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Atomistic study of soft-mode dynamics in PbTiO3
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Ferroelectric PbTiO3 occupies a special place among ferroelectric materials owing to its unique status as
a prototype displacive ferroelectric. However, while PbTiO3 undoubtedly provides one of the best examples
of displacive phase transitions, several experimental and theoretical findings seem to suggest a certain degree
of order-disorder mechanism associated with the phase transition. While multiple efforts have been undertaken
to better understand the nature of the phase transition in this classic ferroelectric, the subject still remains
controversial. Here we develop a force field from first principles to study soft mode dynamics in PbTiO3 from
an atomistic viewpoint. Our computations indicate the presence of order-disorder mechanism in the vicinity of
the phase transition in this classic displacive ferroelectric.
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PbTiO3 is regarded as a model ferroelectric perovskite with
mostly displacive first-order phase transition associated with
softening of the relevant phonons. A microscopic explanation
of the mode softening mechanism was proposed by Cochran 1

and derives its origin from the competition between the short-
range interaction which stabilizes the paraelectric phase and a
long-range interaction which stabilizes the ferroelectric phase.
Near the Curie point the short- and long-range interactions
compensate each other in such a way that the frequency of a
transverse optical (TO) phonon approaches zero.

Interestingly, while PbTiO3 indeed provides one of the
best example of the displacive phase transition associated with
softening of polar mostly underdamped modes, the possibility
of an additional excitation associated with order-disorder
mechanism has been considered in the literature.2–7 However,
despite considerable efforts towards a better understanding of
the soft mode dynamics and nature of the phase transition in
this material,2,7–18 the issue remains controversial. In fact, the
most recent experimental study concludes that PbTiO3 con-
stitutes a clean example of soft-mode-driven ferroelectric
system.18

The static permittivity of the ferroelectrics with displacive
first-order phase transition is expected to follow the Curie-
Weiss law ε(0)−1 = C(T − T0). Here C is a constant and
T0 is the temperature associated with the divergence of the
static permittivity. Using the Lydanne-Sachs-Teller formula19

one can relate the static permittivity to the frequency of polar
modes which yield the Curie-Weiss law for the frequency of the
soft TO mode: (h̄ωs)2 = As(T − T0), where As is a constant.
However, in the case of PbTiO3 the T0 obtained from the static
and dynamical measurements are not the same and could be
10 K apart.10,15,16,20 Typically, T0 found from the dynamical
measurements are lower than those obtained from the static
one.10,15 It was proposed that this discrepancy between the
static and dynamical T0 could be due to the presence of the
so-called “central” mode which is typically associated with
the order-disorder mechanism.15 However, except for Ref. 2
this central mode has not been observed experimentally, and
is generally not expected to exist in materials with sharp and
underdamped modes such as PbTiO3.

As experiments probing mode softening mechanisms are
quite challenging18 the atomistic insight from first-principles
calculations becomes critical in providing the answers to

the fundamental questions regarding the nature of the phase
transitions and soft mode dynamics in PbTiO3. At zero
Kelvin, density functional theory based computations have
been successfully used to study dynamical properties of
PbTiO3.21,22 However, finite temperatures studies of these
systems do not exist at present. The purpose of this paper is to
fill up this gap and provide an atomistic first-principles view on
the nature of the phase transition and the soft mode dynamics
in PbTiO3. More precisely, in this paper we aim: (i) to
develop a first-principles force field that allows simultaneously
accurate description of both static and dynamical properties
of PbTiO3; (ii) use this force field to study the dynamics
of the TO modes in a wide range of temperatures; and
(iii) provide an atomistic first-principles-based insight into
the open questions and controversies regarding this classic
ferroelectric.

We begin by developing the first-principles parametrization
of a force field for PbTiO3 on the basis of the effective
Hamiltonian.23–26 The degrees of freedom for the Hamiltonian
are local soft modes which are proportional to the dipole
moment of a unit cell, homogeneous and inhomogeneous
strain variables. The Hamiltonian includes a local mode self
energy (harmonic and unharmonic contributions), a long-range
dipole-dipole interaction, a short-range interaction between
local modes, an elastic energy, and the interaction between
the local modes and strains.23,25,26 The critical differences of
our parametrization are the following: (i) The polar distortions
are defined as the distortions from the ideal positions in the
tetragonal state of PbTiO3 rather than from the eigenvector of
the interatomic force-constant matrix; (ii) the first-principles
energies of tetragonal, orthorhombic, and rhombohedral
phases are explicitly included in the parametrization through
the parameters that couple the local mode and local strain;
(iii) all the short-range interaction parameters are computed
directly. Furthermore, we center the local mode on the Pb site
since the largest polar distortion in the unit cell is associated
with the Pb. The local strain is centered on the Ti site. This
parametrization accurately reproduces the Born-Oppenheimer
first-principles energy landscape associated with the chosen
distortions. However, the subspace associated with these dis-
tortions does not necessarily provide an accurate description of
the dynamical properties which require parametrization based
on the eigenvector(s) of the dynamical matrix. The critical
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question then is: Is it possible to achieve a simultaneously
accurate description of the static and dynamical properties of
ferroelectric perovskites at a finite temperature? And if yes,
what is the route?

To answer these questions we compute zero temperature
frequencies of the A1(TO1) and E(TO1) modes in the tetrago-
nal state using the force field of the effective Hamiltonian.
This is done by solving the equations of motion for the
zone-center soft mode analytically. The force acting on the
mode is computed from the Taylor expansion of the zone-
center effective Hamiltonian24 E = ku2 + α′u4 + γ ′(u2

xu
2
y +

u2
yu

2
z + u2

zu
2
x) up to the harmonic order in the vicinity of the

tetragonal minimum. Here ux , uy , and uz are the components of
the soft mode, while u = |u|. k, α′ and γ ′ are the first-principles
parameters. Prime indicates that parameters are renormalized
to include the coupling with strain.24 We obtain the following
frequencies ωA1(T O1) =

√
− 4κ

m
and ωE(T O1) =

√
− κγ ′

mα′ , where
m is the mass of the local mode. The mass can now be
parametrized using first principles ωA1(T O1). This completes
the set of the first-principles parameters which we will
denote as the “static” one. The static parameters, however,
underestimate the first principles ωE(T O1) by 12%. This is
the direct consequence of the aforementioned problem of
simultaneous description of static and dynamical properties
by the effective Hamiltonian. Interestingly, there exists a way
to resolve the issue. It can be shown that it is possible to
exactly match the first principles ωE(T O1) without affecting
the description of any ground state properties by recomputing
only two parameters of the effective Hamiltonian. These are
the two coupling coefficients between the local mode and
local strain. This slightly modified set of parameters will be
referred to as “dynamical.” The complete set of all parameters
is listed in Table I. To obtain the parameters we have used local
density approximation to density functional theory (DFT) as
implemented in the VASP package.27,28 The calculations were
carried out on 5- and 40-atom cells using the plane-wave basis
truncated at 600 eV. For some calculations linear-response
density functional perturbation theory computations were
used. Table II gives a comparison between the predictions
of the effective Hamiltonian, DFT computations, and some
available experimental data and demonstrates the accuracy of
parametrization.

To study the static and dynamical properties of PbTiO3

at finite temperatures we used both sets of parameters
in the framework of classical molecular dynamics (MD).

TABLE I. First-principles parameters for PbTiO3 in atomic
units using the notations of Ref. 26. Static parameters are given in
parenthesis.

On-site κ2 0.01722 α 0.02635 γ −0.01382

j1 −0.01290 j2 0.04077
Intersite j3 0.00289 j4 −0.00235 j5 0.00350

j6 0.00018 j7 0.00045

Elastic B11 4.74599 B12 1.86162 B44 1.39531

Coupling B1xx −0.66101 B1yy −0.07801 B4yz −0.04681
(−0.68134) (−0.13289)

Other Z∗ 9.147 ε∞ 8.715 m 58.5

TABLE II. Some ground state properties of PbTiO3 as obtained
from DFT, effective Hamiltonian (Heff), and experiment (Exp).
The ∗ indicates that the energy is estimated from the Curie point.
The experimental data are reported for room temperature and taken
from Ref. 29 for PS , from Ref. 10 for c/a, and from Ref. 13 for
frequencies.

�ET �EO �ER c/a PS ωE(T O1) ωA1(T O1)

(K) (K) (K) (μC/cm2) (cm−1) (cm−1)

DFT −668.4 −564.6 −533.1 1.044 75.2 73.9 139.5
Heff −690.7 −539.5 −502.8 1.041 82.1 73.9 139.5

(−690.7) (−567.8) (−536.0) (1.039) (81.9) (64.9) (139.5)
Exp −760.0∗ 1.06 75.0 87.5 148.5

Simulations were done for 20 × 20 × 20 supercell (40 000
particles) with periodic boundary conditions applied along all
three directions to simulate bulk system. Static properties were
simulated using the annealing technique with the temperature
step of 5 K (0.5 K in the vicinity of the phase transition)
within the NPT ensemble. For each temperature step we
used 40 000 MD steps. To access the dynamical properties
at finite temperatures at a quantitative level we simulated
the complex dielectric response of PbTiO3 in the THz
frequency range following the approach of Ref. 30 with
one critical difference. In the present simulations the NPT
ensemble is used throughout the entire run (2.1 ns) to simulate
a free standing sample. We found that, in agreement with
experimental studies, the complex dielectric responses are
well fitted with the model of damped harmonic oscillator30

which allows one to obtain the intrinsic mode frequencies ωi ,
damping parameters γi , and the oscillator strength �Si . Here
index i refers to different modes.

Figure 1(a) reports the tetragonality c/a and spontaneous
polarization P as a function of temperature as obtained from
the simulations. We first notice that both sets of parameters
yield similar static properties. Furthermore, the simulations
predict first-order-like phase transition with TC = 605 ±
5(625 ± 5) K as determined from static dielectric constant in
annealing calculations. Note, that throughout the paper we will
quote the data obtained with dynamical set of parameters,
while the data from calculations using a static set of parameters
will be given in parenthesis. Interestingly, we find that there ex-
ists a narrow region of temperatures in the vicinity of the phase
transition where the polarization exhibits drastic fluctuations
in both magnitude and direction [see Fig. 1(b)]. This region
is estimated31 to be 601–620(625–645) K and associated with
polarization rotation, disappearance, and reappearance. Note
that the region is inclusive of the temperatures associated with
the polarization fluctuations as obtained from both cooling and
heating simulations. This behavior seems to suggest that there
may exist an order-disorder component to the phase transition
as was proposed in Refs. 2–7. Note that the order-disorder
character here refers to the dynamics of the phase transition.
More specifically, it implies that the soft mode has a diffusive,
rather than propagating, character which is associated with
large thermal hopping motion between multiple states.32 To
gain further insight we have followed the time evolution
of the polarization during 2.1 ns for a few temperatures in
the vicinity of the phase transition. The computational data
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FIG. 1. (Color online) (a) Dependence of the tetragonality c/a (left y axis) and polarization (right y axis) on the temperature for both static
and dynamical sets of parameters. (b) Dependence of the Cartesian components of polarization on the temperature in the vicinity of the phase
transition as obtained from calculations with the dynamical set of parameters. Arrows indicate the large fluctuations in polarization. (c) The
time evolution of the Cartesian components of the polarization at T = 603 K as obtained from a 2.1 ns MD run using the dynamical set of
parameters. (d) The probability distribution n(P) of the Cartesian components of the polarization at T = 603 K as obtained from data given in
panel (c). n(Pβ ) gives the fraction of the total simulation time spent in a state Pβ , where β refers to Cartesian coordinates.

for the polarization components are given in Fig. 1(c) and
demonstrate large-amplitude thermal hopping between the
states associated with different polarizations. The probability
distribution for the polarization components computed from
such a run is given in Fig. 1(d). The presence of multiple peaks
unambiguously demonstrates the order-disorder mechanism
associated with this temperature. Similar data were obtained
for some other temperatures inside the region associated with
large polarization fluctuations and also from an additional set
of Monte Carlo simulations.

To gain further insight into the dynamics of the phase
transition as well as the soft mode dynamics in general, we
computed the complex dielectric response of PbTiO3 in a
wide range of temperatures. An example of our computational
data for the real and imaginary parts of the dielectric response
is given in Fig. 2. In agreement with Ref. 30, we find that the
data in the paraelectric phase can be well fitted with the model
of a single damped harmonic oscillator. In the ferroelectric
phase two uncoupled oscillators representing the modes of
E and A1 symmetries are sufficient to describe the response.
Furthermore, we find that except for a very narrow region in the
vicinity of the phase transition the modes are underdamped.

Our data for the dependence of the intrinsic frequency of
the soft mode(s) on the temperature are given in Fig. 3(a).

In the paraelectric phase, the frequency of the soft TO
mode follows the Curie-Weiss law with T0 = 591 ± 0.6(620 ±
1.5) K. Interestingly, this “dynamic” T0 slightly below the
“static” T0 = 597 ± 6(624 ± 7) K obtained from the static
dielectric response computations suggesting that in the vicinity
of the phase transition the order-disorder mechanism may
become sufficiently strong to contribute to the static dielectric
constant. More specifically, the frequency of the thermal
hopping between different states becomes comparable or
higher than the frequency of the soft displacive mode.
The possibility of such crossover between displacive and
order-disorder mechanisms has been previously suggested in
Refs. 2,5, and 7. The difference between the “static” and
“dynamic” T0 is in qualitative agreement with the most recent
experimental finding that reported 12 ± 15 K.18 The order-
disorder mechanism is usually associated with the presence
of the central mode. We were unable to directly observe
the central mode due to computational limitations. However,
the frequency of such a mode can be estimated from the
inverse lifetimes associated with different states in Figs. 1(c)
and 1(d). We find that at T = 603 K the inverse lifetime
is of the order of GHz, consistent with the frequency of
the central peak in Ref. 2. It should also be stressed that
our data for the soft mode frequencies are in remarkable
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FIG. 2. (Color online) The real (a) and imaginary (b) parts of the complex dielectric response in PbTiO3 for a few temperatures. Symbols
represent the computational data, while solid lines provide the fit with a damped harmonic oscillator model.

agreement with the most recent experimental measurements
of Ref. 18, which further confirms the accuracy of our
model.

In the ferroelectric phase the frequency of the A1(TO1)
mode follows the Curie-Weiss law w2 = A(T − T

f

0 ) with
T

f

0 = 615 ± 1.5(644 ± 3) K. We find that in agreement with
Ref. 7 T

f

0 is higher than TC . For the E(TO1) mode we observe
that it follows the modified Curie-Weiss law w2 = A(T −
T

f

0 )q with q = 0.27(0.23). Thus the temperature evolution
of the soft mode frequency suggests that in the range of
temperatures (T0 : T

f

0 ) there exist multiple minima in the free
energy of PbTiO3 as consistent with the first-order character of
its phase transition. This finding in combination with our direct
observation of the thermal hopping between these minima
in the range of temperatures 601–620(625–645) K indicates
that the phase transition in PbTiO3 exhibits an order-disorder
component.

Figure 3(b) gives computational data for the damping
parameter γ associated with the modes investigated as a
function of temperature. It should be noted that the temperature
evolution of the damping parameter in PbTiO3 is somewhat
controversial. In the seminal works by Burns and Scott8,9 it was
concluded that in the ferroelectric phase the soft TO modes
are underdamped with the damping constant diverging as the
Curie point approaches. In a later study,11 it was proposed
that the observed divergence of the damping is a consequence
of the frequency dependence of the damping parameter. Such
frequency dependence of the damping parameter, however,
turned out to be controversial as it was demonstrated that
the right-angle Raman results can be fit very well using
a model of frequency independent damping.12 In the most
recent experimental study the damping parameter has shown
only a very small variation with the temperature in the cubic
phase.18 We observe that, in agreement with Refs. 9 and 12,
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FIG. 3. (Color online) (a) The soft mode frequency as a function of temperature as obtained using dynamical and static set of parameters.
The lines indicate the Curie-Weiss fit discussed in the text. Note, that temperatures taken from Ref. 18 were shifted as T = T − �TC , where
�TC is the difference between the experimental and computational TC . (b) Damping parameter as a function of temperature.
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the damping parameter diverges in the vicinity of the phase
transition. We find that the frequency independent damping
provides an excellent fit to our computational data on the
complex dielectric response (see Fig. 2 for an example). To
gain further insight into the controversy regrading the fre-
quency dependence of the damping parameter we performed
additional calculations in which an ac electric field with a small
amplitude and different frequencies is applied to the supercell
at a constant temperature T = 800 K. In these simulations
we found that within the error of the computational data the
damping is independent of the frequency. Therefore, our data
suggest that the damping is independent of the frequency and
diverges at the Curie point. It is likely that the divergence of the
damping parameter is related to the increased or even dominant
contribution from relaxational (order-disorder) mode since
it occurs in the temperature range associated with this
mode.

In summary, we have proposed a route to first-principles
parametrization of force fields for ferroelectric perovskites
which yields simultaneously accurate descriptions of both
static and dynamical properties of the material. The case of
classic ferroelectric PbTiO3 was considered. The computa-
tional data indicated that, while the ferroelectric transition is
driven by the soft mode, there exists a narrow temperature
region in the vicinity of the Curie point associated with the
order-disorder mechanism.
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