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From the Aharonov-Bohm effect to general relativity, geometry plays a central role in modern physics. In
quantum mechanics, many physical processes depend on the Berry curvature. However, recent advances in
quantum information theory have highlighted the role of its symmetric counterpart, the quantum metric tensor.
In this paper, we perform a detailed analysis of the ground state Riemannian geometry induced by the metric
tensor, using the quantum XY chain in a transverse field as our primary example. We focus on a particular
geometric invariant, the Gaussian curvature, and show how both integrals of the curvature within a given phase
and singularities of the curvature near phase transitions are protected by critical scaling theory. For cases where
the curvature is integrable, we show that the integrated curvature provides a new geometric invariant, which like
the Chern number characterizes individual phases of matter. For cases where the curvature is singular, we classify
three types (integrable, conical, and curvature singularities) and detail situations where each type of singularity
should arise. Finally, to connect this abstract geometry to experiment, we discuss three different methods for
measuring the metric tensor: via integrating a properly weighted noise spectral function or by using leading-order
responses of the work distribution to ramps and quenches in quantum many-body systems.
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Understanding the geometry and topology of quantum
ground state manifolds is a key component of modern many-
body physics. For example, it has become standard practice
to characterize topological phases by their Chern number,
defined as the integral of Berry curvature over a closed
manifold in parameter space. Examples of this include the
quantum Hall effect,1,2 topological insulators,3,4 integer and
half-integer spin chains,5,6 and many others. Nonzero Berry
curvature is typically associated with broken time-reversal
symmetry, either explicitly by external coupling to a time-
reversal breaking field or implicitly by splitting the ground
state manifold into different sectors, each of which breaks
time-reversal symmetry.4,7

However, in addition to the Berry curvature, which de-
scribes the flux of Berry phase within the ground state
manifold, another important quantity is its symmetric coun-
terpart, the quantum (Fubini-Study8) metric tensor, which
describes the absolute value of the overlap amplitude between
neighboring ground states.9 This metric plays an important role
in understanding the physics of quantum many-body ground
states10,11 and is at the heart of current research in quantum
information theory.12–14 For instance, the diagonal components
of the quantum metric tensor are none other than fidelity
susceptibilities, whose scaling in the vicinity of quantum phase
transitions, including topological phase transitions, is an object
of great interest.15,16

The purpose of this paper is to understand the quantum
geometry of a simple model, the spin- 1

2 XY chain in a
transverse field. For this integrable model, we solve the
geometry and topology of the ground state manifold as
a function of three parameters: transverse magnetic field,
interaction anisotropy, and spin rotation about the transverse
axis. Using a standard trick from Riemann geometry, we
analyze the three-dimensional metric by taking a series of
two-dimensional cuts. For cuts along which the Riemannian
manifold is regular, we identify the shape of the manifold

and show that the shape of each phase is protected against
symmetry-respecting perturbations by critical scaling theory
of the metric tensor. For cuts along which the manifold is
singular, we identify and classify the singularities. As with
the other cuts, we demonstrate that the singularities are robust
against a variety of modifications to the low-energy theory.
We see three types of geometric singularities: integrable,
conical, and curvature singularities. Finally, we detail general
circumstances where each type of singularity will arise.

Given the importance of the quantum metric tensor in
understanding the properties of ground state manifolds, it
is surprising that there have been no direct experimental
measurements of the metric tensor to date. Therefore, at the
end of the paper, we discuss several different proposals for
experimentally measuring the components of the metric tensor.
The first method is based on the direct representation of the
metric tensor through the noise spectral function, generalizing
a recent proposal by Neupert et al.17 for measuring the metric
tensor in noninteracting Bloch bands. The second method
relates the metric tensor to a measurement of the leading
nonadiabatic contribution to the excess heat for square-root
ramps (see also Refs. 18 and 19). The third method similarly
identifies the metric with leading nonadiabatic corrections
to energy fluctuations for generic linear ramps. Finally, the
fourth method is based on analyzing the probability of doing
zero work in single or double quenches, which is related
to the time average of the well-known Loschmidt echo.20

Using these techniques, the full many-body metric tensor
is, at least in principle, experimentally accessible.21 We note
that these measurement proposals do not rely on many of
the geometric notions discussed elsewhere in the paper, so
those primarily interested in measuring the metric can skip
directly Sec. IV. We also note that the metric tensor can be
readily extracted numerically as a nonadiabatic response of
physical observables to imaginary-time ramps,18 by directly
evaluating overlaps of the ground state wave functions at
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slightly different couplings23 or through numerical integration
of imaginary-time noise spectra of the generalized forces.24,25

The rest of this paper proceeds as follows. In Sec. I, we
introduce the metric tensor and show its relation to the Berry
connection operators. In Sec. I A, we describe how the Euler
characteristic, curvature, and other geometric invariants are
obtained from this metric. As a useful example, in Sec. I C
we explicitly solve for these quantities for the case of the
integrable quantum XY model in a transverse field. In Sec. I D,
we show how to visualize the metric manifold by mapping to
an isometric surface embedded in three dimensions. These
shapes motivate us to define invariant integrals consisting
of the contribution to the Euler characteristic within a given
phase. We solve this exactly for the XY model, then, in Sec. II,
we argue based on critical scaling of the metric tensor that the
geometric integrals remain unchanged for all models in the
same universality class. To further understand the geometry of
these Riemann manifolds, we classify three types of singularity
in the Gaussian curvature that can occur in the vicinity of
phase transitions: integrable (Sec. III A), conical (Sec. III B),
and curvature (Sec. III C) singularities. Abstracting away from
the XY model, we detail situations under which each type
of singularity should arise. Finally, in Sec. IV we discuss
different methods for measuring the quantum metric in terms
of a more traditional condensed matter measurement of noise
correlations, as well as through real-time ramps and quenches
of the system parameters as is more relevant to isolated
cold-atom experiments.

I. GEOMETRY OF THE GROUND STATE MANIFOLD

Consider a manifold of Hamiltonians described by some
coupling parameters �λ. A natural measure of the distance
between the ground state wave functions |ψ0〉 separated by
infinitesimal d�λ is9

ds2 = 1 − |〈ψ0(�λ)|ψ0(�λ + d�λ)〉|2 =
∑
μν

χμνdλμdλν, (1)

where χμν is the geometric tensor

χμν = 〈ψ0|←−∂μ∂ν |ψ0〉 − 〈ψ0|←−∂μ |ψ0〉〈ψ0|∂ν |ψ0〉, (2)

with ∂μ ≡ ∂
∂λμ . As noted by Provost and Vallee,9 this tensor is

invariant under arbitrary λ-dependent U (1) gauge transforma-
tion of the ground state wave functions.

Strictly speaking, Eq. (1) utilizes only the real symmetric
part of χμν , which defines the metric tensor associated with
the ground state manifold:

gμν = Re[χμν] = χμν + χνμ

2
. (3)

However, in another seminal work,5 Berry introduced the
notion of geometric phase (a.k.a. Berry phase) and the
related Berry curvature, which is given by the imaginary
(antisymmetric) part of the geometric tensor:

Fμν = −2 Im[χμν] = i(χμν − χνμ) = ∂μAν − ∂νAμ, (4)

where Aμ = i〈ψ0|∂μ|ψ0〉 is the Berry connection within the
ground state manifold. The Berry phase is just a line integral of
the Berry connection or, by Stokes theorem, a surface integral

of the Berry curvature:

� =
∮

∂S

�A · d�λ =
∫

S

FμνdSμν, (5)

where dSμν is a directed surface element.
In this work, we will be primarily interested in the metric

tensor gμν . One simple physical interpretation of the metric
tensor is that it sets natural units, allowing one to compare
different physical parameters. For example, if we consider
the ground state manifold as a function of magnetic field
and pressure, one can ask how one Tesla compares to one
Pascal. In the absence of a simple single-particle coupling,
the method for scaling these quantities to compare them is
not obvious. However, the metric tensor provides a natural
answer by allowing one to compare the effects of these
couplings on the ground state fidelity. Rescaling the units by
the corresponding diagonal components of the metric tensor,
a.k.a. the fidelity susceptibilities, one sets natural units for
different couplings. Therefore, one Tesla can be compared to
one Pascal by comparing the “dimensionless” couplings after
rescaling dλμ → dλμ/

√
gμμ.

A. Geometric invariants of the metric tensor

Underlying the classification of most topological phases is
the fact that the Berry curvature satisfies the Chern theorem,26

which states that the integral of the Berry curvature over a
closed two-dimensional manifold M in the parameter space
is 2π times an integer n, known as the Chern number:∮

M
FμνdSμν = 2πn. (6)

Physically, this theorem reflects the single valuedness of the
wave function during adiabatic evolution: imagine splitting
M into “upper” and “lower” surfaces. To maintain single
valuedness, the Berry phases obtained by integrating the Berry
curvature over the upper and lower surfaces can only be
different by a multiple of 2π .

While the Berry curvature and its associated geometry
are certainly of great interest in modern condensed matter
physics, the metric tensor gμν also plays an important role.
This tensor defines a Riemannian manifold associated with
the ground states, and it is interesting to similarly inquire
about its geometry and topology. In particular, the shape of the
Riemannian manifold defines a different topological number,
given by applying the Gauss-Bonnet theorem27 to the quantum
metric tensor:

1

2π

[∫
M

K dS +
∮

∂M
kgdl

]
= χ (M), (7)

where χ (M) is the integer Euler characteristic describing the
topology of the manifoldMwith metric gμν . The two terms on
the left side of Eq. (7) are the bulk and boundary contributions
to the Euler characteristic of the manifold. We refer to the first
term

χbulk(M) = 1

2π

∫
M

K dS (8)

and the second term

χboundary(M) = 1

2π

∮
∂M

kgdl (9)
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as the bulk and boundary Euler integrals, respectively. These
terms, along with their constituents [the Gaussian curvature
(K), the geodesic curvature (kg), the area element (dS), and
the line element (dl)] are geometric invariants, meaning that
they remain unmodified under any change of variables. More
explicitly, if the metric is written in first fundamental form as

ds2 = Edλ2
1 + 2F dλ1dλ2 + Gdλ2

2, (10)

then these invariants are given by28

K = 1√
g

[
∂

∂λ2

(√
g 	2

11

E

)
− ∂

∂λ1

(√
g 	2

12

E

)]
,

kg = √
gG−3/2	1

22,
(11)

dS = √
gdλ1dλ2,

dl =
√

Gdλ2,

where kg and dl are given for a curve of constant λ1. The
metric determinant g and Christoffel symbols 	k

ij are

g = EG − F 2, (12)

	k
ij = 1

2gkm(∂jgim + ∂igjm − ∂mgij ), (13)

where gij is the inverse of the metric tensor gij .
As we will see, in general the bulk and the boundary

terms are not individually protected against perturbations for
an arbitrary manifold M. A major purpose of the current
work is to demonstrate that if the parameter space manifold
terminates at a phase boundary, however, then not only is the
sum in Eq. (7) protected against various perturbations, but so
is each term individually. Thus, for example, the bulk Euler
integral [Eq. (8)] can be used for classification of geometric
properties of different phases. This geometric invariant is in
general different from the Chern number, and can be nontrivial
even in the absence of time-reversal symmetry breaking.

While the Gauss-Bonnet theorem has a higher dimensional
generalization known as the Chern-Gauss-Bonnet theorem,29

in this work we will focus only on the two-dimensional
version. We emphasize that the dimensionality here is that
of parameter space; the physical dimensionality of the system
can be arbitrary. The choice of parameters is also arbitrary,
and is usually dictated either by experimental accessibility,
symmetry properties of the system, or other related considera-
tions. Choosing appropriate parameters for studying geometric
properties of the phases is therefore similar to choosing
parameters defining the phase diagram.

B. Defining the geometric tensor through gauge potentials

It can be convenient to express the geometric tensor through
the Berry connection operators Aμ = i∂μ associated with the
couplings λμ, which one can think of as gauge potentials in
parameter space. These gauge operators are formally defined
through the matrix elements

Amn
μ = i〈m|∂μ|n〉, (14)

which implicitly depend on the U (1) phase choice for each
energy eigenstate |n〉 at each �λ. If the basis dependence of
�λ is expressed through a unitary rotation of some parameter-

independent basis

|n(�λ)〉 = Unm(�λ)|m〉0,

then the gauge potentials can be written as

Aμ = iU †∂μU. (15)

The operator Aμ generates infinitesimal translations of
the basis vectors within the parameter space. For instance,
if spatial coordinates play the role of parameters, then the
corresponding gauge potential is the momentum operator.
If the parameters characterize rotational angles, the gauge
potential is the angular momentum operator.

The ground state expectation value of the gauge operator is
by definition the Berry connection

Aμ = 〈ψ0|Aμ|ψ0〉. (16)

The geometric tensor is the expectation value of their covari-
ance matrix

χμν = 〈ψ0|AμAν |ψ0〉c
≡ 〈ψ0|AμAν |ψ0〉 − 〈ψ0|Aμ|ψ0〉〈ψ0|Aν |ψ0〉. (17)

More explicitly, the components of the metric tensor and
the Berry curvature are expressed through the connected
expectation value of the anticommutator and the commutator
of the gauge potentials, respectively:

gμν = 1
2 〈ψ0|AμAν + AνAμ|ψ0〉c, (18)

Fμν = i〈ψ0|AμAν − AνAμ|ψ0〉. (19)

Although we will be interested only in the ground state
manifold for the remainder of this paper, we briefly comment
that the definitions above can be extended to arbitrary
stationary or nonstationary density matrices. For example,
with a finite-temperature equilibrium ensemble, one can define
Fμν = i Tr(ρthermal[Aμ,Aν]).

In Sec. I C, we will explicitly calculate the gauge potentials
of the quantum XY chain. Here, we comment on a few of
their general properties. First, we note that gauge potentials
are Hermitian operators. This follows from differentiating
the identity 〈n(�λ)|m(�λ)〉 = δnm with respect to λμ, or more
directly from their definition in terms of unitaries [Eq. (15)].
Also, the gauge potentials satisfy requirements of locality.
In particular, if the Hamiltonian can be written as the sum of
local termsH = ∑

i hi and �λ represent global couplings within
this Hamiltonian, then the geometric tensor is extensive.30 In
particular, this implies that fluctuations of the gauge potentials
are also extensive, which is a general property of local
extensive operators. Similarly, if �λ represent local (in space)
perturbations, then the geometric tensor is generally system
size independent, so that Aμ is again local. As usual, various
singularities, including those breaking locality, can develop
in gauge potentials near phase transitions. Finally, we point
out that if λμ is a symmetry of the Hamiltonian, i.e., if the
Hamiltonian is invariant under λμ → λμ + δλμ, then all gauge
potentials Aν are also invariant under this symmetry.

064304-3



KOLODRUBETZ, GRITSEV, AND POLKOVNIKOV PHYSICAL REVIEW B 88, 064304 (2013)

C. Metric tensor of the quantum XY chain

As our primary example, we consider a quantum XY chain
described by the Hamiltonian

H = −
∑

j

[
Jxsx

j s
x
j+1 + Jysy

j s
y

j+1 + hsz
j

]
, (20)

where Jx,y are exchange couplings, h is a transverse field,
and the spins are represented as Pauli matrices sx,y,z. It
is convenient to reparametrize the model in terms of new
couplings J and γ as

Jx = J

(
1 + γ

2

)
, Jy = J

(
1 − γ

2

)
, (21)

where J is the energy scale of the exchange interaction and
γ is its anisotropy. We add an additional tuning parameter φ,
corresponding to simultaneous rotation of all the spins about
the z axis by angle φ/2. While rotating the angle φ has no
effect on the spectrum of H , it does modify the ground state
wave function. To fix the overall energy scale, we set J = 1.

The Hamiltonian described above can be written as

H(h,γ,φ) = −
∑

j

[s+
j s−

j+1 + H.c.]

− γ
∑

j

[eiφs+
j s+

j+1 + H.c.] − h
∑

j

sz
j . (22)

Since the Hamiltonian is invariant under the mapping γ →
−γ , φ → φ + π , we generally restrict ourselves to γ � 0,
although we occasionally plot the superfluous γ < 0 region
when convenient. This model has a rich phase diagram,31,32

as shown in Fig. 1. There is a phase transition between
paramagnet and Ising ferromagnet at |h| = 1 and γ 	= 0. There
is an additional critical line at the isotropic point (γ = 0)
for |h| < 1. The two transitions meet at multicritical points
when γ = 0 and |h| = 1. Another notable line is γ = 1,
which corresponds to the transverse-field Ising (TFI) chain.
Finally, let us note that there are two other special lines γ = 0
and |h| > 1 where the ground state is fully polarized along
the magnetic field and thus h independent. Thus, this line is
characterized by vanishing susceptibilities including vanishing

FIG. 1. Ground state phase diagram of the XY Hamiltonian
[Eq. (22)] for φ = 0. The rotation parameter φ modifies the Ising
ferromagnetic directions, otherwise maintaining all features of the
phase diagram. As a function of transverse field h and anisotropy γ ,
the ground state undergoes continuous Ising-type phase transitions
between paramagnet and ferromagnet at h = ±1 and anisotropic tran-
sitions between ferromagnets aligned along the X and Y directions
(X/Y -FM) at γ = 0. These two types of phase transition meet at
multicritical points, which are described in detail in Ref. 31.

metric along the h direction. As we discuss in Sec. III D,
such state is fully protected by the rotational symmetry of the
model and can be terminated only at the critical (gapless) point.
The phase diagram is invariant under changes of the rotation
angle φ.

Rewriting the spin Hamiltonian in terms of free fermions
via a Jordan-Wigner transformation, H can be mapped to an
effective noninteracting spin- 1

2 model33 with

H =
∑

k

Hk,

(23)

Hk = −
(

h − cos(k) γ sin(k)eiφ

γ sin(k)e−iφ −[h − cos(k)]

)
.

This mapping yields a unique ground state throughout the
phase diagram by working in a particular fermion parity
sector;34 none of the conclusions below will change if the other
sector is chosen in cases when the ground state is degenerate.
A more general analysis involving the non-Abelian metric
tensor17,35 is outside the scope of this work.

The ground state of Hk is a Bloch vector with azimuthal
angle φ and polar angle

θk = tan−1

[
γ sin(k)

h − cos(k)

]
. (24)

To derive the components of the metric tensor, we start by
considering the gauge operators introduced in Sec. I B: Aμ ≡
i∂μ. If we consider the transverse field h, we see that the
derivative of the ground state |gsk〉 is

∂h|gsk〉 = ∂hθk

2

(− sin
(

θk

2

)
eiφ/2

cos
(

θk

2

)
e−iφ/2

)
= −∂hθk

2
|esk〉. (25)

The same derivation applies to the anisotropy γ since changing
either γ or h only modifies θk and not φ. Thus, we find

Aλ = 1

2

∑
k

(∂λθk)τ y

k , (26)

where λ = {h,γ } and τ
x,y,z

k are Pauli matrices that act in the
instantaneous ground/excited state basis, i.e., τ z

k |gsk〉 = |gsk〉,
τ z
k |esk〉 = −|esk〉. Similarly, for the parameter φ, we find that

Aφ = −1

2

∑
k

[
cos(θk)τ z

k + sin(θk)τ x
k

]
. (27)

In terms of these gauge potentials, the metric tensor and
Berry curvature can be written as (see Sec. I B)

gμν = 1
2 〈{Aμ,Aν}〉c, Fμν = i〈[Aμ,Aν]〉. (28)

In the case of the XY model, the metric tensor reduces to

ghh = 1

4

∑
k

(
∂θk

∂h

)2

, gγ γ = 1

4

∑
k

(
∂θk

∂γ

)2

,

ghγ = 1

4

∑
k

∂θk

∂h

∂θk

∂γ
, gφφ = 1

4

∑
k

sin2(θk), (29)

ghφ = gγφ = 0.

Although we will not be interested in the Berry curvature
in this work, we show the corresponding expressions for
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completeness:

Fhφ = −1

2

∑
k

∂θk

∂h
sin(θk),

(30)

Fγφ = −1

2

∑
k

∂θk

∂γ
sin(θk), Fhγ = 0.

The expressions for the metric tensor can be evaluated
in the thermodynamic limit, where the summation becomes
integration over momentum space. It is convenient to divide
all components of the metric tensor by the system size and deal
with intensive quantities gμν → gμν/L. Then, one calculates
these integrals to find that

gφφ = 1

8

⎧⎨
⎩

|γ |
|γ |+1 , |h| < 1

γ 2

1−γ 2

( |h|√
h2−1+γ 2

− 1
)
, |h| > 1

ghh = 1

16

⎧⎨
⎩

1
|γ |(1−h2) , |h| < 1

|h|γ 2

(h2−1)(h2−1+γ 2)3/2 , |h| > 1
(31)

gγγ = 1

16

⎧⎨
⎩

1
|γ |(1+|γ |)2 , |h| < 1(

2
(1−γ 2)2

[ |h|√
h2−1+γ 2

− 1
]− |h|γ 2

(1−γ 2)(h2−1+γ 2)3/2

)
, |h| > 1

ghγ = 1

16

{
0, |h| < 1

−|h|γ
h(h2−1+γ 2)3/2 , |h| > 1.

D. Visualizing the ground state manifold

Using the metric tensor, we can visualize the ground state
manifold by building an equivalent (i.e., isometric) surface
and plotting its shape. It is convenient to focus on a two-
dimensional manifold by fixing one of the parameters. We
then represent the two-dimensional manifold as an equivalent
three-dimensional surface. To start, let us fix the anisotropy
parameter γ and consider the h-φ manifold. Since the metric
tensor has cylindrical symmetry, so does the equivalent
surface. Parametrizing our shape in cylindrical coordinates
and requiring that

dz2 + dr2 + r2dφ2 = ghhdh2 + gφφdφ2, (32)

we see that

r(h) = √
gφφ, z(h) =

∫ h

0
dh1

√
ghh(h1) −

(
dr(h1)

dh1

)2

.

(33)

Using Eq. (31), we explicitly find the shape representing the
XY chain. In the Ising limit (γ = 1), we get

r(h) = 1

4
,

z(h) = arcsin(h)

4
,

⎫⎪⎬
⎪⎭ |h| < 1,

(34)

r(h) = 1

4|h| ,

z(h) = π

8

|h|
h

+
√

h2 − 1

4h
,

⎫⎪⎬
⎪⎭ |h| > 1.

The phase diagram is thus represented by a cylinder of radius
1
4 corresponding to the ferromagnetic phase capped by the two
hemispheres representing the paramagnetic phase, as shown in
Fig. 2. It is easy to check that the shape of each phase does not

depend on the anisotropy parameter γ , which simply changes
the aspect ratio and radius of the cylinder. Because of the
relation r(h) = √

gφφ , this radius vanishes as the anisotropy
parameter γ goes to zero. By an elementary integration of
the Gaussian curvature, the phases have bulk Euler integral
0 for the ferromagnetic cylinder and 1 for each paramagnetic
hemisphere. These numbers add up to 2 as required since the
full phase diagram is homeomorphic to a sphere. From Fig. 2, it
is also clear that the phase boundaries at h = ±1 are geodesics,
meaning that the geodesic curvature (and thus the boundary
contribution χboundary) is zero for a contour along the phase
boundary. As we will soon see, this boundary integral protects
the value of the bulk integral and vice versa.

In the Ising limit (γ = 1), the shape shown in Fig. 2 can
also be easily seen from computing the curvature K using
Eq. (11). Within the ferromagnetic phase, the curvature is

FIG. 2. (Color online) Equivalent graphical representation of the
phase diagram of the transverse-field Ising model (γ = 1) in the h-φ
plane [Eq. (34)]. The ordered ferromagnetic phase maps to a cylinder
of constant radius. The disordered paramagnetic phases h > 1 and
h < −1 map to the two hemispherical caps. The inset shows how the
cylindrical coordinates z and r depend on the transverse field h.
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FIG. 3. (Color online) (Insets) Equivalent graphical representa-
tion of the phase diagram of the XY model in the γ -φ plane, where
γ ∈ [0,∞) and φ ∈ [0,2π ]. The right inset shows the paramagnetic
disordered phase and the left inset represents the ferromagnetic phase.
It is clear that in the latter case there is a conical singularity developing
at γ = 0 which represents the anisotropic phase transition. The plots
show bulk Euler integral χbulk(ε) as defined in Eq. (35), demonstrating
the jump in χbulk at the phase transition between the paramagnet and
ferromagnet in the limit ε → 0+.

zero; no surprise, given that the metric is flat by inspection.
The only shape with zero curvature and cylindrical symmetry
is a cylinder. Similarly, within the paramagnet, the curvature
is a constant K = 16, like that of a sphere. Therefore, to get
cylindrical symmetry, the phase diagram is clearly seen to be
a cylinder capped by two hemispheres.

We can also reconstruct an equivalent shape in the γ -φ
plane. In this case, we expect to see a qualitative difference
for |h| > 1 and |h| < 1 because in the latter case there is an
anisotropic phase transition at the isotropic point γ = 0, while
in the former case there is none. These two shapes are shown
in Fig. 3. The anisotropic phase transition is manifest in the
conical singularity developing at γ = 0.36

The singularity at γ = 0 yields a nontrivial bulk Euler
integral for the anisotropic phase transition. To see this,
consider the bulk integral

χbulk(ε) = lim
L→∞

∫ 2π

0
dφ

∫ ∞

ε

dγ
√

g(γ,φ)K(γ,φ). (35)

In the limit ε → 0+, this integral has a discontinuity as a
function of h at the phase transition, as seen in Fig. 3. Thus,
χbulk ≡ χbulk(ε = 0+) can be used as a geometric characteristic
of the anisotropic phase transition. As we will show in the
next section, its value is χbulk = 1/

√
2 in the ferromagnetic

phase and χbulk = 1 in the paramagnetic phase. This noninteger
geometric invariant is due to the existence of a conical
singularity.

The last two-dimensional cut, namely, the h-γ plane at
fixed φ, is significantly more complicated and we have not
been able to find any simple shape to represent this part of the
phase diagram. However, using the technology that we develop
below for the more easily visualized surfaces, we analyze the
h-γ plane in Sec. III C.

II. UNIVERSALITY OF THE EULER INTEGRALS

We now wish to show that the Euler integrals characterizing
various phases of the XY model are universal to such phase

transitions due to critical scaling of the metric. We begin by
considering the transverse-field Ising (TFI) model with γ = 1,
h ∈ (−∞,∞), and φ ∈ [0,2π ). For this model, it is known23

that the metric tensor, and thus the associated curvatures,
obey certain scaling laws near the quantum critical point
(QCP). Therefore, since the boundary of the phase is at such a
QCP, critical scaling theory is encoded in the boundary Euler
integral.

However, knowing the boundary Euler integral is sufficient
to determine the bulk integral. To see this, consider the region
h ∈ (−1 + ε,1 − ε) for small positive ε. Since the region only
spans a single phase, there are no ground state degeneracies
within this region, meaning the h–φ surface is homeomorphic
to an open cylinder. Because an open cylinder has Euler
characteristic 0, the Gauss-Bonnet theorem becomes

χbulk = −
∑

boundaries

χboundary. (36)

We want to solve for the bulk Euler integral, in the limit that the
boundaries of the region are taken to the phase boundary (ε →
0+). However, according to Eq. (36), the bulk Euler integral
is just minus the sum of the boundary integral, which is much
easier to solve for. This “bulk-boundary correspondence” is
what allows us to use critical scaling theory to determine the
bulk Euler integral for each phase.

A. Example: Exact metric of the XY chain

As an initial demonstration of this method, consider the
exact expression for the metric of the TFI model, given in
Eq. (31). For a diagonal metric along a curve of constant h,
the geodesic curvature reduces to

kh const
g = ∂

√
gφφ/∂h

√
gφφghh

. (37)

For the case |h| > 1, this gives

kg(h) = −4/h2√
1

h4(h2−1)

= −4(h2 − 1)1/2 |h|→1−→ 0. (38)

Integrating over one of the critical lines, h = ±1 and φ ∈
[0,2π ), gives χboundary(|h| = 1) = 0. To get some intuition as
to what the boundary Euler integral of zero means, consider the
three-dimensional embedding shown in Fig. 2. A curve with
kg = 0 is, by definition, a geodesic. This makes sense since the
circle at h = 1 is clearly a geodesic of both the cylinder and
the hemisphere. In general, a smooth curve on a cylindrically
symmetric surface will be a geodesic if the radius is at a local
extremum, i.e., dr/dz = 0. This is clearly satisfied in the case
of the TFI model because dr/dh is finite near the QCP, while
dz/dh → ∞ (see Fig. 2, inset).

Similarly, for the limiting point at h = ∞, we can calculate
the boundary Euler integral:

χboundary(h) = 1

2π

∮
kgdl = 1

2π

∫ 2π

0
kg(h)

√
gφφ(h) dφ

= −
√

h2 − 1

h2

h→∞−→ −1. (39)
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By the same logic, χboundary → −1 in the limit h → −∞.
Therefore, using Eq. (36), we quickly obtain the 1 − 0 − 1
breakup of the bulk Euler integral for the TFI model.

To further illustrate the analytical power of this method, we
can now compute the bulk Euler integral of the γ -φ plane for
arbitrary |h| < 1, as defined in Eq. (35). By a similar analysis
as before, one finds that

χboundary(γ ) = 1

2π

∫ 2π

0
kg(γ )

√
gφφ(γ ) dφ

= − 1√
2(γ + 1)

γ→0−→ − 1√
2
. (40)

Since the limit γ → ∞ corresponds to a geodesic (see Fig. 3),
giving χboundary(γ → ∞) = 0, we see that the bulk Euler
integral is χbulk = 1√

2
.

B. Universality from critical scaling of the metric

We now use critical scaling theory to find the Euler integrals
of these phase boundaries for more general models. Consider
first the case of an arbitrary model in the TFI (a.k.a. 2D Ising)
universality class. We know from the scaling theory of Ref. 23
that the metric diverges near the QCP with a power law set
by scaling dimension of the perturbing operators ∂λH . For
example, in the transverse-field direction, the metric must
scale as ghh ∼ |h − hc|−1 for arbitrary models in the Ising
universality class. Similarly, since the parameter φ is marginal
near the Ising critical point, the singular part of gφφ has scaling
dimension +1. Adding in the regular part of gφφ to get a
nonzero value near the phase transition, we see that to leading
order gφφ ∼ A + B|h − hc|, where A and B are constants.
Plugging this into the formula for the boundary Euler integral,
one finds that

χboundary ∼ const√
|h − hc|−1

∼ |h − hc|1/2 h→hc−→ 0. (41)

Therefore, the boundary (and thus bulk) Euler integral of
the Ising phase transition is protected by the critical scaling
properties of the metric tensor. In terms of the geometry of the
three-dimensional embedding, adding irrelevant perturbations
to the Hamiltonian will shift the critical point and deform
the shape away from the critical point. However, the phase
boundary between the ferromagnet and paramagnet will
remain a geodesic (dr/dz will remain zero). The fact that
the geodesic curvature is zero on the phase boundary has an
intuitive physical interpretation. Consider two points on the
phase boundary. The geodesic defines the line of the shortest
distance between these two points in the Riemannian manifold
defined by the metric tensor g. It is clear that this line should be
entirely confined to the phase boundary since any deviations
from it result in moving toward the direction of the relevant
coupling, along which the metric tensor diverges. Since the
phase boundary coincides with the geodesic, the geodesic
curvature is zero by definition.

To understand the more complicated anisotropic direction,
we expand the Hamiltonian around γ = 0. Close to the QCP
(|γ |  1), the spectrum is gapless at a single momentum
k0 = cos−1(h) ∈ (0,π ), around which we can linearize the

equations. Then, the linearized mode Hamiltonian is

Hk = −
(

(k − k0) sin k0 γ eiφ sin k0

γ e−iφ sin k0 −(k − k0) sin k0

)
= −[(k − k0) sin k0]σ z

k

− (γ sin k0)
[
σx

k cos φ − σ
y

k sin φ
]
, (42)

where σ (x,y,z) are pseudospin Pauli matrices. The presence
of sin(k0) in both terms suggests fine tuning, but this turns
out to be unnecessary. Therefore, we consider a more general
Hamiltonian of this form

Hk′ = βk′σ z
k′ + αβγ

[
σx

k′ cos φ + σ
y

k′ sin φ
]
, (43)

where α and β are arbitrary constants and k′ ≡ k − k0 is the
momentum difference from the gapless point. This linearized
Hamiltonian has

θk′ = tan−1

(
αγ

k′

)
. (44)

The scaling limits of gγγ and gφφ are now relatively
straightforward to compute. The formulas are, as before,

gγγ = 1

4L

∑
k′

(
∂θk′

∂γ

)2

, gφφ = 1

4L

∑
k′

sin2(θk′). (45)

In the thermodynamic limit, we convert the sum to an integral
and define the scaling variable

κ ≡ k′/γ, (46)

which goes from κ = −∞ to ∞ in the scaling limit |γ |  1.
Thus,

gφφ = 1

8π

∫
k′

sin2 θk′dk′ =
∫

k′

α2γ 2

α2γ 2 + k′2 dk′

= α2γ

8π

∫ ∞

−∞

1

α2 + κ2
dκ = αγ

8
,

(47)

gγγ = 1

8π

∫
k′

(
∂θk′

∂γ

)2

dk′

= α2

8πγ

∫ ∞

−∞

κ2

(α2 + κ2)2
dκ = α

16γ
.

Finally, we use our earlier equation for the boundary Euler
integral to arrive at

χboundary = −∂
√

gφφ/∂γ
√

gγγ

= −
√

α

4
√

2
γ −1/2

√
α

4 γ −1/2
= − 1√

2
. (48)

Thus, for all models whose low-energy Hamiltonians are
described by Eq. (43), the bulk Euler integral between the
anisotropic QCP and the geodesic at γ = ∞ remains 1√

2
.

C. Robustness against angular distortions

The previous section demonstrated robustness of the Euler
integrals at phase transitions for the case where the metric is
diagonal. In addition, while changes of coordinates can impact
the critical scaling properties (at least from a mathematical
perspective), the conclusions that we drew were with regards
to geometric invariants, and thus manifestly unaffected by
such a coordinate change. However, our physical intuition
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from the theory of continuous phase transitions suggests
that this robustness should be even more general, allowing
arbitrary perturbations to the model as long as they do not
change the scaling properties of the critical point (with regards
to traditional observables). Therefore, in this section we
demonstrate that perturbations which satisfy this constraint
while introducing off-diagonal components to the metric
nevertheless do not change the value of the Euler integrals.

In the h-φ plane, a simple method for introducing off-
diagonal terms to the metric is to allow γ to vary in the vicinity
of the QCP. Let γ be some arbitrary function γ (h,φ), with the
restriction that γ > 0 so that we remain in the same phase.
With this additional freedom, we get a new metric g′(h,φ)
such that

ds2 = ghhdh2 + gφφdφ2 + gγγ dγ 2 + 2ghγ dh dγ

= g′
hhdh2 + g′

φφdφ2 + 2g′
hφdh dφ. (49)

Noting that dγ = (∂hγ )dh + (∂φγ )dφ, we find

g′
hh = ghh + 2ghγ (∂hγ ) + gγγ (∂hγ )2,

g′
φφ = gφφ + gγγ (∂φγ )2, (50)

g′
hφ = gγγ (∂hγ )(∂φγ ) + ghγ (∂φγ ).

Close to the critical point, only one term diverges: ghh ∼ |h −
hc|−1 ⇒ g′

hh ∼ |h − hc|−1, while both g′
φφ and g′

hφ remain
finite near the critical point. Thus, g′ is asymptotically diagonal
near the critical point, our earlier arguments still work, and the
boundary Euler integral remains zero.

Not surprisingly, the noninteger bulk Euler integral of the
anisotropic phase transition is more sensitive to details of the
perturbation. For instance, the most naive option of giving
the transverse field a functional dependence [h → h(γ,φ)]
changes the value of the bulk Euler integral, which is not
surprising given that h is a relevant perturbation at this phase
transition. This can be traced back to the fact that modifying
h changes the position of the gapless momentum k0 [see
Eq. (42)], strongly affecting the low-energy physics near the
critical point.

In the absence of physical parameters to modify, we instead
consider modifications to the low-energy Hamiltonian. In
particular, consider a slightly more general Hamiltonian of
the form

Hk′ = βk′σ z
k′ + βγ

[
αx(φ)σx

k′ cos φ + αy(φ)σy

k′ sin φ
]
, (51)

where we demand that the functions αx,y are periodic
[αx,y(0) = αx,y(2π )] and positive, such that the azimuthal
Bloch angle still wraps the sphere once as we take φ from
0 to 2π .

To determine if the Euler integral χboundary = −1/
√

2 is
protected, we numerically solve for the boundary Euler integral
for a variety of functions αx,y . In doing so, we require an
additional constraint to ensure that this integral is well defined:
the metric must be positive definite, i.e., its determinant
g = EG − F 2 must be nonzero. We have tested a number
of functions satisfying these constraints, and found that all
of them have χboundary = −1/

√
2 as expected. Given that the

most complex functions we tested (αx = 1 + cos(φ2/π)
4 and

αy = 2 + sin φ) have no special symmetries, we postulate that
the Euler integral is identical for all functions satisfying the

above constraints; however, we are unable to analytically prove
such a statement at this time.

III. CLASSIFICATION OF SINGULARITIES

Using scaling arguments, we have demonstrated the ro-
bustness of the geodesic curvature and the bulk Euler integral
for situations where the boundary of the parameter manifold
coincides with the phase boundary. One obvious difference
between the model in the transverse field (h-φ) and the
anisotropy (γ -φ) planes is integer versus noninteger values
of the Euler integrals. In this section, we show how this
difference comes from the nature of the singularities at
the respective phase boundaries. We identify two types of
geometric singularity: integrable singularities, as in the case
of the h-φ plane, and conical singularities, as in the case
of the γ -φ plane. Finally, in the h-γ plane, we identify a
third type of singularity, known as a curvature singularity.
We discuss general conditions under which these singularities
should occur and, for the case of conical singularities, identify
the relevant parameters in determining the boundary Euler
integral.

A. Integrable singularities

A simple question which we must ask before classifying
the geometric singularities of the XY chain is what, precisely,
do we mean by singularities? A simple definition, namely,
the divergence of one or more components of the metric
tensor, is certainly a useful tool for diagnosing the presence of
phase transitions in practice.24,25 However, we claim that this
singularity is less fundamental from a geometric standpoint.
For instance, in the case of the TFI model, the transverse field
component of the metric tensor diverges as ghh ∼ |h − 1|−1

near h = 1. However, this divergence can be removed by
simply reparametrizing in terms of h′ = √

h − 1 sgn(h − 1),
for which gh′h′ ∼ 1.14 Therefore, we need to look elsewhere for
information about the fundamental nature of the singularities
in the quantum geometry.

Since the issue with the metric tensor was its coordinate
dependence, natural quantities to look at are the geometric
invariants introduced in Sec. I A, which are coordinate in-
dependent. Of these, the Gaussian curvature is the obvious
choice.12,14,37 We therefore classify singularities here and in
the rest of the paper based on the Gaussian curvature K and
its invariant integral χbulk.

For the case of the TFI model, the curvature does not diverge
near the critical point. This can be easily seen in the equivalent
three-dimensional manifold (Fig. 2), where the curvature goes
from that of a cylinder (K = 0) to that of a sphere (K = 1/a2,
where a is the radius), both of which are finite. As we show
more explicitly in Sec. III C, one can derive this nondivergent
result by using the scaling forms of the metric tensor to get
K ∼ const.

However, critical scaling theory does not demand that the
curvature is a smooth function of the transverse field. Indeed,
we expect it to be singular (like most other quantities) in the
vicinity of a phase transition, which manifests in the TFI chain
as a jump of K between the ferromagnet and the paramagnet.
However, the curvature is finite at all points, and is therefore
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completely integrable when determining χbulk. Therefore, we
refer to these jumps in the curvature as “integrable” singu-
larities. We note that visually these integrable singularities
correspond to points where the manifold changes shape locally,
but in such a way that the tangent plane evolves continuously,
so that no cusps or other points of curvature accumulation
occur.

B. Conical singularities

The anisotropic phase transition at γ = 0 is an example of
a conical singularity,28,38 which can easily be seen in Fig. 3.
While the specific value of 1/

√
2 for the bulk Euler integral is

likely specific to this particular class of models, we claim that
the existence of conical singularities is in fact a much more
general phenomenon.

More specifically, we expect conical singularities to occur
in situations with two inequivalent directions orthogonal to
a line (or a higher-dimensional manifold) of critical points,
as long as the orthogonal directions have the same scaling
dimension.39 Denote these directions λ1 and λ2, with the
critical point at λ1 = λ2 = 0. At γ = 0 in the anisotropic XY

model, the parameter φ has no effect on H , so in the FM phase
this model satisfies the criteria for a conical singularity with
λ1 = γ cos φ and λ2 = γ sin φ.

For simplicity, we also assume that the metric has cylin-
drical symmetry, as in the case of the anisotropic transition in
the XY model. In the previous section, we verified numerically
that this singularity, and in particular the boundary contribution
to the Euler characteristic, is protected against breaking of the
cylindrical symmetry. We nevertheless use this assumption
to simplify our analysis. To ensure cylindrical symmetry,
the metric tensor should be diagonal in the λ-φ plane with
the leading-order asymptotic of the diagonal components
of the metric tensor scaling as some power laws:

gλλ = Aλ−α, gφφ = Bλβ, (52)

where A and B are arbitrary positive constants and we
generally expect α � 0, β > 0. However, if we define λ1 =
λ cos φ and λ2 = λ sin φ, then the demands of uniform scaling
place an additional constraint on the values of the scaling
dimensions. To see this, consider the components of the metric
in “Cartesian coordinates”:

g11 = gλλ

(
∂λ

∂λ1

)2

+ gφφ

(
∂φ

∂λ1

)2

= gλλ

λ2
1

λ2
+ gφφ

λ2
2

λ4

= Aλ−α cos2 φ + Bλβ−2 sin2 φ, (53)

g22 = Aλ−α sin2 φ + Bλβ−2 cos2 φ,

g12 = (Aλ−α + Bλβ−2) cos φ sin φ.

We clearly see that the scaling dimensions of λ1 and λ2 are
the same at all angles φ if and only if the exponents satisfy the
relation

β = 2 − α. (54)

Note that the condition β > 0 now means that 0 � α < 2. The
constants A and B are nonuniversal, but we expect that their
ratio B/A, which defines the anisotropy of the metric tensor,

will be a universal number for a given class of models. For the
anisotropic transition this ratio is B/A = 2 and the exponents
are α = β = 1 [see Eq. (47)]. Interestingly, the point h = ∞ in
the h-φ plane (corresponding the spherical cap, see Fig. 2) also
has the form of a conical singularity if we use λ1 = 1

h
cos(φ)

and λ2 = 1
h

sin(φ) with α = 0, β = 2, and B/A = 1. These
exponents describe a nonsingular point in parameter space
with cylindrical symmetry.

Given a conical singularity, we can now easily find the
Euler integral. Using the same formulas as earlier for the case
of cylindrical symmetry,

χboundary = −∂
√

gφφ/∂λ√
gλλ

(55)

=
(

α

2
− 1

)√
B

A
. (56)

Using this formula for the anisotropic phase transition of the
XY model yields χboundary = −1/

√
2, as found earlier. For a

demonstration of the contours of the metric in this model, see
Fig. 4.

Let us point out that if we have a nonsingular point like h →
∞ at fixed γ or γ → 0 at fixed h > 1, for which α = 0 and β =
2, we have an additional requirement that g11 = g22 and g12 =
0, implying that A = B. This follows from the fact that the
metric must remain regular at λ = 0. Then, from Eq. (56) we
find that the boundary contribution of the isotropic point will be
χboundary = −1. In a three-dimensional embedding, this indeed
looks like a hemisphere, which is nonsingular. Therefore, for
such smooth “singularities,” the manifold is also guaranteed
to be locally equivalent to the hemisphere.

Finally, for the case of a multicritical point, one can
try to apply similar logic. However, due to the asymmetry

FIG. 4. (Color online) Graphical representation of the metric in
the λ1-λ2 plane, where a conical singularity (critical point) is at
λ1 = λ2 = 0. Panel (a) shows the simple case of the XY model in
a transverse field, for which α = β = 1, B/A = 2, and the metric
is cylindrically symmetric about the origin. Panel (b) shows the
more general case with Hamiltonian given by Eq. (51), in which
the cylindrical symmetry has been broken by using the functions
αx(φ) = 1 + 1

2 cos(2φ) − 1
3 sin(2φ) and αy(φ) = 2 + sin(φ). While

the cylindrical symmetry is gone, we numerically find that this model
has the same conical angle as when αx = αy = const, yielding the
same bulk Euler integral. The metric is plotted in both panels by
showing the “shape of the circle” near each point, i.e., the blue ellipses
show contours of constant radius in the λ1-λ2 plane. Since the metric
diverges near the critical point, the size of the ellipses gets smaller.
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FIG. 5. (Color online) Three-dimensional plot of K(h,γ ), similar
to that found in Fig. 1 of Ref. 12. The graph shows curvature
singularities along the two phase transitions h = 1 (only positive
h are shown) and h < 1, γ = 0. Unlike the Ising phase transition,
the curvature singularities near the anisotropic phase transition are
nonintegrable, leading to divergent Euler integral within each phase.

in the scaling dimensions, along some direction the metric
will be infinitely anisotropic near the critical point. This
infinite anisotropy is not generally removable by rescaling
the couplings. Therefore, the conical singularity breaks down
and the curvature can become nonintegrably singular.

C. Curvature singularities

If we now consider the third two-dimensional cut of the
XY model, namely the h-γ plane (which has been solved for
previously in Ref. 37), we find that the curvature displays
a number of additional singularities. The structure of these
singularities can be seen in Fig. 5. It is clear from the plot
that as expected there are singularities near the two phase
transitions: integrable singularities near the Ising transition
(|h| = 1) and nonintegrable singularities near the anisotropic
transition (|h| < 1 and γ = 0). These singularities meet near
the multicritical point (|h| = 1 and γ = 0) resulting in a very
singular and nonmonotonic behavior of the curvature.

While, unlike the h-φ and γ -φ planes, there are no obvious
finite protected Euler integrals in the h-γ plane, the exponent of
the curvature divergence can be found from scaling arguments.
For instance, near the Ising phase transition (|h| = 1, γ > 0),
the simple arguments of Venuti and Zanardi23 indicate that
the metric components diverge as ghh ∼ |h − hc|−1, gγγ ∼ 1,
and ghγ ∼ 1. The nondivergence of gγγ is due to the fact that
γ is a marginal parameter, such that the scaling dimension
of the singular part of gγγ is +1. However, there is also
a nonzero nonsingular part, which is the leading-order term
near the critical point. Similarly, the scaling dimension of ghγ

is zero, such that there is a jump singularity near the critical
point. Plugging these divergences into Eq. (11) and assuming
a smooth dependence on γ as long as we are far from the
multicritical point, we find that K ∼ 1, which matches with
the jump singularity in K found at the Ising phase transition.
By contrast, near the anisotropic phase transition (γ = 0,
|h| < 1), both the transverse field h and the anisotropy γ are
relevant parameters, with scaling dimension −1. Therefore,
the metric components scale as ghh ∼ ghγ ∼ gγγ ∼ |γ |−1. By
the same logic as before, this leads to a divergent curvature with
K ∼ |γ |−1.

Finally, we point out some subtleties regarding the curvature
far from critical points. First, while the curvature does not
diverge near h = ∞ or γ = ∞, it is not immediately apparent
whether the bulk Euler integral diverges in this limit. There-

fore, in Appendix B, we show that a simple reparametrization
allows one to make both K ,

√
g, and the limits of integration

simultaneously finite, except near quantum critical points at
finite h and γ . Therefore, it becomes clear that the divergence
in the Euler integrals comes strictly from the curvature
singularities near the quantum phase transitions.

Second, we note that the metric component ghh vanishes at
γ = 0 for all h > 1 since the ground state is the fully polarized
spin-up state along this entire line. The general intuition from
Riemann geometry is that if the determinant of the metric
vanishes, then the curvature diverges since the determinant
appears in the denominator of the curvature formula [Eq. (11)].
However, as we show in the next section, the curvature does
not in fact diverge for fundamental physical reasons.

D. Metric singularity near lines of symmetry

Consider the line |h| > 1, γ = 0 in the XY model. The
ground state along this entire line is fully polarized along
the direction of the transverse field, which is clearly the
ground state at h = ∞. Then, since along this special XY -
symmetric line the Hamiltonian commutes with Sz

total, the fully
polarized eigenstate must remain the ground state until a gap
closes. Note that this argument continues to hold even in the
presence of integrability-breaking perturbations, as long as the
z magnetization remains a good quantum number. Therefore,
such a line of unchanging ground states and thus vanishing
metric determinant is a robust feature of this class of models.

More generally, one can create such fully polarized ground
states by considering a family of the Hamiltonians

H(λ,δ) = H0(λ,δ) − λM, (57)

where δ is a symmetry-breaking field such that H0 and M
commute at δ = 0 for any value of λ. Physically, M represents
the generalized force (z magnetization in the above example)
which is conserved at the symmetry line. In general, M can
also depend on λ and δ as long as H0 and M commute at
δ = 0. Clearly, in the limit λ → ∞ the ground state of the
Hamiltonian is the fully polarized state (the state with largest
eigenvalue) of the generalized force M, which is generally
nondegenerate. By the argument above, along the symmetry
line the ground state ofHwill be independent of λ until the gap
in the Hamiltonian closes, e.g., until the system undergoes a
quantum phase transition. Thus, the metric near this symmetry
line will be singular with a vanishing determinant.40

We now investigate why, despite this “singular” metric, the
curvature nevertheless remains analytic in the vicinity of such
a line of symmetry. Assuming we are far from any critical
points (i.e., with a gapped spectrum), the components of the
metric tensor near the fully polarized state should be analytic
and can be written as

g =
(

δ2fλλ δfδλ

δfδλ fδδ

)
. (58)

All components fij are smooth functions of λ and δ. For small
δ they can be approximated as being independent of δ, fij =
fij (h), since the leading asymptotic of the curvature in the
limit δ → 0 will be determined by the explicit dependence
given by Eq. (58).
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Using the explicit expression for the curvature [Eq. (11)]
and counting powers of δ, we see that the only possible
divergent term in the curvature as δ → 0 is given by

K ≈ − 1

δ2
√

f

∂

∂λ

(√
f

fλλ

	δ
λδ

)
, (59)

where f = det(fij ) and

	δ
λδ = 1

2g

[
gλλ

∂gδδ

∂λ
− gδλ

∂gλλ

∂δ

]
= fλλ

2f

[
∂fδδ

∂λ
− 2fδλ

]
.

(60)

Therefore,

K ≈ − 1

2δ2
√

f

∂

∂λ

[
∂λfδδ − 2fδλ√

f

]
. (61)

In order to see that the curvature is not divergent near this
line of symmetry, we need to show that the following difference
vanishes:

∂λfδδ − 2fδλ = ∂λgδδ − 2∂δgλδ = 0. (62)

This is indeed the case for such general lines of symmetry,
as we prove in detail in Appendix A. Therefore, the singular
term in the curvature vanishes, and thus the curvature does
not diverge near the symmetric line. We emphasize again that
our conclusions regarding the curvature are invariant under
reparametrization of the couplings.

A more geometric view of the absence of a curvature
singularity for metrics satisfying Eq. (62) can be seen by
mapping this metric to a Euclidean plane such that all
distances are preserved (i.e., an isometric mapping). We start
by switching back to the original couplings of the XY model,
λ ↔ h and δ ↔ γ . Then,

ds2 = γ 2fhhdh2 + γ ∂hfγγ dh dγ + fγγ dγ 2

= r2dϕ2 + dr2, (63)

where to the leading order in γ

fhh = h

16(h2 − 1)5/2
, fγ γ = h − √

h2 − 1

8
√

h2 − 1
. (64)

We use the natural ansatz in polar coordinates:

r = r(h,γ ), ϕ = ϕ(h). (65)

This gives the metric

ds2 = r2(∂hϕ)2dh2 + (∂hr)2dh2

+ 2(∂hr)(∂γ r)dh dγ + (∂γ r)2dγ 2. (66)

Matching the dγ 2 terms, we get ∂γ r = √
fγγ , implying that

r = γ
√

fγγ . This also works to match the dh dγ terms

2(∂hr)(∂γ r) = 2γ
√

fγγ ∂h

√
fγγ = γ ∂hfγγ , (67)

demonstrating the importance of Eq. (62) to obtain a flat
metric. Finally, matching the dh2 terms, we get

γ 2fhh = r2(∂hϕ)2 + (∂hr)2

= γ 2(
√

fγγ )2(∂hϕ)2 + γ 2(∂h

√
fγγ )2

(68)

ϕ =
∫ ∞

h

dh′√
fγγ (h′)

√
fhh(h′) − [∂h′

√
fγγ (h′)]2,

FIG. 6. (Color online) Mapping of the curved space in the h-γ
plane to a flat plane in polar coordinates. A grid covering a subset
of the h-γ plane (left) is shown mapped to a subset of the flat plane
(right) by a coordinate change to r and ϕ as described in the text. The
mapping is specifically shown for the leading-order asymptotics of
the metric of the XY model given by Eqs. (64), for h ranging from
1.0009 to 2.0 and γ from −0.1 to 0.1. The red and green arrows
indicate that both ϕ and r diverge in the limit h → 1+. Since ghh = 0
for γ = 0, the entire line γ = 0 maps to a single point, which is a
singularity of the model.

where the limits of integration have been chosen to give ϕ > 0
for all h and ϕ(h → ∞) → 0. The map is well defined as
long as the term in the square root is positive, i.e., as long as
fhh − (∂h

√
fγγ )2 > 0. It is easy to check that this difference

is indeed positive:

fhh − (∂h

√
fγγ )2 = h − √

h2 − 1

32(h2 − 1)5/2
. (69)

Hence, this embedding works and shows that the surface for
this simplified metric is equivalent to a plane. As such, the
curvature is easily seen to be zero.

While this mapping shows that the manifold in the h-γ
plane is much less singular than expected, there is still in some
sense a singularity at the line of symmetry. This can be see in
Fig. 6, where the entire line γ = 0 maps to a single point in the
r-ϕ representation. The singularity does not show up directly
as a divergence in the scalar curvature. But, consider the line
γ = 0, and note that any embedding into a higher-dimensional
flat space must identify all the points on this line since ghh = 0.
At the same time, the curvature K is not independent of h

along this line (see Fig. 5). Therefore, the curvature can not be
a smooth function for such an embedding since the curvature
upon approaching the point γ = 0 will depend on the direction
in which it is approached. By a similar logic, the curvature is
singular in the h-φ plane at γ = 0, diverging as 1/γ 2. This is
visible in the simple three-dimensional embedding discussed
in Sec. I D; as γ → 0, the radius of the hemisphere decreases
to zero, and thus the curvature diverges. Finally, as we show
in detail in Appendix C, these two divergences conspire to
cause the scalar curvature (Ricci scalar) for the full three-
dimensional manifold to diverge along this line of symmetry.
This divergence is remarkable since the symmetry line does
not formally correspond to any phase transition. However, the
physical interpretation of these divergences remains unclear to
us at this time.
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IV. MEASURING THE METRIC

Formally, the metric tensor can be expressed as a standard
response function23 and thus is in principle measurable.
However, unlike the Berry curvature, which naturally appears
in the off-diagonal Kubo-type response,19 the metric tensor
appears either as a response in imaginary-time dynamics18,19 or
as a response in dissipative systems using specific, and usually
not physically justified, requirements for the dissipation.41

However, as shown in Ref. 17 for the specific situation of
noninteracting particles, the geometric tensor characterizing
the Bloch bands can be measured through the spectral function
of the current noise. Here, we extend this idea to arbitrary
systems and couplings.

The geometric tensor can be represented as [cf. Eq. (B8) in
Ref. 18]

χμν =
∫

dω

2π

Sμν(ω)

ω2
, (70)

where

Sμν(ω) =
∫ ∞

−∞
dt e−iωt 〈∂μH (t)∂νH (0)〉c (71)

is the Fourier transform of the connected ground state nonequal
time correlation function of the generalized forces, a.k.a. the
noise spectral density, and ∂μH (t) = eiHt∂μH (0)e−iH t is the
generalized force in the Heisenberg picture. The metric tensor
is the symmetric (real) part of the geometric tensor and thus
can be expressed through the symmetrized spectral density.
Following the insight of Neupert et al.,17 we interpret Sμν(ω)
as the Fourier transform of the nonequal time noise corre-
lation function of two generalized forces, which is relevant
experimentally.42 For example, in mesoscopic systems, the
current noise spectrum Sμν(ω) can be measured in shot-noise
experiments, where current Jμ corresponds to the generalized
force ∂Aμ

H . Equation (70) suggests a simple and general
way of measuring the metric tensor in interacting many-
body systems by analyzing equilibrium noise. We believe
that, for sufficiently large systems, such symmetrized noise
correlations should be measurable with negligible effects of
measurement back-action.

While the method of measuring the metric tensor through
noise is conceptually simple, it can not be easily implemented
in systems such as cold atoms, where measurements are
often destructive. Below, we discuss two real-time protocols
which offer the possibility of observing the metric tensor
via destructive (single-time) measurements. We then mention
an additional protocol involving instantaneous quenches of
the external parameters. We note that both ramps43,44 and
quenches45–47 are routinely achieved in isolated cold-atom
systems.

Consider performing real-time ramps of some parameter λμ

in a gapped system, starting from the ground state at the starting
point λi . It has been shown elsewhere19 that, for a square-root
ramp with λμ(t) − λμ(tf ) = [v(tf − t)]1/2, the leading-order
correction to the energy in the limit v → 0 is given by

〈H 〉 = E0 + vgμμ + O(v2), (72)

where H is the Hamiltonian, E0 is its ground state energy,
and gμμ is diagonal component of metric along the ramping
direction.

However, the square-root ramp is singular near tf and
therefore may be difficult to implement. We now show that the
metric can also be measured via a more easily implemented
linear ramp, at the cost of requiring a harder measurement: the
quantum energy fluctuations.

Consider a linear ramp λμ(t) − λμ(tf ) = v(t − tf ). From
Ref. 48, we know that the wave function at tf will be given in
its instantaneous eigenbasis by

|ψ〉 = (1 + βv2)|0〉 − iv
∑
n	=0

αn|n〉 + O(v2), (73)

where αn = 〈n|∂μH |0〉
(En−E0)2 and β = −(1/2)

∑
n	=0 |αn|2, which

serves to keep the wave function normalized up to order v2.
The energy fluctuations are given by �E2 = 〈ψ |H 2|ψ〉 −
〈ψ |H |ψ〉2. Without loss of generality, we may offset the
Hamiltonian such that the ground state energy is E0 = 0. Then,
up to order v2,

�E2 = v2
∑
n	=0

|αn|2〈n|H 2|n〉

= v2
∑
n	=0

|αn|2E2
n

= v2
∑
n	=0

〈n|∂μH |0〉〈0|∂μH |n〉
E2

n

= v2gμμ. (74)

Therefore, by measuring the energy fluctuations for different
ramp rates and extracting the leading-order (quadratic) term,
we can extract diagonal terms of the metric along a given
direction. Let us point that if we start the ramp in the ground
state, then the energy fluctuations are equal to the work
fluctuations, so the metric tensor can be extracted by measuring
work fluctuations as a function of the ramp rate.

A third possibility for measuring the metric tensor is by
measuring the probability of doing nonzero work for small
quenches in parameter space. This is in some sense true by
definition: if |ψ0(λ)〉 is the ground state manifold, then the
probability of doing zero work (i.e., ending up in the ground
state) after a quench from λμ to λμ + dλμ is just

P (W = 0) = |〈ψ0(λμ)|ψ0(λμ + dλμ)〉|2
= 1 − gμμdλ2

μ; (75)

P (W 	= 0) = gμμdλ2
μ.

As noted elsewhere, this quantity is equivalent to the time-
averaged return amplitude G(t) (Ref. 20):

P (W = 0) = lim
T →∞

1

T

∫ T

0
G(t)dt,

G(t) = 〈ψ0(λμ)|eiH (λμ)t e−iH (λμ+dλμ)t |ψ0(λμ)〉,
which is related to the well-known Loschmidt echo L(t) by

L(t) = |G(t)|2. (76)

The Loschmidt echo is also the probability of returning to
the ground state (doing zero work) after a double quench of
duration t from λμ to λμ + dλμ and back.49 While energy
distributions and the related Loschmidt echo are in principle
measurable by a variety of methods, we note that there has
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been important recent progress in proposing measurements of
these quantities using few-level systems as a probe.50–52

Finally, we point out that one can reconstruct the full metric
tensor solely from measurements of its diagonal components.
Consider a two-parameter manifold (λx,λy). First, measure the
diagonal components gxx and gyy using one of the procedures
described above. Second, measure a specific off-diagonal
element by varying λx and λy simultaneously. For example, if
we define the variable λw = (λx + λy)/2 and ramp or quench
along the line λx = λy , we can obtain gww. Finally, noting that
for this protocol dλx = dλy = dλw, we see that

ds2 = gwwdλ2
w = gxxdλ2

x + 2gxydλxdλy + gyydλ2
y

= gwwdλ2
x = (gxx + 2gxy + gyy)dλ2

x

⇒ gxy = gww − gxx − gyy

2
. (77)

This procedure can be easily generalized to an N -parameter
manifold by performing pairwise measurements using similar
tricks as above.

V. CONCLUSIONS

In conclusion, using the quantum XY model as an example,
we have analyzed the Riemann manifold of a simple ground
state phase diagram. We identified a new geometric character-
istic, the bulk Euler integral, which characterizes the phases of
matter. Based on the value of this Euler integral, either integer,
noninteger, or undefined, we have classified three types of
singularities in the Gaussian curvature: integrable, conical, and
curvature singularities. We showed that integrable singularities
occur for phase transitions where one parameter is marginal

or irrelevant while the other is relevant. Similarly, conical
singularities emerge when the phase transition occurs at a
single critical point with two “orthogonal” relevant directions
that have the same scaling dimensions. And finally, near the
multicritical point with two inequivalent relevant directions,
we found curvature singularities which, similar to black holes,
are nonremovable nonintegrable singularities in the quantum
metric space. Finally, by introducing additional techniques for
measuring the metric experimentally, we point out that this
geometric information should be experimentally accessible.
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APPENDIX A: PROOF OF EQ. (62)

We now prove that Eq. (62) indeed holds for the metric
given by Eq. (58) near the symmetric line. We will rely on
the fact that, at this symmetric line, the ground state does not
depend on λ, so ∂λ|0〉 = 0. Thus,

∂λgδδ = ∂λ

∑
n	=0

〈0|←−∂δ |n〉〈n|∂δ|0〉 =
∑
n	=0

[(〈0|←−∂2
λδ|n〉 + 〈0|←−∂δ ∂λ|n〉)〈n|∂δ|0〉 + 〈0|←−∂δ |n〉(〈n|←−∂λ ∂δ|0〉 + 〈n|∂2

λδ|0〉)], (A1)

2∂δgδλ = ∂δ

∑
n	=0

[〈0|←−∂δ |n〉〈n|∂λ|0〉 + 〈0|←−∂λ |n〉〈n|∂δ|0〉]

=
∑
n	=0

[(〈0|←−∂2
λδ|n〉 + 〈0|←−∂λ ∂δ|n〉)〈n|∂δ|0〉 + 〈0|←−∂δ |n〉(〈n|←−∂δ ∂λ|0〉 + 〈n|∂2

λδ|0〉)]. (A2)

Therefore, we now find that Eq. (62) holds:

∂λgδδ − 2∂δgδλ =
∑
n	=0

[〈0|←−∂δ ∂λ|n〉〈n|∂δ|0〉 + 〈0|←−∂δ |n〉〈n|←−∂λ ∂δ|0〉]

=
∑

n	=0,m

[〈0|←−∂δ |m〉〈m|∂λ|n〉〈n|∂δ|0〉 + 〈0|←−∂δ |n〉〈n|←−∂λ |m〉〈m|∂δ|0〉] = 0. (A3)

The last equality follows by observing that if we interchange
indices n and m in the second term in the last sum, we get a
term that exactly cancels the first one. This follows from

〈m|←−∂λ |n〉 = −〈m|∂λ|n〉. (A4)

In addition, the m = 0 term vanishes because

〈0|∂λ|n〉 = −〈0|←−∂λ |n〉 = 0. (A5)

APPENDIX B: CHOICE OF PARAMETERS

The goal of this section is to show by example that, if the
bulk Euler integral 2πχbulk = ∫

K dS diverges, then that im-
plies that the curvature must diverge at some point. This is not
a priori obvious because the invariant area dS = √

gdλ1dλ2

can also diverge, either because the metric diverges or because
the metric is finite but the parameters λi have infinite range. We
show that, for the h-γ plane of the XY model, such divergences
can be removed by a suitable choice of coordinates.
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One natural thing to attempt to do is the go to “unitless”
coordinate systems dh → √

ghhdh and dγ → √
gγγ dγ , in

which a one-parameter metric gλλ would become flat (i.e.,
become λ independent). While this does not quite work
the same for two parameters, since ghh depends on γ , we
nevertheless use a variant of it below to get a more well-
behaved metric. As we will see, the new parameters have a
finite range, and the metric is much more well behaved.

Consider first the case of the transverse field h. We wish
to define a new parameter ξ such that dξ = √

ghhdh. The
leading-order h dependence of ghh is ghh ∼ 1

(1−h2) in the

ferromagnet and ghh ∼ 1
h2(h2−1) in the paramagnet. Integrating

these expressions gives the natural choice

sin ξ ≡
{
h if |h| < 1,

1/h if |h| > 1,
(B1)

with the quadrant of ξ chosen such that |ξ | ∈ [0,π/2] if |h| � 1
and |ξ | ∈ [π/2,π ] if |h| � 1. We similarly reparametrize the
γ direction in terms of η such that dη = 1√

γ (1+γ )dγ , giving

η ≡ 2 tan−1(
√

|γ |)sgnγ. (B2)

The range of our new, auxiliary variables is ξ ∈ (−π,π ), η ∈
[0,π ).

Within the FM phase, the metric takes on a simple form

gξξ = 1

16
cot2

(
η

2

)
, gηη = 1

16
. (B3)

By inspection, the metric and its determinant clearly only
diverge at the anisotropic phase transition, which is at η =
0 in the new parameters. Within the PM phase, the metric
remains quite complicated. However, one can easily calculate
the curvature and determinant of the metric, which are given by

K = 8 + 8 csc(ξ )√
−1 + csc2(ξ ) + tan4

(
η

2

)
,

(B4)

g = csc2(ξ ) sec4

(
η

2

)
tan6

(
η

2

)⎡⎣−1 + 2 csc2(ξ ) + tan4
(

η

2

)− 2 csc(ξ )
√

−1 + csc2(ξ ) + tan4
(

η

2

)
256

[
tan4

(
η

2

)− 1
]2 [−1 + csc2(ξ ) + tan4

(
η

2

)]2
⎤
⎦ .

These two quantities are plotted for the entire phase diagram
in Fig. 7.

Clearly, we have almost achieved our goal, in that the
invariant area component of the bulk Euler integral dS =√

g dξ dη is finite except near a few select points, namely,
(i) in the vicinity of the critical line at η = 0 (i.e., γ = 0),

where the curvature also diverges;
(ii) near the points |h|,|γ | → ∞, which correspond to |ξ | =

|η| = π ; here the curvature does not diverge, so we expect the
divergence of the metric to again be removable.

To see how to remove the divergence in g near η = ξ = π ,
we need to understand the asymptotics of g near this point. We
can do leading-order asymptotic expansions of the numerator
and denominator about this point. Then, if we define

u ≡ 1

csc(ξ )
≈ π − ξ, v ≡ 1

tan2(η/2)
≈
(

π − η

2

)2

, (B5)

FIG. 7. (Color online) Geometric invariants of the XY model in
the ξ -η plane. The three-dimensional plots show Gaussian curvature
K (a) and metric determinant g (b) for the entire (finite) range of
parameters ξ and η. As discussed in the text, the invariants clearly
only diverge near the critical line at γ = 0, except for the determinant
g, which has an integrable divergence near ξ = η = π .

we find that the determinant is asymptotically equivalent to

g ≈ u−2v−5[2u−2 + v−2 − 2u−1
√

u−2 + v−2]

256v−4[u−2 + v−2]2
(B6)

=
(

v
u

)[
2
(

v
u

)2 + 1 − 2
(

v
u

)√
1 + (

v
u

)2]
256u

[
1 + (

v
u

)2]2 . (B7)

Rewriting this in circular coordinates u = r cos(θ ) and v =
r sin(θ ), the expression becomes g{ξ,η} = 1

256r
f (θ ), where the

notation g{ξ,η} is meant to reiterate that this is the determinant

of the matrix ( gξξ gξη

gηξ gηη
). The function

f (θ ) = sin θ [sin θ − 1]2 (B8)

is defined over the interval θ ∈ [0,π/2]. Then, the invariant
area is (using the expansions of u and v from above)

dS = √
g{ξ,η}dξ dη

=
√

1

256r
sin θ (1 − sin θ )2(−du)

(
− dv

2
√

v

)

=
√

1

256r
sin θ (1 − sin θ )2

(
1

4r sin θ

)
du dv

= 1 − sin θ

32r
(r dr dθ )

= 1 − sin θ

32
dr dθ ≡ √

g{r,θ}dr dθ. (B9)

So, we come to our final result that, by choosing a
local parametrization (r,θ ) as described above for the
points near |ξ | = |η| = π , the metric determinant g{r,θ} is
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nondivergent. We conclude that, after a suitable choice of
local reparametrization, the invariant area term and its integral
can be made finite unless curvature diverges. Therefore, all
divergences in the bulk Euler integral of the h-γ plane are due
to the divergent curvature near γ = 0.

APPENDIX C: FULL THREE-DIMENSIONAL
CURVATURE TENSOR

In this section, we solve for the Riemann curvature tensor,
Ricci tensor, and (Ricci) scalar curvature of the full 3D
manifold of the XY Hamiltonian (22). While we remain unable
to demonstrate any sharp physical implications of these tensor
components, they do give insight geometrically into properties
of the 3D Riemann manifold.

1. Ferromagnet

For 0 < h < 1 and γ > 0, we have for the metric tensor

g11 = 1

16

1

γ (1 + γ )2
,

g22 = 1

8

γ

1 + γ
, (C1)

g33 = 1

16

1

γ (1 − h2)
,

where parameters are labeled h = λ1, γ = λ2, and φ = λ3.
This is used then to compute the determinant g = 1/[2048(1 −
h2)γ (1 + γ )3] and the inverse metric

g11 = 16γ (1 + γ )2,

g22 = 8
1 + γ

γ
, (C2)

g33 = 16γ (1 − h2).

The nonzero components of the Christoffel symbols are

	2
21 = 	2

12 = 1

2γ (1 + γ )
, 	3

33 = h

1 − h2
,

	3
31 = 	3

13 = − 1

2γ
, 	1

22 = −γ, (C3)

	1
33 = (1 + γ )2

2γ (1 − h2)
, 	1

11 = − 1 + 3γ

2γ (1 + γ )
.

The nonzero components of the Riemann tensor Rρ
σμν =

∂μ	ρ
νσ − ∂ν	

ρ
μσ + 	

ρ
μλ	

λ
νσ − 	

ρ
νλ	

λ
μσ are

R2
323 = −R2

332 = 1 + γ

4γ 2(1 − h2)
,

R2
121 = −R2

112 = 1

4γ (1 + γ )2
,

R3
232 = −R3

223 = 1

2
,

(C4)

R3
113 = −R3

131 = 1

2γ 2(1 + γ )
,

R1
212 = −R1

221 = γ

2(1 + γ )
,

R1
331 = −R1

313 = 1 + γ

2γ 2(1 − h2)
.

The nonzero components of the Ricci tensor Rσν = Rρ
σρν are

R11 = 1

4γ (1 + γ )2
− 1

2γ 2(1 + γ )
,

R22 = 1

2
+ γ

2(1 + γ )
, (C5)

R33 = − 1 + γ

4γ 2(1 − h2)
.

The scalar curvature is obtained by contracting Rμ
ν = gμσRσν

to get R = Rμ
μ . We therefore obtain

R = − 8

γ
. (C6)

This and previous information can be used to compute the
Einstein tensor Gij = Rij − 1

2gijR, which in our case has the
following nonzero components:

G11 = − 1

4γ 2(1 + γ )
, G22 = 1,

(C7)

G33 = − 1

4γ (1 − h2)
.

2. Paramagnet

For the paramagnet (γ > 0 and h > 1), the metric is no
longer diagonal, although it is block diagonal with the form

g =
(

g{1,2} 0

0 g33

)
. (C8)

The inverse metric tensor and Ricci tensor have this same
block-diagonal form. Their expressions are generally quite
complicated, so we will not reproduce them here. However,
they can be contracted to give a fairly simple form for the Ricci
(1,1) tensor Rμ

ν , which has nonzero components

R1
1 = 1

γ 2

4(2 − 2h2 + 3γ 2)(h +
√

h2 + γ 2 − 1)√
h2 + γ 2 − 1

,

R1
2 = − 1

γ

8(h2 − 1)√
h2 + γ 2 − 1

,

R2
1 = − 1

γ

4(γ 2 + 2h2 − 1 + 2h
√

h2 + γ 2 − 1)√
h2 + γ 2 − 1

,

R2
2 = 12 + 8h√

h2 + γ 2 − 1
,

R3
3 = 8 + 12h√

h2 + γ 2 − 1
− 8(h2 − 1 + h

√
h2 + γ 2 − 1)

γ 2
.

(C9)

The trace of Rμ
ν gives the scalar curvature

R = 8

[
4 + 5h√

h2 + γ 2 − 1
− 2

(h2 + h
√

h2 + γ 2 − 1 − 1)

γ 2

]
,

(C10)

which is shown in Fig. 8.
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FIG. 8. (Color online) Three-dimensional scalar curvature R as a
function of h and γ .

Unlike the two-dimensional curvature in the h-γ plane,
the three-dimensional scalar curvature has divergences far
from any critical points. For instance, at h � 1, R ∼ h2, so it
diverges in this limit. Similarly, the scalar curvature diverges
near the line of XY symmetry R ∼ 1/γ 2. We note that, similar
to the 3D Ricci scalar R, the 2D Gauss curvature of the h-φ
plane also diverges as K ∼ 1/γ 2. Geometrically, we are not
aware of many results regarding three-dimensional manifolds
with divergent (negative) scalar curvature, but that is indeed
what occurs near the line of XY symmetry. Importantly, this
is associated with a singular metric, in the sense that both ghh

and gφφ vanish at γ = 0. While these divergences are quite
interesting and merit further exploration, we have been unable
to draw any further physical or geometrical conclusions about
them at this time.
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