ model] is appropriate, while not too low such that
the classical theory can be used as a starting point. We will,
furthermore, neglect Hr in Eq. (2), for simplicity, which is
justified when kBT 	 h̄γMs . The Langevin correlator (3) is
white at frequencies ω 
 kBT /h̄, corresponding to classical
behavior. In Sec. VI, we will adapt our theory to account for
quantum fluctuations at ω � kBT /h̄, by matching with the
fully quantum treatment of Ref. 24.

In order to streamline discussion of the spin transfer, let us
switch from the magnetization to the spin density:

s ≡ sn = −Ms

γ
m, (4)
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FIG. 1. (Color online) Schematic of an N1|F| N2 sandwich
structure studied in this paper. The normal-metal layer N1 is treated as
a poor spin sink, which blocks spin current, js1 ≈ 0. The normal-metal
layer N2, on the other hand, is a perfect spin sink, thus establishing
a thermal contact between its itinerant electrons and magnons in the
ferromagnetic insulator (F), which results in spin current js2 ≡ js . We
assume the phonons in the F layer follow a linear temperature profile
from T1 at x = 0 (N1|F interface) to T2 at x = d (F| N2 interface),
corresponding to electron temperatures in N1 and N2, respectively.

where s = Ms/γ is the saturated spin density and n = −m is
its direction. The LLG equation then becomes

s(1 + αn×)∂tn + n × (Hz + h) + ∂ijs,i = 0, (5)

where

js,i = −An × ∂in (6)

is identified as the magnetic spin current and

〈hi(r,t)hj (r′,t ′)〉 = 2αskBT (r)δij δ(r − r′)δ(t − t ′), (7)

where i and j stand for the Cartesian coordinates. Here, H ≡
MsHa and A ≡ MsAx . In equilibrium, n = −z, assuming the
applied field Ha > 0.

In this paper, we focus on the trilayer heterostructure
depicted in Fig. 1. The temperature T (r) entering Eq. (3) is
taken to correspond to the x-dependent phonon temperature
inside of the ferromagnetic film,

T (x) = T1 + x

d
(T2 − T1), (8)

assuming Gilbert damping stems from the local magnon-
phonon scattering. (We will revisit this assumption in
Sec. VIII.)

III. BOUNDARY CONDITIONS

The boundary conditions for a ferromagnet sandwiched
between two normal metals need to be similarly constructed to
account both for deterministic6 and stochastic25 spin-transfer
torques. We will start with the former and then include the
latter according to the fluctuation-dissipation theorem.

We assume the spin current is blocked by the N1 layer at
x = 0, due to its weak spin-relaxation rate:

js,x = 0 (x = 0). (9)

In other words, the spin current pumped across the F| N1

interface is balanced by an equal backflow.6 For our purposes,

N1 can thus be replaced by an insulator, as long as it makes a
good thermal contact with phonons in the ferromagnet. A net
spin current across the F|N2 interface, on the other hand, is
allowed, if we treat N2 as a perfect spin sink:6

js,x = h̄g↑↓

4π
n × dn

dt
(x = d), (10)

where g↑↓ is the real part of the dimensionless interfacial spin-
mixing conductance (per unit area).26 We disregard the imag-
inary part of the spin-mixing conductance, since it governs
the typically smaller6 nondissipative spin-current component
∝dn/dt , which vanishes over a cycle of precession. A specific
realization for such an N1|F| N2 trilayer could be provided by
the Cu|YIG|Pt combination, where Cu (Pt) is a light (heavy)
element with weak (strong) spin-orbit interaction. (We will
generalize our findings to arbitrary N1|F| N2 trilayers, such as
symmetric Pt|YIG|Pt-type structures or general asymmetric
structures, in Sec. VII.)

For the two N1|F| N2 interfaces, we correspondingly
have the following (deterministic) boundary conditions for
magnetic dynamics (as T → 0):⎧⎨

⎩
∂xn = 0, x = 0

A∂xn + h̄g↑↓

4π
∂tn = 0, x = d

, (11)

reflecting continuity of spin current, which is given by Eq. (6)
inside the ferromagnet and Eqs. (9) and (10) in N1 and N2,
respectively, across the corresponding interfaces. Since spin
pumping (10) affects magnetic dynamics similarly to Gilbert
damping,6 it is accompanied with a similar stochastic term.25

The latter can be accounted for by modifying the boundary
condition at x = d:

A∂xn + h̄g↑↓

4π
∂tn + h′ = 0, (12)

where

〈h′
i(ρ,t)h′

j (ρ ′,t ′)〉 = h̄g↑↓

2π
kBT2δij δ(ρ − ρ ′)δ(t − t ′) (13)

and ρ = (y,z) is the two-dimensional position along the inter-
face at x = d. The Langevin correlator strength is proportional
to the electron temperature T2 at the F|N2 interface, since the
noise originates in the thermal fluctuations of electronic spin
currents in N2.

The spin Seebeck effect is embodied in the thermal-
averaged spin current flowing through the F|N2 interface:8

js,x = −An × ∂xn = n ×
(

h̄g↑↓

4π
∂tn + h′

)
. (14)

Since our system is axially symmetric with respect to the z axis,
it is convenient to switch to complex notation: n ≡ nx − iny .
Thermal spin-current density, 〈js,x〉 = jsz, can thus be written
for small-angle dynamics (relevant at temperatures well below
the Curie temperature) as

js = A Im〈n∗∂xn〉|x=d . (15)

Exploiting, furthermore, translational invariance in the yz

plane, we find in the steady state

js = A Im
∫

d2qdω

(2π )3

〈n(q,ω)∗∂xn(q′,ω′)〉
(2π )3δ(q − q′)δ(ω − ω′)

, (16)
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where

n(q,ω) =
∫

d2ρdtei(ωt−q·ρ)n(ρ,d,t) (17)

is the Fourier transform over ρ and time t . The δ functions
in the denominator of Eq. (16) cancel δ functions that factor
out of the numerator when evaluating the average 〈. . . 〉 (with
the remaining integrand independent of q′ and ω′). Similarly
transforming Langevin correlators, Eqs. (7) and (13), we have

〈h(x,q,ω)∗h(x ′,q′,ω′)〉
= 4(2π )3αskBT (x)δ(x − x ′)δ(q − q′)δ(ω − ω′) (18)

for the bulk and

〈h′(q,ω)∗h′(q′,ω′)〉 = 4(2π )3α′skBT2δ(q − q′)δ(ω − ω′)
(19)

for the F|N2 interface, defining

α′ ≡ h̄g↑↓

4πs
, (20)

which has dimensions of length. α′/d is the enhanced Gilbert
damping for a monodomain precession of the ferromagnetic
film.6

IV. SPIN SEEBECK COEFFICIENT

We now have all the necessary ingredients in order to
evaluate the (longitudinal) spin Seebeck coefficient (which
has units of inverse length squared)27

S ≡ js

kB(T1 − T2)
(21)

of the N1|F| N2 structure shown in Fig. 1. To simplify our
subsequent analysis, let us optimize the notation, as follows.
The stochastic LLG equation (5) in the film bulk is written as

A
(
∂2
x − κ2)n(x,q,ω) = h(x,q,ω), (22)

after linearizing transverse dynamics and Fourier transforming
it in the yz plane and time. Here,

κ2 ≡ q2 + H − (1 + iα)sω

A
. (23)

The stochastic boundary condition at x = d, Eq. (12), in this
notation is

A(∂x − κ ′)n(x,q,ω) = −h′(q,ω)(x = d), (24)

while ∂xn = 0 at x = 0. Here,

κ ′ ≡ i
α′sω
A

. (25)

Equations (22)–(25) now form a closed system of inhomo-
geneous linear differential equations, with source terms given
by stochastic fields h and h′. These are straightforward to solve
for n using Green’s functions. Substituting the solution for n

into Eq. (16), we find, after some algebra, the spin Seebeck
coefficient (21):

S = αα′s2

2π3A2d

∫ ∞

−∞
d2q

∫ ∞

−∞
dωω

×
∫ d

0
dxx

∣∣∣∣ cosh[κ(x − d)]

κ sinh(κd) − κ ′ cosh(κd)

∣∣∣∣
2

. (26)

Integrating over the longitudinal coordinate x, this finally
becomes

S = αα′s2

8π3A2d

∫ ∞

−∞
d2q

∫ ∞

−∞

dωω

|κ sinh(κd) − κ ′ cosh(κd)|2

×
[

sin2(κid)

κ2
i

+ sinh2(κrd)

κ2
r

]
, (27)

where κr (κi) is the real (imaginary) part of κ . Equation (27)
is our central results and the main departure point for the
subsequent analysis.

Let us, for convenience, define the following length scales:

ξ ≡
√

A

H
(28)

is the magnetic exchange length,

l′ ≡ α′

α
(29)

is the spin-pumping length (i.e., the F thickness at which
the monodomain Gilbert damping enhancement due to spin
pumping6 equals the intrinsic damping),

λ ≡
√

h̄A

skBT
(30)

is the thermal de Broglie wavelength (in the absence of applied
field), where T is the ambient temperature, and

l ≡ λ

α
(31)

is the decay length for thermal magnons in the bulk. In this
notation,

κ2 = q2 + 1

ξ 2
− 1 + iα

λ2

h̄ω

kBT
. (32)

V. QUASIPARTICLE APPROXIMATION

In the following, we are primarily interested in the thickness
d dependence of the spin Seebeck coefficient S, assuming
the the length-scale hierarchy λ 
 l′ 
 l. In YIG, for ex-
ample, taking14 4πMs ∼ 2 kG, A ∼ 1/2 × 10−6 erg/cm, and
α ∼ 10−4, we find the following lengths: (1) λ � 1 nm, at
room temperature, (2) l′ ∼ 100 nm, taking g↑↓ ∼ 1014 cm−2

from Ref. 17 and proportionately larger l′ with g↑↓ ∼ 5 ×
1014 cm−2 from Ref. 18 (g↑↓ is very sensitive to the preparation
and quality of the YIG|metal interfaces), (3) l � 10 μm, and
(4) ξ ∼ 10 nm at 1 kG (corresponding to typical magnetostatic
fields).

We start by performing integration over frequency ω in
Eq. (27) in the limit of low damping (both intrinsic and spin
pumping). In this case, the integrand is peaked at sinh(κd) ≈ 0,
corresponding to

ωn(q) = A

s

(
q2 + n2π2

d2
+ 1

ξ 2

)
, (33)

where n = 0,1,2,3, . . . labels magnon subbands [not to be
confused with unit vector n introduced in Eq. (4)]. These
resonances are well separated when their width is much smaller
than their spacing, allowing for a quasiparticle treatment of
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FIG. 2. (Color online) Integrand of the spin Seebeck coefficient,
Eq. (27), in arbitrary units, illustrating the first four quasiparticle
resonances, n = 0,1,2,3, according to Eq. (33), for a fixed q. We set
α = 10−4, α′ = 10−2 nm, q2 + ξ−2 = 1 nm−2, and d = 10 nm in the
main plot. The inset shows the essentially continuum spectrum when
d = 100 μm, keeping other parameters unmodified.

the energy integral. For the bulk damping, this condition is
α 
 1/d

√
1/λ2 − 1/ξ 2, for thermal magnons. Additionally,

the occupation of magnons is exponentially suppressed when
the temperature is smaller than the gap, i.e., kBT /h̄ � ω0 ≡
H/s. Therefore, we are interested in the opposite regime, when
the thermal de Broglie wavelength is smaller than the magnetic
exchange length, λ < ξ . Thus in the regime d 
 l, these
resonances are well-defined quasiparticle peaks corresponding
to monodomain precession (n = 0) and standing waves (n> 0)
along the longitudinal direction. See Fig. 2. This allows us
to evaluate the spin Seebeck coefficient by summing the
contributions from individual magnon modes, when d 
 l.

Expanding around ω0, the contribution from the lowest
energy resonance is

S0 = αα′

4π3d

∫ ∞

−∞
d2q

∫ ∞

−∞

dωω

(ω − ω0)2 + (α + α′/d)2ω2
,

(34)

which can be readily integrated over frequency:

S0 = αα′

4π2d

∫ ∞

−∞

d2q
(α + α′/d)[1 + (α + α′/d)2]

≈ α′/d
1 + l′/d

∫ ∞

−∞

d2q
(2π )2

, (35)

where we have assumed small damping, α + α′/d 
 1.
Similarly, we find for the n > 0 subbands:28

Sn ≈ 2α′/d
1 + 2l′/d

∫ ∞

−∞

d2q
(2π )2

. (36)

The total Seebeck coefficient in the quasiparticle approxima-
tion is thus

S = S0 +
∑
n>0

Sn. (37)

The wave vector q in integrals (35) and (36) should be bounded
by requiring that h̄ωn(q) < kBT , at which point our classical
treatment breaks down, as discussed in the next section. The

spurious ultraviolet divergence is eliminated by cutting off at
a total three-dimensional wave number, qc =

√
1/λ2 − 1/ξ 2,

corresponding to energy kBT . While a more careful quantum
treatment for large wave numbers is constructed in the next
section, we expect a crude cutoff to adequately capture the
behavior of the Seebeck coefficient, up to an overall factor of
order one.

Allow us to momentarily focus on the regime when d 	 λ,
where the quasiparticle peaks are dense (recovering three-
dimensional behavior), so that

S ≈
∑
n>0

Sn ≈ 2α′

1 + 2l′/d

∫
qc

d3q
(2π )3

= α′

1 + 2l′/d
q3

c

3π2
(38)

and, therefore,

S =
(

1

λ2
− 1

ξ 2

)3/2

×

⎧⎪⎪⎨
⎪⎪⎩

αd

6π2
, d 
 l′

α′

3π2
, d 	 l′

. (39)

That is, when the thickness of the ferromagnet is much smaller
or larger than spin-pumping length, the spin current scales
linearly with d or is d independent, respectively.

If the quasiparticle peaks are not dense, d ∼ λ, finite-size
effects are important, reflecting individual magnon subbands.
In the extreme low-temperature case when d 
 λ, only
monodomain precession along the longitudinal direction con-
tributes to the Seebeck coefficient: S ≈ S0. If the transverse
dimensions are also much smaller than λ, the full volume of the
(nano)magnet undergoes stochastic monodomain precession,
and

S = α′

V

1

1 + l′/d
, (40)

where we have retained only one mode associated with the
transverse momentum in Eq. (35). V here is the volume of the
F layer. This coincides with the spin Seebeck coefficient for a
monodomain obtained in Ref. 8 [defining (T1 + T2)/2 → TF ,
T2 → TN , and α′/d → α′, to match their notation].

Finally, for largest thicknesses d 	 l, the quasiparticles
are no longer well-defined (see inset of Fig. 2) and the
above analysis cannot be applied. Because the thickness is
beyond the magnon propagation length, only magnons within
a distance l from the F|N2 interface contribute to the spin
current, which should, therefore, be independent of thickness,
d, for a fixed thermal gradient, (T1 − T2)/d. Since, in this
regime, the magnon propagation length is the largest length
scale in the problem, we can send d → ∞ in Eq. (27), which
gives

S = αα′s2

8π3A2d

∫ ∞

−∞
d2q

∫ ∞

−∞

dωω

κ2
r |κ − κ ′|2 . (41)

The integrand, which can be evaluated numerically, is inde-
pendent of thickness, and, therefore, S ∝ 1/d, as expected.

VI. QUANTUM CROSSOVER

Our classical Langevin theory needs to be appropriately
modified when approaching magnon frequencies of h̄ω ∼
kBT . On the one hand, this is an important limit, as the
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spin transport is dominated by thermal magnons in our model.
On the other hand, the classical theory is inadequate for the
treatment of quantum fluctuations that dominate at high (on
the scale of the ambient temperature) frequencies.

To this end, we use a quantum-mechanical result24 for
the thermal spin current, which is exact for a tunneling
spin-exchange Hamiltonian at an F|N interface:29

js = −4kBδT α′
∫ ∞

ε0

dεεD(ε)β2 ∂nBE(βε)

∂β
, (42)

where D(ε) is the magnon density of states, nBE(x) ≡ (ex −
1)−1 is the Bose-Einstein distribution, β ≡ 1/kBT , and δT

is the temperature drop across the F|N interface (assuming
magnons are equilibrated to a uniform temperature T , such
that λ 
 d). This limit can be directly compared to our
Eqs. (21) and (27), by first sending α′ → 0 in the integrand
(thus reproducing the weak F|N contact and allowing for
the magnons in F to equilibrate with phonons) and then
sending α → 0 [such that the magnon spectral properties are
unaffected by Gilbert damping, as assumed in the derivation
of Eq. (42)]. The magnons are correspondingly equilibrated
to the average phonon temperature (T1 + T2)/2, such that we
identify δT = (T1 − T2)/2, in the present notation. According
to Eq. (38), our semiclassical spin current becomes in this limit

js → 2kB(T1 − T2)α′
∫

d3q
(2π )3

. (43)

This agrees with Eq. (42) in the limit ε 
 kBT , where

−
∫ ∞

ε0

dεεD(ε)β2 ∂nBE(βε)

∂β
→

∫ ∞

ε0

dεD(ε) ≡
∫

d3q
(2π )3

.

(44)

We conclude that the classical-to-quantum crossover can
be accounted for by inserting the factor

−εβ2 ∂nBE(βε)

∂β
=

[
βh̄ω/2

sinh(βh̄ω/2)

]2

≡ F (βh̄ω) (45)

in the energy integrand of Eq. (27), which effectively cuts off
the contribution from magnons with energy ε ≡ h̄ω 	 kBT .

VII. RESULTS

We summarize the spin Seebeck coefficient dependence on
the ferromagnetic layer thickness, when λ 
 l′ 
 l:

S(d) ∼ 1

2πλ2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α, d 
 λ

d/l, λ 
 d 
 l′

l′/l, l′ 
 d 
 l

l′/d, l 
 d

, (46)

assuming λ 
 ξ (or else the magnon transport is exponentially
frozen out). The four regimes correspond respectively to the
following physical situations: (1) Only the lowest magnon
subband is thermally active (d 
 λ); (2) quasi-3D subband
structure is activated, but damping is still dominated by
interfacial spin pumping (λ 
 d 
 l′); (3) bulk damping
overtakes spin pumping, but the magnetic film is still thinner
than the thermal magnon decay length, such that magnons
probe the full film width (l′ 
 d 
 l); and (4) bulk regime is

1 100 104 106
10 5

10 4

10 3

10 2

10 1 λ l l

d/λ

S
λ

2

FIG. 3. (Color online) Plot of the spin Seebeck coefficient,
Eq. (27), as a function of ferromagnet thickness d for λ = 1 nm,
ξ = 10 nm, l′ = 100 nm, and l = 10 μm. We use Eq. (37) (solid
curve on the left) and Eq. (41) (solid line on the right), which are
valid when d � l and d � l, respectively, when N1 is a poor spin sink
and N2 a perfect spin sink. To account for the classical-to-quantum
crossover, we have inserted factor (45) in the integrands of Eqs. (35)
and (36) [with ω → ωn(q)] and Eq. (41). The dotted curve shows
the enhanced spin Seebeck coefficient when also N1 is a perfect spin
sink (which increases the effective thermal bias between magnons
and electrons at the F| N2 interface).

finally established when the film is thicker than the magnon
decay length (l 
 d). To illustrate these crossovers, we plot
the spin Seebeck coefficient as a function of d in Fig. 3,
using lengths characteristic of YIG, which are consistent with
the above length-scale hierarchy. Notice that even though
ξ determines the magnon energy gap and the associated
Ginzburg-Landau correlation length in the classical theory, it
does not govern any prominent crossover in the function S(d).

We conclude that S(d) has nonmonotonic thickness depen-
dence, with the maximum value

S(max) ∼ α′

2πλ3
, (47)

attained at l′ � d � l, i.e., below the magnon decay length but
above l′, such that magnons equilibrate fully to the average
phonon temperature T̄ = (T1 + T2)/2 (d � l′) but still remain
coherent on the scale of d (d � l). This agrees with the result
obtained in Ref. 30. S(max) is proportional to the spin-mixing
conductance [see Eq. (20)] but is independent of the bulk
Gilbert damping (as the magnon quasiparticle structure is still
well resolved). According to Eq. (21), S(max) determines the
largest spin current emitted thermally by a film of magnetic
insulator, as a function of d, when subjected to a certain
temperature difference (for example, in a wedged magnetic
insulator coated by metallic contacts). If, on the other hand, a
well-defined temperature gradient is supplied (corresponding,
for example, to a certain phonon-dominated heat-flux density),
while thickness d is varied, the spin-current density js ∝ Sd

increases with d saturating at d � l (the magnon decay length):

j (max)
s

∣∣
fixed∂xT

∼ l′

2πλ2
kB∂xT , (48)
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which corresponds to the bulk regime. j (max)
s vanishes

when α′ → 0 (no spin pumping) or α → ∞ (no magnetic
dynamics).

It is interesting to ask how the above results would modify
if both N1 and N2 in our model (see Fig. 1) were perfect spin
sinks. For an inversion-symmetric structure (e.g., Pt|YIG|Pt),
spin currents at the two interfaces must be equal, js1 = js2 ≡
js . When d 	 l, we should recover the bulk limit (41), since
the magnons decay before traversing the full width of the
film (and thus the spin current at one interface should not be
sensitive to the boundary condition at the other). When d 
 l,
however, S0 and Sn entering Eq. (37) need to be modified.
To that end, we notice that the factor (1 + l′/d)−1 in Eq. (35)
reflects the difference between Tm,0, the effective temperature
of the magnons, and T2, the temperature of the electrons in N2:8

Tm,0 − T2 = αT̄ + (α′/d)T2

α + α′/d
= T1 − T2

2

1

1 + l′/d
. (49)

Similarly for the n > 0 subbands, the factor (1 + 2l′/d)−1

in Eq. (36) stems from the effective magnon-electron
temperature difference across the F|N2 interface of

Tm,n − T2 = T1 − T2

2

1

1 + 2l′/d
. (50)

When the bulk damping dominates over the interfacial spin
pumping, i.e., l′ 
 d (while still d 
 l), Tm,n → (T1 + T2)/2,
while in the opposite limit, i.e., d 
 l′, Tm,n → T2. The
magnon temperature thus becomes strongly skewed toward
the F| N2 interface for thinner ferromagnetic films, when N1 is
a poor spin sink (with electrons and magnons, therefore, being
essentially decoupled at the N1|F interface, for our purposes).
In the case when both N1 and N2 are perfect spin sinks, on
the other hand, the effective magnon-electron temperature
difference driving spin current is given simply by T̄ − T2 =
(T1 − T2)/2 for all subbands (when d 
 l). We account for this
increased thermal gradient by dropping the factor (1 + l′/d)−1

on the right-hand side of Eq. (35) and likewise (1 + 2l′/d)−1 in
Eq. (36). The corresponding enhancement of the spin Seebeck
coefficient reverses the trend in Eq. (46) at d � l′ to give

S(d) ∼ 1

2πλ2

⎧⎪⎨
⎪⎩

α′/d, d 
 λ

l′/l, λ 
 d 
 l

l′/d, l 
 d

, (51)

which is now monotonically decreasing with d, as plotted by
the dotted line in Fig. 3.

When the structure N1|F| N2 is not mirror symmetric
(either because the spin-mixing conductances or the spin-
sink characteristics are different), which we characterize by
different α′

1 and α′
2 spin-pumping parameters at the two

interfaces, we can repeat the above analysis for d 
 l, finding

Tm,0 − T2 = αT̄ + (α′
1/d)T1 + (α′

2/d)T2

α + α′
1/d + α′

2/d

= T1 − T2

2

1 + 2l′1/d
1 + (l′1 + l′2)/d

(52)

and

Tm,n − T2 = T1 − T2

2

1 + 4l′1/d
1 + 2(l′1 + l′2)/d

, (53)
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FIG. 4. (Color online) Plot of the spin Seebeck coefficient using
magnetic length scales as in Fig. 3 but calculated for a non-inversion-
symmetric N1|F| N2 structure with spin-pumping parameters α′

1 =
α′/10, α′

2 = α′, respectively, at the two interfaces (upper trace) and
α′

1 = α′, α′
2 = α′/10 (lower trace). Note that the former case is

intermediate between the two curves plotted in Fig. 3 (where the
solid curve corresponds to α′

1 = 0, α′
2 = α′ and the dotted curve to

α′
1 = α′

2 = α′).

where we defined the spin-pumping lengths l′i ≡ α′
i/α asso-

ciated with the left, i = 1, and right, i = 2, interfaces. We
thus generalize the spin Seebeck contributions (at the F|N2

interface) from different magnon subbands to

S0 ≈ α′
2

d

1 + 2l′1/d
1 + (l′1 + l′2)/d

∫ ∞

−∞

d2q
(2π )2

F [βh̄ω0(q)] (54)

and

Sn>0 ≈ 2α′
2

d

1 + 4l′1/d
1 + 2(l′1 + l′2)/d

∫ ∞

−∞

d2q
(2π )2

F [βh̄ωn(q)] (55)

in lieu of Eqs. (35) and (36), respectively. The asymptotic and
crossover trends are now given by (assuming λ 
 l′1,l

′
2 
 l)

S(d) ∼ 1

2πλ2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2/
(
α′

1
−1 + α′

2
−1)

d, d 
 λ

2/
(
l′1

−1 + l′2
−1)

l, λ 
 d 
 l′1
l′2/l, l′1,l

′
2 
 d 
 l

l′2/d, l 
 d

, (56)

which coincides with Eq. (51) when α′
1 = α′

2 but has an
additional shoulderlike feature at d ∼ (l′1 + l′2)/2. This feature
makes S(d) nonmonotonic when α′

1 < α′
2. In Fig. 4, we plot

the spin Seebeck coefficient for two asymmetric cases: (1)
α′

1 = α′/10, α′
2 = α′ and (2) α′

1 = α′, α′
2 = α′/10 (physically

corresponding to spin currents on two sides of a non-inversion-
symmetric N1|F| N2 structure, such as, Pd|YIG|Pt).

VIII. DISCUSSION

Our theory provides a minimalistic application of the LLG
phenomenology to the problem of the spin Seebeck effect,
yet disregards magnon-magnon interactions. These become
important at high temperatures, especially approaching the
Curie temperature. Magnon-phonon interactions are included
only insofar as a contribution to the total Gilbert damping.
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Elastic magnon scattering on impurities, which would manifest
as an inhomogeneous broadening of ferromagnetic-resonance
linewidth, may be an important impediment to the thermally
induced spin currents in disordered films. The bulk limit
of spin current, Eq. (48), is reduced by disorder, as well
as the magnon decay length describing the crossover to
the bulk regime. When the magnon mean free path l∗ is
shorter than our Gilbert damping decay length l, in particular,
we expect the effective decay length to be leff ∼ √

ll∗ (the
spin-diffusion length) and j (max)

s in Eq. (48) to be reduced
by a factor of l/ leff ∼ √

l/ l∗ (assuming that l′ 
 leff , such
that our length-scale hierarchy is unchanged). The Seebeck
coefficient behavior (46) [as well as Eq. (47)], however,
remain essentially intact up to the thickness d ∼ leff .

Finally, we want to comment on a possibility of non-
local magnetic relaxation. In this paper, we have assumed
that Gilbert damping is a local and isotropic tensor. The
locality would be a reasonable approximation if the damping
bottleneck was due to some local dynamic defects. In the
case of YIG,31 which is known for its highly coherent
elastic properties, nonlocality of the bulk magnetic relaxation
could significantly modify our findings. First of all, this
could introduce new phonon-dependent length scales into
the problem, which would show in the S(d) dependence.
Standard long-wavelength ferromagnetic resonance on thick
films would reveal damping α that could be very different from
that of short-wavelength thermal magnons relevant here. An
effective damping parameter α̃ of thermal magnons (which

may itself be thickness dependent) would result in the bulk
crossover thickness of l̃ ∼ λ/α̃ �= l. When d � l̃, we may still
invoke the first three regimes of our findings, Eq. (46) (with
α and l corresponding to the thermal-magnon inverse quality
factor and decay length, respectively, due to magnon-phonon
scattering), which should, furthermore, be indifferent to the
fact that the local temperature, Eq. (8), is not well defined
for highly coherent phonons. The reason for this is that, in
these regimes, when d is below the magnon decay length
l̃, only the average phonon temperature T̄ is relevant for our
theory. Our bulk regime, S(d) ∝ d−1, when d is larger than the
magnon decay length, would, however, have to be considerably
revised in the case of nonlocal magnetic relaxation, calling for
a rigorous quantum-kinetic theory.31

In summary, we have developed a minimal Landau-Lifshitz
theory of the longitudinal spin Seebeck effect, which calls
for its systematic experimental study for the temperature
and film-thickness dependence, which, in turn, may ne-
cessitate a more systematic microscopic quantum-kinetic
theory.
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