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On-chip cavity quantum phonodynamics with an acceptor qubit in silicon
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We describe a chip-based, solid-state analog of cavity-QED utilizing acoustic phonons instead of photons.
We show how long-lived and tunable acceptor impurity states in silicon nanomechanical cavities can play the
role of a matter nonlinearity for coherent phonons just as, e.g., the Josephson qubit plays in circuit QED. Both
strong coupling (number of Rabi oscillations �100) and strong dispersive coupling (0.1–2 MHz) regimes can be
reached in cavities in the 1–20-GHz range, enabling the control of single phonons, phonon-phonon interactions,
dispersive phonon readout of the acceptor qubit, and compatibility with other optomechanical components such
as phonon-photon translators. We predict explicit experimental signatures of the acceptor-cavity system.
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I. INTRODUCTION

Circuit-QED has revolutionized the field of cavity-QED
(cQED)1–3 providing a stable platform for light-matter inter-
action in the microwave regime along with large couplings
and solid-state integrability. Progress in the field has enabled
applications such as single microwave photon sources4 and
quantum logic gates3 on a chip. In an ideal crystal environment,
phonons may play a role analogous to photons, though they
propagate with the much slower speed of sound. That acoustic
phonons can be quantum coherent has been explored in a
number of architectures, allowing seminal experiments in
optomechanical cooling,5–10 trapping of phonons in phononic
band-gap cavities,6,10 photon translation via phonons,11,12

and indirect qubit-phonon coupling.13,14 What is missing to
complete the analogy for phonons is a nonlinear element
similar to an atom in cQED.

Such an element is possible, where an impurity transition
in a crystal (e.g., two-levels of a Si donor) couples directly
to confined phonons to form a hybridized state, which has
been referred to as a phoniton (in analogy with a polariton).15

The impurity-phonon interaction can be large due to a large
deformation potential: 〈ψs ′ |D̂ij |ψs〉 ∼ eV.16 The previously
proposed system15 utilizing an umklapp valley transition of
a donor in Si, however, requires very high frequencies (a
few hundred GHz) and can be difficult to integrate with
other phonon components. While other impurities such as
in diamond14 or in III–V semiconductors can offer smaller
frequencies, a practical system in silicon would be highly
desirable given recent demonstrations of high-Q cavities in
silicon nanostructures,10,17 silicon’s investment in materials
quality, and compatibility with CMOS technology and silicon
photonics.

In this paper we propose an alternative quantum circuit
element based on a single acceptor (such as B, Al, In)
embedded in a patterned silicon nanomembrane, and driven
by a long-wavelength phonon, λphonon � a∗

acceptor ∼ few nm,
compatible with opto/mechanical components.6,10 The ac-
ceptor two-level system (qubit), Fig. 1, has already been
proposed for quantum computing18 and is easily tunable in
the 1–50-GHz range by external magnetic field and also by
additional electric field or strain (allowing multiple qubit
choices). We show how the acceptor-cavity system allows
for both strong resonant coupling (where the qubit-phonon

coupling g is greater than the loss mechanisms of the qubit and
cavity, �qb, κcav, respectively) and strong dispersive coupling,
enabling the observability of a phonon vacuum Rabi splitting,
and quantum nondemolition (QND) measurement of the cavity
phonon number. Experimental signatures of the system are
given, via magnetic field and temperature dependence (for
T � 1 K), utilizing optical techniques.

II. ACCEPTOR QUBIT COUPLED TO CONFINED
PHONONS

Hole valence bands in Si. Holes in Si require a richer
physical picture16,19 (compared to positrons in QED). The
fourfold degeneracy [Fig. 1(a)] at the top of the valence
band (neglecting heavy-light hole splitting) corresponds to
propagation of particles of spin J = 3/2, reflecting the �8

representation of cubic symmetry. Relatively large spin-
orbit coupling implies also a twofold degenerate band (�7

representation), split off by an energy gap �SO � 45 meV.16

For shallow acceptor centers in Si (e.g., B, Al, In, etc.) the
ionization energy is EA ∼ �SO : thus, all valence bands will
play a role in the acceptor states. Still, the lowest acceptor
states remain fourfold degenerate since the acceptor spherical
(Coulomb) potential does not change the cubic symmetry of
the host crystal.16

A. Engineering the qubit levels

Two acceptor qubit arrangements are possible based on the
lifting of the fourfold ground-state degeneracy via external
fields. The related Hamiltonians are invariants of the cubic
symmetry group Oh = Td × I and time reversal16,19 and are
constructed from the momentum operator, kα = 1

i
∂

∂xα
+ e

c
Aα

(or the corresponding fields16) and the spin-3/2 operators
Jα, α = x,y,z. The Zeeman type interaction is given by16,19

HH = μB

{
g′

1 J H + g′
2

(
J 3

x Hx + c.p.
)}

, (1)

where c.p. is cyclic permutation of x,y,z; the renormalized
g values g′

1, g′
2 (μB is Bohr magneton), depending on the

acceptor bound states, fulfill the relations |g′
1| ≈ 1, |g′

2| 

|g′

1|.16,20,21 For a magnetic field Hz = (0,0,Hz) along the
crystal [0,0,1] growth direction one can choose the lowest two
Zeeman levels, |φ1〉 = |3/2〉, |φ2〉 = |1/2〉, as the qubit, which
is the primary focus of this paper [Fig. 2(a)]. The qubit energy
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FIG. 1. (Color online) Acceptor:Si nanomechanical-cavity
phoniton. (a) Hole valence bands in Si; fourfold degeneracy at the
band top (and of lowest acceptor states) corresponds to particles
of spin J = 3/2. (b) Ground-state splitting via external magnetic
field along the [0,0,1] direction; level rearrangement is via additional
strain. Strong coupling to a confined phonon mode and system
manipulation via electric static/microwave fields is possible (see
text). (c) Nanomechanical one-dimensional (1D) and 2D phonon
band-gap cavities reminiscent of already fabricated high-Q cavities
in a patterned Si membrane;6,10 an on-chip phonon waveguide allows
coupling to the acceptor-cavity phoniton system.

splitting δEH � μ0g
′
1H is tunable in the range ≈1–40 GHz

for H = 0.1–3 T. The qubic terms like ∼ g′
2J

3
x Hx lift the level

equidistancy: the outer splittings [Fig. 2(a)] are larger than the
middle one by 3g′

2
g′

1
� 0.09. For a field H tilted away from the

crystal axis the qubit splitting is weakly angle dependent.
Alternatively, a second qubit arrangement involves mechan-

ical stress in addition to the magnetic field. Stress lifts the
ground-state degeneracy only partially: e.g., for stress along

strain > Zeeman splitting
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FIG. 2. (Color online) Two possible level arrangements as ac-
ceptor qubits. (a) Splitting due to magnetic field along a crystal
direction (e.g., �H ||ẑ). Allowed and forbidden phonon transitions
and qubit phonon driving are shown. The qubit, {|1/2〉,|3/2〉}, is
coupled strongly to a confined phonon, and can be manipulated via
MWs. (b) Level splitting in presence of magnetic field and stress
along the ẑ direction, in the case of δEε > δEH . The alternate
qubit, {|−1/2〉,|1/2〉}, is decoupled from phonons (to first order).
The coupling and relaxation can be switched on via suitable electric
field in the same direction (see text).

the crystal ẑ direction [Fig. 1(c)], states |±3/2〉 and |±1/2〉
remain degenerate. Providing that the stress causes a splitting
larger than the magnetic field splitting, the levels rearrange
so that the lowest (qubit) levels will be |φ′

1〉 = |−1/2〉,
|φ′

2〉 = |1/2〉, Fig. 2(b). This forms an alternate “phonon
protected” qubit, decoupled from phonons to first order (the
phonon coupling can be switched on via electric field; see
below). The effect of strain, εαβ , is described by the Bir-Pikus
Hamiltonian:16

Hε = a′ Tr εαβ + b′ εxx J 2
x + d ′

√
3

εxy {JxJy}+ + c.p. (2)

Experimentally,20 the deformation potential constants for B:Si
are b′ � −1.42 eV, d ′ � −3.7 eV. Using Hε we estimate a
splitting of δEε ≈ 1–10 GHz for external stress of 105–106 Pa.
Such stress can be created in tensioned nanomembranes,
improving also the mechanical Q factor.9,22 A much larger
stress (�107 Pa) due to a nearby (random) crystal defect,23

or SiGe substrate results in a few hundred GHz splitting that
would suppress the qubit-phonon coupling.

The role of the electric field. For a relatively weak electric
field E the linear Stark effect is possible:

HE = pE√
3

(Ex{JyJz}+ + Ey{JzJx}+ + Ez{JxJy}+), (3)

since an ion impurity actually reduces the cubic symmetry
(Td × I ) to Td (and thus, there is no invariance under
inversion).16 The ground state splits to two doubly degenerate
levels; however, the HE does not commute with Jz for any
direction of the field E, leading to mixing of the Zeeman
states. The latter can be useful to switch on/off the phonon
coupling of the alternate qubit, {|−1/2〉,|1/2〉} [Fig. 2(b)],
provided the splitting δEE = 2pE |E| is of the order of that
due to stress, e.g., in the GHz range. The transition electric
dipole moment pE can be extracted from experiments: bulk
dielectric absorption measurements21 give pE � 0.26 D, with
D = 3.336 × 10−30 C m being the Debye unit for e.d.m. (this
is supported by single acceptor transport experiments23). Thus,
a splitting of 1 GHz requires an electric field |E|1Ghz �
3.85 × 105 V/m, achievable in nanodevices.24 Note, however,
that increasing the field (splitting) exponentially decreases the
qubit lifetime due to a (static field) acceptor ionization: for
δE = 1 GHz the lifetime is τion ≈ 12 s, while for �1.26 GHz
it is τion ≈ 12 ms, etc.24

B. Coupling acceptor to a phonon mode

While there is no direct coupling of phonons to electronic
spin, for the spin transitions of interest (e.g., 3/2 → 1/2) the
spin states are actually “compound” states of p-like Bloch
orbitals (spin 1) and electronic spin 1/2. Thus, coupling via
deformation (a phonon) of the crystal is possible due to
different orbital content of these states.

Here, we focus on the qubit {1 = |3/2〉,2 = |1/2〉} that
does not require static strain. The coupling to a phonon mode
is calculated by adding a quantized phonon field (see the
Appendix) in addition to any classical field. We consider cou-
pling to a plane-wave mode εvac ξ

(σ )
q e−iq·r with polarization

ξ
(σ )
q (transverse, σ = t1,t2, or longitudinal, σ = l) and energy

h̄vσ q, that proved to be a good estimation of coupling to modes
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TABLE I. Key parameters for circuit QED (Ref. 26) (one-dimensional cavity), quantum dot (QD) QED (Ref. 27) vs the {|3/2〉,|1/2〉} B:Si
phoniton in a patterned Si membrane (of thickness d = 200 nm) phononic band-gap cavity; we show calculations for maximal coupling at
frequencies of 1, 4, 8, and 14 GHz, for cavity volume V = dλ2 and Q = 105, using bulk T1-limited linewidth �. The limiting frequency for
strong dispersive coupling is reached at ≈21 GHz, when χ = �; dressed state’s resolution parameters are comparable to that in circuit QED.

Parameter Symbol Circuit QED Quant. dot QED B:Si (1 GHz) B:Si (4 GHz) B:Si (8 GHz) B:Si (1 T)

Resonance freq. ωr/2π 5.7 GHz 325 THz 1 GHz 4 GHz 8 GHz 14 GHz
Vac. Rabi freq. g/2π 105 MHz 13.4 GHz 0.41 MHz 3.27 MHz 9.26 MHz 21.4 MHz
Cavity lifetime 1/κ,Q 0.64 μs, 104 5.5 ps, 1.2 × 104 15.9 μs, 105 4 μs 2 μs 1.14 μs
Qubit lifetime 1/� 84 ns 27 ps 386.5 μs 6 μs 0.75 μs 0.14 μs
Critical atom no. 2�κ/g2 �8.6 × 10−5 �1.87 �4.9 × 10−5 �2 × 10−4 �3.9 × 10−4 �6.9 × 10−4

Crit. phonon no. �2/2g2 �1.6 × 10−4 �9.4 × 10−2 �5.1 × 10−7 �3.2 × 10−5 �2.6 × 10−4 �1.4 × 10−3

No. Rabi flops 2g/(κ+�) ∼98 ∼0.8 ∼79 ∼99 ∼64 ∼34
Cavity volume V 10−6 λ3 0.037 λ3 0.148 λ3 0.296 λ3 0.52 λ3

Wavelength λ 5.26 cm 921 nm 5400 nm 1350 nm 675 nm 385 nm
Dispersive coupling χ ≡ g2/� 17 MHz 0.04 MHz 0.33 MHz 0.93 MHz 2.14 MHz
Peaks’ resolution 2χ/� ∼6 ∼199 ∼25 ∼9 ∼4
No. of peaks 2χ/κ ∼70 ∼8 ∼16 ∼23 ∼31

with realistic boundary conditions.15 Moreover, the acceptor
transition, unlike the {P/Li}:Si valley transition,15,25 is less
sensitive to the details of the confined phonon mode since the
dipole approximation applies (as λphonon � a∗

B ; see Table I).
The relevant matrix element is proportional to the “phonon
vacuum field” strain, εvac ≡ ( h̄ q

2ρV vσ
)1/2; here ρ, V , and vσ are

the mass density, mode volume, and sound velocity in Si. The
coupling is obtained [for an acceptor placed at maximum strain
of the cavity unlike in Ref. 15 where the (inter)valley transition
requires placing the impurity at maximum displacement]:

g3/2,1/2
σ = d ′

(
h̄ω12

8ρh̄2Vv2
σ

)1/2

⎧⎪⎨
⎪⎩

cos θ,σ = t1

i cos 2θ,σ = t2

−i sin 2θ,σ = l

⎫⎪⎬
⎪⎭ e−iϕ, (4)

where the polar angles θ,ϕ of the wave vector q are with
respect to H||ẑ. Thus, the mode t2 has a maximum along
the phonon cavity (θ ≈ π/2); Fig. 1(c). An alternative is to
have an in-plane magnetic field Hx along the crystal [1,0,0] x̂

direction (the latter is chosen to be along the phonon cavity):
here, both modes t1,t2 (now at θ ≈ 0) are preferably coupled
to the cavity. The maximal coupling g

3/2,1/2
max,σ scales as ∝√

q/V ,
as expected for a (1s → 1s) transition. For a cavity volume
V � dλ2 (d = 200 nm is the Si membrane thickness) we get
coupling in the range g/2π � 0.4–21 MHz for the frequencies
of 1–14 GHz (Table I). The other allowed transition |3/2〉 →
|−1/2〉 (at twice the qubit frequency) is well detuned, while
the transitions |3/2〉 → |−3/2〉, |1/2〉 → |−1/2〉 are phonon
forbidden [Fig. 2(a)].

Generally, when the in-plane magnetic field has some angle
θ0 with the cavity (crystal x axis), all transitions are allowed.
Also, the qubit coupling to a preferably confined cavity phonon
will change with the angle. As a qualitative example, consider
a plane-wave transverse mode t1 (or t2) along the x axis: then,
the coupling will change in the same way as in Eq. (4), with
θ replaced by θ0. This allows manipulation of the qubit-cavity
coupling by in-plane rotation of the magnetic field.

For the alternate qubit, {|−1/2〉,|1/2〉}, the stress and
magnetic field are parallel along the ẑ direction [Figs. 1(c)
and 2(b)]. Here the coupling is zero in the absence of

electric field and can be switched on using nonzero electric
field Ez in the same direction. The qubit-phonon coupling
is given by the same Eq. (4) multiplied by a coupling
factor, a function of the splitting ratios rh ≡ δEH

δEε
, re ≡

δEE

δEε
: f (rh,re) = (

√
z+z− − 1)/

√
(1 + z+)(1 + z−), with z± =

[1 ± √
(1 ∓ rh)2 + r2

e ∓ rh]2/r2
e . For a fixed magnetic field,

|f (rh,re)| → 0 for small or large re. Thus, e.g., for rh =
0.5–0.9 this factor reaches ≈0.25–0.65 for some optimal
value of the electric-field splitting, re � 1, which allows strong
qubit-cavity coupling.

These numbers show that there is an experimental strong-
coupling “window” for the alternate qubit, {|−1/2〉,|1/2〉},
introduced above. For example, for a qubit (Zeeman) splitting
of δEH = 1 GHz and a strain splitting δEε = 1.43 GHz (ratio
of rh ≡ δEH

δEε
= 0.7) the coupling factor reaches a maximal

value of f (rh,re) � 0.4 for δEE = 1 GHz, i.e., re = 0.7.
Analogously, for a qubit splitting of δEH = 2 GHz, this
electric-field splitting leads to the same coupling factor of 0.4,
giving a possibility for a strong acceptor-phonon coupling, and
a relatively long (static field) ionization lifetime.

C. Strong coupling in an acceptor-phonon cavity system

Qubit relaxation rate. The qubit relaxation in the cavity is
bounded at low temperatures by the bulk phonon spontaneous
emission rate. For the {|3/2〉,|1/2〉} qubit, at a magnetic field
tilted by θ0 from the crystal axis, we find

�3/2,1/2(θ0) = (h̄ω12)3

20πρh̄4

{
d ′2(cos2 2θ0 + 1)

[
2/3v5

l + 1/v5
t

]

+ b′2 sin2 2θ0
[
2/v5

l + 3/v5
t

]}
. (5)

Here the contribution of longitudinal phonons is only a few
percent (using speed of sound in Si: vl � 1.7 × vt = 8.99 ×
103 m s−1). The results in Table I are for θ0 = 0. Note that the
coupling in this case can be switched off (e.g., for a t1 mode
along the x̂ direction, at θ0 = π/2) while the relaxation cannot.

For the alternate qubit, {|−1/2〉,|1/2〉}, the relaxation rate
is �1/2,1/2 = |f (rh,re)|2 �3/2,1/2(0), and can be switched on/off
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simultaneously with the electric field, making it suppressed for
zero electric field, as is the coupling.

The calculated relaxation times from Eq. (5) (Table I)
are comparable to that in bulk Si at low B:Si doping (8 ×
1012 cm−3 or 500 nm acceptor spacing), where T echo

1 � 7.4 μs
and T echo

2 � 2.6 μs were measured28 at 45 mK. Note that the
single acceptor linewidth (∼1/T ∗

2,single) is the proper metric to
compare g with, not the inhomogeneously broadened 1/T ∗

2
obtained from ensemble measurements.29 While T2 = 2T1 for
phonons alone, it may be limited by electric-dipole coupling
to impurities,18 magnetic hyperfine coupling to nearby nuclei
29Si (expected to be small for holes), or charge noise (though
here the acceptor is far away from surfaces or metal gates);
both T1, T2 may improve for defect-free, low-doped,20,21,30

and isotopically enriched samples;29,31 T1 may also improve
in nanomembranes (d 
 λ) due to phase-space suppression
(less available modes).

Phonon cavity loss. In the one-dimensional
(1D)/2D-phononic band-gap Si nanomembranes considered
here [Fig. 1(c)], the main cavity loss mechanism is due
to (fabrication) symmetry-breaking effects, coupling the
cavity mode to unconfined modes, and also due to cavity
surface defects.17 Bulk losses are negligible in the few-GHz
range.15,17 In this range the cavity Q factor, Q ≡ κ/ω, can
reach 104–105, or higher.10,17

Calculated rates in Table I show that strong resonant
coupling is possible: g12 � �12,κ in a wide frequency
range, allowing ∼30–100 Rabi flops. The low-frequency
limit of 1 GHz is for T � 20 mK, unless an active cavity
cooling is performed10 (see, however, Sec. III B below). A
high-frequency limit of ∼200 GHz is set by the different
energy scaling of g and �. At high frequencies the Q factor
will decrease; still, e.g., at 14 GHz, even Q = 103 leads to
strong coupling.

D. Observing the phonon vacuum Rabi splitting

A suitable observable is the averaged phonon cavity field
amplitude |〈b̂r〉|, which we have calculated, Figs. 3(a)–3(d),
taking into account the first two excited dressed states (a
“two-state approximation”32). In Fig. 3(a) we show the field
amplitude 〈b̂r〉 spectrum (ωr is the cavity frequency) for
ωa = ωr = 8 GHz vs external phonon driving frequency ωd as
two Rabi peaks at ωr ± g. Figure 3(c) shows the “anticrossing
picture” of the spectra at different acceptor detuning �ar =
ωa − ωr . Here the left resonance width and height are �L =
sin2 �0� + cos2 �0κ and cos �0, and for the right resonance
one replaces sin �0 ↔ cos �0, with tan(2�0) = 2g/�ar. For
large detuning, the surviving resonance acquires the dispersive
shift g2/|�ar|, as expected.

Another option to observe the dressed resonance(s) is to
sweep the qubit detuning (via the magnetic H field) while
keeping the probe input frequency ωd in resonance with the
phonon cavity. As seen from Fig. 3(c), the field amplitude will
exhibit a resonant dip, shown for different cavity frequencies,
ωr = 1,4,8,14 GHz; Fig. 3(d). For large detuning the reso-
nance is approximately a Lorentzian with a full width at half
maximum, {fwhm} ≈ g2/κ (a weak dependence on the qubit
relaxation � is suppressed for strong coupling).

With increasing temperature the Rabi peak will be
broadened34 by the factor 1 + 2nth and the peak height will
decrease by 2pst − 1, where pst = (1 + nth)/(1 + 2nth) is the
ground-state occupation number. This is relevant for small
thermal phonon number, nth ≡ 1/(exp[h̄ωr/kBT ] − 1), at
low T (nth � 0.2; see, e.g., Ref. 35). For ωr/2π = 8 GHz
the Rabi peaks will be seen at 350 mK, but are negligible
at 1 K [Fig. 3(b)]. At higher temperatures T , when
nth � 1, the lowest dressed states become saturated and
in addition two broadened peaks will appear inside the
Rabi doublet, Fig. 3(a) (not shown), roughly at frequencies
δωd � ±g[

√
n + 1 − √

n], n ≈ nth. These peaks will
dominate over the Rabi peaks,35 providing a signature of
strong coupling even beyond 1 K.

III. MEASUREMENT VIA STANDARD TECHNIQUES

Ideally, one would probe the acceptor-cavity system
with phonons. Direct phonon creation and detection should
be possible via acoustic transducers.36 As in a circuit
QED experiment,37 phonon correlations (antibunching)
can be measured even without making single phonon
counters. We note that other measurement approaches are
possible via, e.g., hole transport23,24 or scanning tunneling
microscope (STM) probe spectroscopy.38 However, here we
consider an approach with single phonon sensitivity using a
phonon-to-photon translator (PPT)33 that can be realized on
the same nanomembrane (with a simultaneous photon/phonon
band gap; see Figs. 1(c) and 3(e).

A. Phonon-photon translator

Such a device is based on optomechanical nonlinearities
that couple in the same band-gap cavity [Fig. 3(e)] two photon
modes (â,âp) and a phonon mode b̂, via optomechanical
coupling hom.33 For photons in the near-infrared range (λopt ≈
1500 nm) the PPT allows one to couple a quantum optical
input/output channel (of frequency ω/2π � 200 THz) to a
phonon channel (with ωd/2π � 4–8 GHz), and the coupling
between the fields is enhanced by the auxiliary photon pump
channel, pumping at the sideband resolved frequency ωp =
ω − ωd − � (at pump detuning � = 0 it is at resonance
with the red sideband of mode ω). The coherent nature of
the photon-to-phonon translator is described by the effective
beam-splitter type Hamiltonian:39

Hb−s = −�b̂†b̂ + Gom(â†b̂ + âb̂†), (6)

where Gom ∝ homE0 is the enhanced effective coupling,
proportional to the pump field amplitude E0. The weak-
coupling regime, Gom < κopt is needed to avoid total optical
reflection, and optimal translation (close to 100%) takes place
at a matching condition33 Gom =

√
κoptκmech (κopt, κmech,

are the couplings of the PPT to respective photon/phonon
waveguides).

The PPT allows for optical techniques7,10 to be applied to
phononics components. We show in Fig. 3(e) an experimental
schematic to measure the phonon cavity field 〈b̂r〉 via a
homodyne/heterodyne optical measurement.34 To be able to
scan around the mechanical resonance ωr , one needs optical
frequency resolution (at ω/2π ≈ 200 THz) better than the
dressed state width, (� + κ)/2π ≈ 30–150 kHz; Table I.
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200 100 100 200

0.2

0.2

0.4

0.6

0.8

30 20 10 0 10 20 30

0.2

0.4

0.6

0.8

40 45 50 55 60 65

0.05

0.10

0.15

60 40 20 20 40 60

0.05

0.10

0.15

(c)(b)(a)

(d) (e)

Γ + κ

2

ωr = 8 GHz
T = 0

1 K

350 mK

250 mK

20 mKb b

b

ωa − ωr(GHZ)

fwhm ≈ g2/κ

ωd ωr

ωa
4
8
14

ωd = ωr

= 1(GHz)

On-chip

2g = 18.5MHz

2(ωd − ωr)/(Γ + κ) 2(ωd − ωr)/(Γ + κ)

p p
ωL = ω −ωd

r

r

r

FIG. 3. (Color online) Intracavity field 〈b̂r〉 vs frequencies and temperature. (a) Rabi splitting in the strong resonant coupling regime as a
function of a phonon signal sweep. (b) Rabi peaks vs temperature (approximate). At nth � 1 broad peaks will appear inside the Rabi doublet (not
shown) due to transitions to higher dressed states (see text). (c) “Anticrossing picture” at qubit-phonon cavity detuning, �ar (curves vertically
shifted for clarity); for large positive detuning (upmost curve), the left resonance is dispersively shifted by −g2/�ar while the right resonance
is suppressed as sin �0 (see text). (d) An alternative to determine the Rabi splitting: the absorption spectrum as a function of qubit detuning
(via a magnetic field sweep). (e) Schematics of an optical homodyne/heterodyne experiment (see also Ref. 7) utilizing a phonon-to-photon
translator (PPT).33

B. Acceptor “ionization” via optical photons

In the on-chip PPT implementation ideally no photon
should enter the phoniton system, to avoid acceptor “ion-
ization.” However, since the photon-to-phonon translator is
realized on the same Si nanomembrane (implying a simul-
taneous photonic/phononic band-gap structure) it is natural
to ask how 200 THz photons may affect the qubit lifetime
when or if they reach the acceptor. The corresponding photon
energy of 0.82 eV is less than the indirect band gap in
Si (�Egap = 1.1 eV) and thus interband transitions are not
possible. Thus, one considers an “ionization process” of a
bound hole going to the continuous spectrum an analog of
the ionization of an (anti)hydrogen atom (the corresponding
cross section is thus rescaled). Correspondingly, one uses
the rescaled values: a free hole mass mA � 0.23 me in Si,
an effective Bohr radius aeff

A = e2Z
2[4πε0εr ]EA

, with the acceptor
ionization energy for B:Si, EA ≈ 0.044 eV, and screening
factor Z � 1.4. The total cross section is

σphot = 32π

3

h̄6

c
√

2mAm3
A

[
aeff

A

]5
E2.5

f (Ef + EA)

1

[4πε0εr ]
, (7)

where Ef = h̄ω − EA is the final (free) hole energy, and
c = c0/

√
εr is the speed of light in Si (εSi

r � 11.9). Since

EA 
 Ef , the total cross section is suppressed as ∝1/E3.5
f (a

final-state energy suppression). Given nc photons in a cavity
volumeV � dλ2 the acceptor lifetime is τphot = 2V/(nccσphot)
for a maximum photon-acceptor overlap. Particularly, this may
limit the ability to perform active photon (sideband) cooling of
the phononic cavity (similar to Ref. 10) with an acceptor inside
it. However, the estimated ionization cross section for B:Si is
small, σphot ≈ 8.6 × 10−23 m2: for ten photons in the cavity,
at maximum photon-acceptor overlap, one gets an ionization
lifetime of 12 μs. Notice that by placing the acceptor close to a
node of the photon cavity, the ionization lifetime can increase
considerably.

C. Strong dispersive coupling and phonon number states

A strong dispersive coupling, χ ≡ g2/�ar, is reachable
as per Table I. Since �ar � 10g (dispersive regime) and
g2/�ar�relax � 1 (good resolution of phonon numbers), re-
solving the number states |n〉 in the phononic cavity would
be possible. In the dispersive regime one can apply two tones
(as in circuit-QED26): here, one tone is a phonon probe at ωd ,
slightly detuned from the resonator [Fig. 3(e)]. The second
(spectroscopic) tone, at ωsp, is driving some of the dressed
transitions around the acceptor frequency, at ωa + (2 n + 1)χ ,
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via electric microwaves (MWs), similar to a manipulation
of individual nitrogen-vacancy centers14 (for B:Si a stronger
MW coupling21,28 is expected compared to nitrogen-vacancy
centers). Thus, one could observe the fine spectral structure of
the dressed cavity-acceptor system, predicted by Ref. 40 in a
different context, by measuring the phonon (photon) reflection
while sweeping the MW tone ωsp.

IV. DISCUSSION AND APPLICATIONS

We have introduced a system that allows for on-chip
manipulation of coherent acoustic phonons via coupling to
acceptor qubit states in a nanomechanical cavity. Hybridization
of the phonon-acceptor system and strong dispersive coupling
are possible with comparable parameters to circuit-QED26

and far surpassing semiconductor QD QED.27 The cavity
phoniton can be incorporated in more complex networks
such as with phonon-photon interfaces to photonics,10,33 and
in arrays of phonitons for engineered many-body phonon
devices.15,41 From the perspective of qubits,18,42 the isolated
acceptor provides a potentially robust two-level system for
quantum information processing. Our system offers an avenue
for phonon dispersive readout of acceptor qubits and the
potential for spin qubit-to-photon conversion in silicon.

APPENDIX: ACCEPTOR COUPLED TO A PHONON MODE

The impurity-acoustic phonon interaction,16 H ac
e,ph(r) =∑

ij D̂ij ε̂ij (r), may lead to a strong-coupling regime (g >

�qb,κcav) even for cavity effective volume of few tens15 of ∼λ3.
Qualitatively, the large coupling can be traced from the much
smaller band gap (∼ eV) in the “Si vacuum” as compared to
QED (∼106 eV).

We account for the acceptor coupling to a quantized phonon
field starting from the Bir-Pikus Hamiltonian, derived for a
uniform classical strain field, Eq. (1) (see main text). For low-
energy acoustic phonons the interaction Hamiltonian Ĥph has

the same form with the strain operator ε̂ij (r) = 1
2 ( ∂ui

∂rj
+ ∂uj

∂ri
)

expressed via the quantized mechanical displacement:

u(r) =
∑
q,σ

(uqσ (r) bqσ + u∗
qσ (r) b†qσ ). (A1)

The mode normalization is∫
d3r u∗

qσ (r)uqσ (r) = h̄

2ρ ωqσ

, (A2)

so that b
†
qσ creates a phonon in the mode (q,σ ) with energy

h̄ωqσ (ρ is the material mass density) in a mode volume V .
The vector q denotes a collective index of the discrete phonon
mode defined via the phonon cavity boundary conditions and
mode volumeV . Similar to cavity QED,34 the phonon-acceptor
coupling h̄gs ′s

qσ ≡ 〈s ′; qσ |Hph|s〉 enters in a Jaynes-Cummings
Hamiltonian (see, e.g., Ref. 15):

Hg ≈ h̄gs ′s
qσ (σ+

s ′sbq,σ + σ−
s ′sb

†
q,σ ), (A3)

where we only retain the resonant cavity phonon, and σ+
s ′s ≡

|s ′〉〈s| refers to the relevant acceptor transition.
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