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Realization of stripes and slabs in two and three dimensions
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We consider Ising models in two and three dimensions with nearest neighbor ferromagnetic interactions and
long-range, power law decaying, antiferromagnetic interactions. If the strength of the ferromagnetic coupling J

is larger than a critical value Jc, then the ground state is homogeneous and ferromagnetic. As the critical value
is approached from smaller values of J , it is believed that the ground state consists of a periodic array of stripes
(d = 2) or slabs (d = 3), all of the same size and alternating magnetization. Here we prove rigorously that the
ground state energy per site converges to that of the optimal periodic striped or slabbed state, in the limit that J

tends to the ferromagnetic transition point. While this theorem does not prove rigorously that the ground state
is precisely striped or slabbed, it does prove that in any suitably large box the ground state is striped or slabbed
with high probability.

DOI: 10.1103/PhysRevB.88.064401 PACS number(s): 75.10.Hk, 05.50.+q, 75.70.Kw, 89.75.Kd

The spontaneous emergence of periodic states in trans-
lation invariant systems is still an incompletely understood
phenomenon. Even less well understood is the phenomenon
of translation symmetry breaking in only one direction,
that is to say, the formation of striped patterns in two
dimensions or slabbed patterns in three dimensions, which
we collectively refer to as stripes. Particularly interesting
is the formation of wide stripes, by which we mean that
stripes have a width much larger than the microscopic length
scales. Stripes of this kind are expected to display a sort
of universal phenomenology, which is in fact observed in a
variety of different systems, ranging from magnetic films,1–5 to
manganites,6 to high-temperature superconductors,7–11 metal-
oxide-semiconductor field-effect transistors (MOSFETs),12,13

polymer suspensions,14,15 twinned martensites,16,17 Coulomb
glasses,18 and many others.19–26

While there exist some rigorous examples of symmetry
breaking in two dimensions into doubly periodic crystalline
structures,27–30 we are aware of only one rigorous proof
of formation of periodic arrays of wide stripes in isotropic
two-dimensional systems: This is a system of in-plane spins
with four possible orientations interacting via a short range ex-
change plus the actual three-dimensional dipolar interaction.31

It would be beneficial to find more examples of this kind.
A simple and very popular model used to understand stripe
formation in the classical setting is a d-dimensional Ising
model with the following Hamiltonian:

H = −J
∑
〈x,y〉

(σxσy − 1) +
∑
{x,y}

(σxσy − 1)

|x − y|p , (1)

where J > 0 is the relative strength of the attractive exchange
interaction, the first sum ranges over nearest neighbor pairs
in Zd , d = 2,3, and the second over pairs of distinct sites
in Zd . Depending on the specific value of the exponent p,
the second term in the Hamiltonian can describe a Coulomb
(p = 1), a dipolar (p = 3), or a more general repulsive
interaction. Note that the Hamiltonian is normalized so that

the homogeneous ferromagnetic state has zero energy. The
question is to determine the ground state of the system, as the
parameters J and p are varied. In some limiting cases, it is easy
to identify the minimal energy states, e.g., if J is sufficiently
small, the ground state is the Néel antiferromagnet, as one
can prove by using reflection positivity.32 If p > d + 1, there
exists a critical value Jc(p), of the form

Jc(p) =
∞∑

y1=1

∞∑
y2,...,yd=−∞

y1(
y2

1 + · · · + y2
d

)p/2 ,

such that the homogeneous ferromagnetic state is the ground
state for J � Jc, and it is not the ground state for J < Jc.33

Note that J = Jc(p) is the value of the ferromagnetic strength
at which the surface tension of an infinite, isolated, straight
domain wall vanishes. The expected region where wide stripes
should occur is p � d + 1 if J � 1, and p > d + 1 if J � Jc.
This is the region that we call “universal,” in the sense that the
structures displayed by the ground state in this regime are large
compared to the lattice spacing and, therefore, their shape is
expected to be independent of the microscopic details of the
Hamiltonian. See Fig. 1.

In this paper, we report a recent advancement in the
understanding of the ground state phase diagram of model (1)
in the universal regime, for p > 2d. Before we state our
main results, let us introduce a few more definitions. Let
es(h) be the energy per site in the thermodynamic limit
of periodic striped configurations consisting of stripes all
of width h. We denote by h(J ) the optimal stripe width,
which can be obtained by minimizing es(h) over h ∈ N. For

p > d + 1, h(J ) turns out to be of the order (Jc − J )−
1

p−d−1

as J ↗ Jc. Let us denote by eS(J ) ≡ es(h(J )) the optimal
striped energy per site and by e0(J ) the actual ground
state energy per site in the thermodynamic limit. Note that
e0(J ) = 0 for J � Jc. Our main results can be summarized as
follows.
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FIG. 1. Ground state phase diagram as a function of the antiferro-
magnetic decay exponent p and of the ferromagnetic strength J . In the
leftmost region the ground state is the Néel antiferromagnetic state,
while in the rightmost region it is the homogeneous ferromagnetic
state. These two phases are rigorously known, while the rest of the
phase diagram remains to be understood. The light-gray shaded region
is the “universal regime,” where the ferromagnetic islands (droplets)
have a typical size much larger than the lattice spacing. The conjecture
is that the ground state is periodic and striped in the whole universal
regime. A partial proof of this fact is given in this paper.

Theorem. Let us consider model (1) with d = 2,3 and p >

2d. As J → Jc from below,

lim
J→Jc

e0(J )

eS(J )
= 1.

A few remarks are in order. The theorem says that
asymptotically, as we approach the ferromagnetic transition
line J = Jc(p), the actual ground state energy approaches the
optimal striped energy, which is a very strong indication of
the conjectured periodic striped structure of the ground state.
The proof comes with explicit error bounds on the difference
e0(J )/eS(J ) − 1, namely,

1 � e0(J )

eS(J )
� 1 + O

[
(Jc − J )

p−2d

(d−1)(p−d−1)

]
. (2)

More precisely, the proof shows that the density of corners
in the minimizing configuration is much smaller than (Jc −
J )d/(d−1), i.e., the average mutual distance between corners is
much larger than the typical stripe width h(J ). By corners here
we mean the points (d = 2) or edges (d = 3) where domain
walls bend by 90◦. The notion of corner and corner energy was
introduced in Ref. 33 and understood there to play an important
role for the case p > 2d: If widely separated from each other,
the corners give a finite, positive contribution to the energy
and, therefore, can be thought of as the elementary excitation
of the system, at least in some approximate sense. Our estimate
(2) implies that the ground state configuration, if restricted to a
suitable large window of side � � h(J ), with high probability
has no corners, i.e., with high probability it is exactly striped.
Similarly, we can show that with high probability these stripes
have widths all very close to h(J ).

The proof of the theorem is based on refined lower bounds
on the ground state energy. The details of the proof are lengthy
and will be given elsewhere.34 Here we explain the main
strategy behind the proof. These ideas may prove useful for
subsequent developments in this subject. The key steps are the
following.

(1) Representation of the energy in terms of droplets: These
are simply the maximal connected regions of negative spins,
whose boundaries are the standard low-temperature contours
of the nearest neighbor Ising model. The energy can be
written as a sum of droplet self-energies, plus a long-range
antiferromagnetic repulsion among different droplets.

(2) Localization of the droplet energy functional into
boxes Q of proper size, to be optimized over: By localization
we mean that we bound from below the original energy
of a generic droplet configuration in terms of a sum of
independent local energies, each depending only on the
restriction of the droplet configuration to the given box Q. Of
course, the nontrivial aspect of this localization bound is due
to the long-range nature of the antiferromagnetic potential.
The important fact is that our lower bound is sharp for striped
configurations, up to unimportant boundary corrections. On
top of that, we show that the localized energy of any droplet
with one or more corners is positive, irrespective of any details
of the configuration. Therefore, for the purpose of a lower
bound, corners can be eliminated in every box.

(3) Minimization of the corner-free configurations by the
method of block reflection positivity, introduced in Ref. 35 and
further developed in Refs. 31 and 36–38: Once the corners have
been eliminated, we are left with purely striped configurations,
whose energy can be further bounded from below by iterative
reflections across the straight domain walls. After repeated
reflections, we end up with periodic striped configurations,
and the proof is complete.

We believe that the ground state displays striped order also
for values p � 2d. However, our proof only works for p > 2d,
the reason being twofold: (i) The energy of an isolated corner
(d = 2) or of a trihedral vertex (d = 3) becomes infinite at
smaller values of p and, therefore, there is no obvious way
of identifying the local excitations of the system; and (ii) for
p < 2d the optimal striped energy per site is of the same
order as that of other putative ordered ground states, such as
checkerboard or columnar states, and, therefore, it is difficult
to exclude the emergence of other ordered structures on the
basis of local energy estimates.

In conclusion, we considered Ising models in two and three
dimensions with nearest neighbor ferromagnetic and power
law decaying antiferromagnetic interactions. We presented
rigorous bounds on the ground state energy and, in particular,
we showed that the actual ground state energy per site tends
to the one of the optimal periodic striped configuration, as
we approach the ferromagnetic transition line. Moreover, we
proved that the minimizing spin configurations are striped in a
suitable sense, namely, if restricted to finite windows of proper
size (much larger than the optimal stripe width), they all look
precisely striped with very high, explicitly estimated, proba-
bility. These are the most refined rigorous bounds up to now on
the ground state energy of the considered model, and are valid
both in two and in three dimensions. Our methods, which the
proof of the theorem is based on, combine the ideas of energy
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localization into boxes and of block reflection positivity, in the
context of isotropic systems with competing interactions in two
and three dimensions. We expect them to be crucial for further
developments in the subject and, in particular, for a proof of ex-
act, macroscopic, stripe ordering in two and three dimensions.
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