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Nonlinear thermoelectricity in point contacts at pinch off: A catastrophe aids cooling
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I consider refrigeration and heat engine circuits based on the nonlinear thermoelectric response of point
contacts at pinch off, allowing for electrostatic interaction effects. I show that a refrigerator can cool to much
lower temperatures than predicted by the thermoelectric figure of merit ZT (which is based on linear-response
arguments). The lowest achievable temperature has a discontinuity, called a fold catastrophe in mathematics, at a
critical driving current I = Ic. For I > Ic one can in principle cool to absolute zero, when for I < Ic the lowest
temperature is about half the ambient temperature. Heat backflow due to phonons and photons stops cooling at
a temperature above absolute zero, and above a certain threshold turns the discontinuity into a sharp cusp. I also
give a heuristic condition for when an arbitrary system’s nonlinear response means that its ZT ceases to indicate
(even qualitatively) the lowest temperature to which the system can refrigerate.
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I. INTRODUCTION

Nanostructures often have thermoelectric responses, with
electrical currents causing heat currents, and vice versa.1–3

There have recently been a number of proposals for nanos-
tructures or molecules with large thermoelectric responses4–11

which could have engineering applications for efficient ther-
moelectric power generation and refrigeration. In particular,
it is hoped that they could cool electrons well below the
temperature of standard cryostats,12–15 which are increasingly
inefficient at sub-kelvin temperatures.

However, good nanostructure refrigerators (those which
cool to significantly below their environment’s temperature)
are rarely in the linear-response regime. Linear-response
theory works for small temperature drops (compared with the
average temperature) at the scale of the nanostructure and
the scale of the electron’s inelastic scattering length. This is
often the case in bulk semoconductors,16,17 but not in such
nanostructures. See, for example, experiments on refrigeration
with S-N tunnel junctions, that generate a temperature drop
from 300 mK to 100 mK across a tunnel junction.12–15

Unfortunately, there is no general theory for the nonlinear
response of quantum systems, because interaction effects are
usually significant, and must be modeled using approximations
appropriate for the system in question. Here, I calculate the
fully nonlinear thermoelectric response of a point contact at
pinch off. This system is one of the main candidates for a
nanoscale thermoelectric, and its linear (and nearly linear)
thermoelectric response is well studied experimentally18,19 and
theoretically.18,20–22 I consider this thermoelectric response
when the temperature drop across the point contact is of the
order of the average temperature, for which the response is far
outside its linear regime. This can be modeled with a nonlinear
Landauer-Büttiker scattering theory23–27 for thermoelectric
heat transport.28 I find that the dimensionless figure of merit,
ZT , ceases to be a good measure of the thermoelectric response
outside the linear regime. Electricity generation is worse than
linear-response theory indicates, but refrigeration is better
(achieving much lower temperatures than linear-response the-
ory predicts). Indeed, the lowest temperature of the refrigerator

is a discontinuous function of the electrical current. This
discontinuity—a fold catastrophe in mathematical language—
occurs at a critical current Ic, and helps refrigeration. For
currents I < Ic the refrigerator cannot cool below a finite
temperature (about half the ambient temperature for I → Ic),
while for I > Ic it passes the catastrophe and can in principle
cool to absolute zero (see Fig. 1).

In practice a thermoelectric device’s quality is reduced by
the nonlinear backflow of heat carried by chargeless particles:
phonons and photons. When such backflow effects are weak,
the catastrophe is little affected, but cooling stops at a tem-
perature above absolute zero. At a critical value of backflow
effects, the catastrophe becomes a cusp (discontinuity in the
derivative) of the dependence of the lowest temperature on
I . The nonlinear nature of the cusp still means the lowest
achievable temperature is lower than linear theory predicts.

II. NEARLY LINEAR ANALYSIS FOR ANY SYSTEM,
AND ITS BREAKDOWN

The usual “nearly linear” analysis1 takes linear response
theory plus a joule heating term, and enables one to quantify
devices in terms of their dimensionless figure of merit ZT =
G�2/[(�el + �ph)T ], where T is the device temperature,
� is its Peltier coefficient, G and �el are electrical and
thermal conductances of electrons, while �ph is the thermal
conductivity of chargeless excitations, principally phonons and
photons. This nearly linear analysis predicts electric power
generation (when the island is heated) with an efficiency

η =
√

ZT + 1 − 1√
ZT + 1 + 1

(
1 − T0

Tisl

)
, (1)

where Tisl and T0 are the island and environment temperatures.
Typically, ZT is taken at the temperature ∼ 1

2 (T0 + Tisl).
Carnot efficiency corresponds to ZT → ∞. For refrigeration,
it predicts that the lowest achievable temperature, Tmin, is given
by

Tmin/T0 = 1 − 1
2ZT . (2)
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FIG. 1. (Color online) Heat current J (Tisl,I ) through a point
contact when driven with a current I , for negligible phonon or photon
heating. Blue indicates cooling of the island in Fig. 2(a), while red
indicates heating. The solid curve is the steady state (J = 0), with
the catastrophe at Ic. The straight line is the maximum current, Imax,
corresponding to infinite bias.

Equation (2) is derived1 by combining linear response terms
(the Peltier effect due to the current I , and heat flow due to
the temperature difference, T0 − Tisl), with a nonlinear I 2 term
corresponding to joule heating. Heat flow out of the island in
Fig. 2(a), due to a current I passing though element 1, then the
island, and then element 2, is

J (Tisl,I ) � �−I − �+(T0 − Tisl) − 1
2G−1

+ I 2, (3)

for �− = �2 − �1, �+ = �1 + �2 + �ph, and G−1
+ =

G−1
1 + G−1

2 . Here �i , Gi , and �i are the Peltier coefficient,
and the electrical and thermal conductances of element i. The
steady-state curve, J = 0, gives Tisl as a quadratic function
of I . The parabola’s minimum is Tmin in Eq. (2) with ZT =
G+�2

−/(�+T ).
For a point contact at pinch off (see Sec. III),

linear response28,32–37 gives G1 = (e2/h)(1/2), �1 =
−(kBT0/e)2 ln(2), and38 �1 = (k2

BT0/h)(π2/6 − 2[ln(2)]2).
Thus ZT � 1.4 so

η = 0.22(1 − T0/Tisl), Tmin = 0.3T0. (4)

However, Eq. (3) ceases to apply whenever thermoelectric
effects are strong enough that the nonlinear terms that were not
included in Eq. (3) become relevant. Heuristically, Eq. (3) fails
to get the physics qualitively correct for any system where the
nonlinear Peltier term,21 �̃ I 2, is larger than the joule heating
term 1

2G−1
+ I 2. The reason being that including �̃ I 2 in Eq. (3)

then changes the sign of the prefactor on I 2; so one must go
beyond I 2 to find the steady-state curve’s minimum. Including
this �̃ term will then make the refrigerator better than if it
were neglected. However, higher order terms (I 3 or higher)
will then also be crucial in determining the lowest temperature
the refrigerator can achieve.

This breakdown of the nearly linear theory as �̃ increases
is discussed in Sec. VI for a particular system (a point contact
in parallel with a tunnel barrier) in which �̃ can be varied;
it indeed occurs when �̃ is of order 1

2G−1
+ . Readers familiar

with simple φ4 theory will see this is similar to the para- to

FIG. 2. (Color online) Thermoelectric circuits made with point
contacts shown in (a), (b); “e” (“h”) means the point contact is in
a material whose charge carriers are electrons (holes). One should
minimize the heat current carried by phonons and photons, Jph, by
suspending the island.29,30 The temperature of the island in similar
setups (albeit not suspended) has been probed experimentally using
a quantum dot as thermometer,31 although not yet in the regime of
refrigeration. (c) Motion of charges in the gates (arrows) caused by
making VL positive, which partially screens VL at some distance from
the point contact. (d) Point contact 1 tuned to pinch off (Epc equals
the island’s chemical potential) by adjusting Vg.

ferromagnetic crossover of a magnet in a B field upon reducing
the temperature.39 However, unlike in φ4 theory, for small
barrier transmission (or a point contact alone), the analysis
shows such strong nonlinearities (catastrophe, etc.) that the
minimum is not captured by a perturbative expansion in I up
to any order.

Of course, the above heuristic argument assumes that
nonlinearities in the thermoelectric response are significant
when the linear thermoelectric response is significant. While
in most cases this is true, the S-N tunnel junction is a
counterexample; it has no thermoelectric response in the linear
regime (so ZT = 0), but does have a large nonlinear response
which has been used for refrigeration.13–15 This is because the
electron and holes have the same transmission at zero bias (so
there is no thermoelectric response), but nonlinear charging
effects enhance the transmission of electrons over those of
holes creating an entirely nonlinear thermoelectric effect. It
would be interesting to see if such S-N junctions exhibit the
type of catastrophes found in this work for point contacts.

064302-2



NONLINEAR THERMOELECTRICITY IN POINT CONTACTS . . . PHYSICAL REVIEW B 88, 064302 (2013)

III. FULLY NONLINEAR ANALYSIS
FOR POINT CONTACTS

The thermoelectricity literature1–3 discusses J (Tisl,I )—as
in Eq. (3) above—rather than J (Tisl,V ) for voltage drop, V .
This is because different thermoelectric devices are arranged
in series electrically [see Figs. 2(a) and 2(b)], so I is the
same in all of them (unlike voltage drops). Thus it is easier
to get response of a series of elements from each element’s
J (Tisl,I ) than from each element’s J (Tisl,V ). For complicated
nonlinear responses, the former is straightforward, while the
latter is extremely difficult; thus I consider J (Tisl,I ).

I take the island to be classical; i.e., big enough for particles
entering it to thermalize to a Fermi distribution at temperature
Tisl before escaping. I also assume quantum charging effects
(Coulomb blockade, etc.) within the island are negligible,
while classical charging effects ensure electroneutrality (i.e.,
that the sum of electrical currents into the island is zero).
References 40–45 consider cases where there is a quantum dot
in place of the classical island. In our case, each point contact
can be treated by a separate Landauer-Büttiker scattering
matrix analysis;28 see also Refs. 32–37. I generalize these
heat currents to the nonlinear regime,46 including electrostatic
(Hartree-like) interaction effects in a self-consistent and
gauge-invariant manner, as Refs. 24–27 did for charge current;
see also Refs. 47 and 48. To go beyond the voltage-squared
contributions to transport (which Ref. 24 treated in detail),
I use a simple model of interactions, which is none the less
gauge invariant and self consistent. The charge current, Ii , and
heat current, Ji , into lead i of a given nanostructure are

Ii = −
∫ ∞

−∞

dε

h

∑
j

qAij ({ε − qVk}) fj (ε), (5)

Ji = −
∫ ∞

−∞

dε

h

∑
j

(ε − qVi) Aij ({ε − qVk}) fj (ε), (6)

where fj (ε) = (1 + exp[(ε − qVj )/(kBTj )])−1 is the Fermi
function, and q is the charge of the carriers; electrons with
q = −e in point-contact 1 and holes with q = e in point-
contact 2. The energy ε and all voltages Vk are measured
from the same external reference. The transmission function
of a particle through the nanostructure from lead j to
lead i is Aij ({ε − qVk}) = Tr[1iδij − S†

ij ({ε − qVk})Sij ({ε −
qVk})], where Sij is the scattering matrix from lead j to
lead i, and the trace is over all modes of those leads. Here
Sij must be found self-consistently; it depends on the charge
distribution in the nanostructure, which in turn depends on
Sij . Writing Sij as a function only of energy differences,
{ε − qVk}, makes the gauge-invariance explicit; it satisfies24

[(d/dε) + ∑
k(d/d(qVk))]Aij = 0.

Point-contact 1 is a two-lead nanostructure with electron
charge carriers (q = −e). The gauge invariance means one is
free to measure all energies ε and voltages Vk (including Vg)
from the island’s chemical potential (the point-contact’s M
lead). I assume that a proportion (1 − a) of VL is screened
by the electrostatic gates a long way from the narrowest
point of the point contact, while the rest is screened self-
consistently by the electron gas [Fig. 2(d)] close to the point
contact. Then the screened point contact induces a potential
barrier of height, Epc (measured from the island’s chemical

potential), typically obeying Epc − Eg = Escr(aqVL), where
Escr is due to screening. Here Eg can be tuned at will, since
it is eVg minus a geometry-dependent constant. Assuming a
long enough point contact that there is negligible tunneling,
one has ALM(ε − Epc > 0) = −1 (perfect transmission) and
ALM(ε − Epc < 0) = 0 (no transmission).49 As an example,
the Appendix gives a simple screening model for which I derive
Escr(aqVL) self-consistently. However, in what follows I allow
the nature of screening [both a and the form of Escr(aqVL)] to
be completely arbitrary.

For any given VL, one can adjust Vg to tune to pinch off
(Epc = 0). If the gates dominate screening (a → 0), then Epc

is VL independent, making this straightforward. Otherwise,
the point contact should be calibrated prior to use; finding the
pinch-off point (the Vg at which current starts to flow), as a
function of VL. At pinch off, the currents from point-contact 1
into the island are

I (Tisl,VL) = ekB

h
[Tisl ln(2) − T0 ln(1 + e−eVL/kBT0 )], (7)

J1(Tisl,VL) = −k2
B

h

[
T 2

isl
π2

12
+ T 2

0 Li2(−e−eVL/kBT0 )

]
, (8)

where Li2(z) is a dilogarithm function. Equations (7) and (8)
give

J1(Tisl,I ) = −k2
BT 2

0

h

[
π2T 2

isl

12T 2
0

+ Li2(1 − exp[I(Tisl,I )])

]
, (9)

where I defineI = h[Imax(Tisl) − I ]/(ekBT0) and note that I �
Imax(Tisl) = ekBTisl ln[2]/h. This function is given by the color
plot in Fig. 1. For point-contact 2 (where carriers are holes not
electrons) one takes −e ↔ e, then J2(Tisl,I ) = J1(Tisl,I ) since
I2 = −I .

For I � 1, one can use Li2(z) = z + O[z2] to write

J1 = (k2
BT 2

0 /h)[I − (π2/12)(Tisl/T0)2 + O[I2]], (10)

so J1 as a quadratic in temperature and linear in current,
the reverse of the nearly linear theory in Eq. (3). This
approximation captures the features of the exact result plotted
in Fig. 1, except the top-left corner. This corner is the
linear-response regime [small (T0 − Tisl) and I ], where one
has Eq. (9) with Li2(−1 + z) � −π2/12 + ln[2]z.

IV. REFRIGERATION WITHOUT PHONONS OR PHOTONS

Heat flow into the island is Jtotal ∝ J1 for the devices in
Figs. 2(a) and 2(b); Jtotal = 2J1 for the thermocouple. The
black curves in Fig. 1 are Jtotal = 0, giving the steady-state
temperature (solid for stable steady states and dashed for
unstable ones). Solid curves give the temperature the island
will be cooled to by a current I . Equation (10) tells us the steady
state has I as a quadratic function of Tisl; this approximation
gives the catastrophe at eIc/(ekBT0) = 3(ln[2]/π )2 � 0.14
with Tisl/T0 = 6 ln[2]/π2 � 0.42, which is very close to the
exact solution in Fig. 1.

A. Voltage dependence of cooling

As mentioned above, one typically considers the response
of thermoelectric devices as a function of current I , rather
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FIG. 3. (Color online) Heat current as a function of V and Tisl,
with the steady state, J = 0, marked by the black curve [note the
darkest color is used for all hJ/(kBT0)2 > 0.18 and white for all
hJ/(kBT0)2 < −0.25]. Superimposed are lines of constant current
(dashed); these are hI/(ekBT0) = 0, 0.08, 0.16, 0.24, 0.32 from
bottom to top.

than voltage V , since I is conserved in series electrical circuits
like those in Figs. 2(a) and 2(b). However, the origin of the
catastrophe can be seen in Fig. 3, which compares the nonlinear
response of the point contact as a function of voltage, Eq. (8),
with curves of constant current given by Eq. (7). Curves with
I < Ic, such as hI/(ekBT0) = 0.08, cross from cooling to
heating and back again, while curves with I > Ic, such as
hI/(ekBT0) = 0.16,0.24,0.32, never enter the heating regime.
For larger I , the temperature saturates at a higher value. All of
this fits with Fig. 1.

Note that if one wants the voltage response of the circuits
in Figs. 2(a) and 2(b) one cannot easily get it from the voltage
response of each element, as plotted in Fig. 3. This is because
the voltage drop across each thermoelectric element depends
nonlinearly on Tisl, even when the total voltage drop across all
elements is fixed [unless all thermoelectric elements have the
same I (Tisl,V )]. Indeed the simplest way to get the voltage
response of the circuits in Figs. 2(a) and 2(b) is to take the heat
flow in each circuit element as a function of I (as plotted in
Fig. 1). Since I is the same in every element, one can get the
heat flow as a function of the voltage drop across the circuit as
the sum of voltage drops across each element (as a function of
Tisl and I ).

V. REFRIGERATION WITH PHONONS OR PHOTONS

I assume the metallic island is a suspended nanostructure29

in a cryostat at 0.3 K, coupled to the substrate by suspended
nanowires carrying the wires forming the cooling circuit.
Wien’s displacement law gives a photon wavelength of 10 mm
at 0.3 K. For any island smaller than a few millimeters, bulk
blackbody radiation is replaced by a single photon mode of
noise flow between the island and its environment along the
wires,50,51 with Jph = rα0(T 2

0 − T 2
isl), where α0 = π2k2

B/(6h)
is the “quantum” of heat flow and r is the mode’s transmission.
If the environment part of the circuit has an inductance52 >μH
(or its capacitor equivalent), then r � 1.

For a nanowire with Nph phonon (vibrational) modes, Jph =
α(T 2

0 − T 2
isl), with α = NphT α0, with average transmission

per mode of T . Experimental nanowires29 show α ∼ 0.3α0 at

ambient temperature T0 = 0.3 K. For this α, the steady-state
curve has a pronounced cusp [uppermost v-shaped curve in
Fig. 4(a)], very different from the parabola given by the
standard nearly linear theory. Figure 4(b) shows that this cusp
persists up to such larger α that there is very little refrigeration
(note the vertical axis shows Tisl/T0 is only slightly below one
for any I ). The α chosen for the plot in Fig. 4(b) corresponds to
that observed in experiments in Refs. 29 and 30 at 3 K. This is
about 30 times larger than the minimum phonon conductance
observed in Ref. 29 at 0.3 K. It also shows that the nearly
linear theory (dashed parabola) significantly underestimates
the optimum refrigeration.

Taking the longitudinal phonon modes (velocity
9000 ms−1) and three types of transverse modes (velocity
6000 ms−1), the above experimental nanowires30 (with cross
section 200 nm×100 nm) have Nph ∼ 20 at T0 ∼ 0.3 K.
Evidently T ∼ 1/60; its smallness is probably due to the
frequency mismatch between the phonons in the nanowire and
the bulk. If wires with cross section 50 nm×50 nm could be
made, then Nph ∼ 4. Thus α ∼ 0.06α0 can be expected (i.e.,
five times smaller than the current nanowires); the dashed
curve in Fig. 4(a) shows the catastrophe emerging at such
α. To reduce α further, one can add surface roughness or
serpentines.30

VI. CROSSOVER FOR POINT CONTACT
IN PARALLEL WITH BARRIER

I ask how one can induce a transition to the parabolic
behavior in Eq. (3), since phonons, etc., do not do so? I find

FIG. 4. (Color online) (a) Steady-state refrigeration curves,
J (Tisl,I ) = 0, for increasing heat flow due to phonons and photons;
α/α0 = 0,0.02,0.06,0.12,0.3. (b) The solid v-shaped curve is the
steady-state refrigeration curve, J (Tisl,I ) = 0 for α = 10α0, i.e.,
about 30 times stronger phonon backflow than (a)’s uppermost curve.
It is very different from the nearly linear theory for the same α (dashed
parabola).
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FIG. 5. (Color online) Steady-state refrigeration curves for a
composite system; point contact in parallel with a barrier of con-
ductance Gbarrier = e2g/h for g = 0,0.001,0.005,0.025,0.1,0.25,1
(solid curves). The parabolas (dashed) are the nearly linear approxi-
mation for g = 0,1/4; for g = 1 the difference from the exact curve
is not visible.

that a transition only occurs upon reducing the ε dependence
of Aij , lowering the ratio of the thermoelectric response
to the usual electric response—for example, replacing the
point contact with a composite system consisting of a point
contact in parallel with a tunnel barrier whose transmission
is ε independent. Figure 5 shows the steady-state response
of the composite system, for barrier conductance Gbarrier =
e2g/h. Upon increasing g from zero, a transition occurs
at g = gc ∼ 1/200; for g > gc, the curve is single valued,
so Tmin becomes a continuous function of I . The nearly
linear theory works for g � 1; deviations are still visible for
g = 1/4 (cf. solid and dashed curves). This fits the argument
in Sec. II, since the composite system has �̃ < 1

2G−1 for
g > (3 ln[2] − 1)/2 � 0.53.

VII. HEAT-ENGINE EFFICIENCY

Returning to the case of a point contact alone (without
a tunnel barrier), I now consider its maximum efficiency as
a heat engine. For Tisl > T0, the circuit in Fig. 2(a) provides
electrical power P = IV to any load connected between L and
R. To calculate the maximum electrical power P (Tisl,I ) that a
heat engine can extract from a heat flow J (Tisl,I ), one assumes
an ohmic load—so V (Tisl,I ) = I/Gload—is connected across
its terminals, and adjust Gload to optimize the ratio of the
power at the load P (Tisl,I ) = IV (Tisl,I ) to the heat flow
J (Tisl,I ). This corresponds to finding the I = Iopt which
maximizes P (Tisl,I )/J (Tisl,I ). Maxima and minima are given
by P ′J = PJ ′ where the primed is (d/dI ). Given V (Tisl,I )
and J (Tisl,I ), one can solve this to find Iopt. Optimal efficiency
is η = P (Iopt)/J (Iopt).

As a warmup, I consider the usual linear prob-
lem, with V (Tisl,I ) = S(Tisl − T0) − G−1I and J (Tisl,I ) =
�(Tisl − T0) + �I , with � = 
/G and S = B/G. Calculat-
ing the optimal efficiency in the manner described above, I
find Iopt = (�/�)[

√
Z(Tisl)Tisl + 1 − 1](Tisl − T0). Dropping

T dependences of ZT , one gets Eq. (1).
Now I use the same method to get the efficiency in the

nonlinear regime. An analytic solution of P ′J = PJ ′ can be
found for large (Tisl/T0), using the fact (confirmed by the nu-
merics) that in this limit −eV1(Iopt)/(kBT0) � 1 with V1 < 0.
Otherwise the solution must be found numerically (see below).

FIG. 6. (Color online) Heat-engine efficiency curves for α/α0 =
0,0.02,0.06,0.12,0.3,1. Dashed lines are the linear-response predic-
tions, Eq. (1), for α/α0 = 0,1.

For large (Tisl/T0), I take ln[1 + eμ] → μ and Li2(−eμ) →
− 1

2μ2 for large μ, and find eV1(Tisl,I )/(kBT0) � −tisl ln[2] +
Ĩ with hJ1(Tisl,I )/(kBT0)2 � −κt2

isl/2 − ln[2] Ĩ tisl + Ĩ 2/2,
where I define tisl = Tisl/T0, Ĩ = hI/(ekBT0), and κ = π2/6 −
ln2[2] � 1.16. The heat current from the hot source into
the device is J (Tisl,I ) = −J1(Tisl,I ), and P = −V1(Tisl,I )I
(given that V1 < 0). In this case P ′(Tisl,Iopt)J (Tisl,Iopt) =
P (Tisl,Iopt)J ′(Tisl,Iopt) is a quadratic equation for Iopt; solving
it gives

hIopt

ekBT0
= κ

ln[2]
[
√

1 + ln2[2]/κ − 1]
Tisl

T0
.

Without phonons or photons, the optimal efficiency tends to
1 −

√
1 − 6(ln[2]/π )2 � 15.9% for Tisl → ∞ (solid arrow in

Fig. 6). Solving P ′J = PJ ′ with Eqs. (7) and (9) numerically,
to find Iopt for different Tisl/T0, I plot η against (Tisl − T0)/Tisl

in Fig. 6. I have no simple argument why the curves are slightly
peaked at (Tisl − T0)/Tisl ∼ 0.85.

VIII. CATASTROPHE AWAY FROM PINCH OFF

Figure 7 gives an example showing the catastrophe is still
present when the point contact is away from pinch off; i.e.,
when the barrier’s peak is above the chemical potential of the
island in Fig. 1. The catastrophe is present when 0 < Epc �
kBT0, which corresponds to the parameter regime where a
significant thermoelectric response was found experimentally

FIG. 7. (Color online) Heat current when the barrier peak is at
Epc = kBT0/4. The results which give this curve will be discussed
elsewhere. For comparison, the thin-dashed curves are the steady
state for Epc = 0 in Fig. 1.
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in Ref. 18. The formulas leading to Fig. 7 are similar to
Eqs. (7)–(9) but rather longer, so I do not give them here.

IX. CONCLUDING REMARKS

I have shown that the point contact (arguably the simplest
thermoelectric nanostructure) has a rich nonlinear behavior. In
particular, when it is used as a refrigerator, it exhibits multiple
steady states (stable and unstable) and a fold catastrophe,
or a sharp cusp when there is significant phonon backflow.
I see no reason to think that more complicated nanoscale
thermoelectric systems4–11 have less rich behaviors. Indeed
a large ZT is a strong hint that its nonlinear Peltier term,
�̃I 2 may dominate over its joule heating term − 1

2G−1I 2.
Section II then gives a simple argument that ZT ceases to
give even a qualitative indication of how good a refrigerator it
is. Thus the fully nonlinear response of such systems requires
detailed study, beyond the weak nonlinearities considered in
Refs. 17, 21, 53, and 54.

Finally, I recall that this work considered the case where
the charging effects of electrons at the point contact were well
screened by the gates (or could be compensated for by the
gates), meaning the Epc in Fig. 2 does not significantly change
with bias. Elsewhere, I will show that qualitatively similar
effects can occur for point contacts (and other systems) without
gates, for which Epc depends on the bias.

Since the submission of this work a number of closely
related works have appeared.55–58
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APPENDIX: EXAMPLE OF A SELF-CONSISTENT
SOLUTION

Here is a simple model of the point contact for which
the self-consistent solution can be found easily. However,
the results in the body of the manuscript apply for almost
any self-consistent model. The point contact is treated as a

one-dimensional scattering problem (along the x axis); see
Fig. 2(d). Close to the point contact, this takes the form
qV (x) = Eg − κx2 + qVscr(x − xpc) with energy measured
from the island’s chemical potential. The transverse confine-
ment induces the (Eg − κx2) term, where Eg can be tuned,
since it equals eVg minus a geometry-dependent constant. The
qVscr term is screening inside the electron gas, which I take as

Vscr(x) =

⎧⎪⎨⎪⎩
aVL for x < −lscr,

aVL(lscr − x)/(2lscr) for |x| � lscr,

0 for x > lscr,

with xpc being the self-consistently determined peak of
qV (x). A little algebra gives xpc = −aqVL/(4κlscr); thus
the energy at the peak is Epc = qV (xpc) = Eg + 1

2aqVL(1 −
aqVL/(8κl2

scr)). Finally, I note that both a and lscr depend on
the scattering matrix of the junction, which in turn depends
on Epc. To solve this problem self-consistently, I assume one
is in the regime where epc = Epc − Eg is small enough to
approximate a = a0(1 + ba epc) and lscr = lscr0(1 + blepc). If
necessary, a0,lscr0,ba,bl can be found by simulating Poisson’s
equation; typically epc is small for small a. Then Epc is equal
to a linear function of itself; rearranging this gives

Epc − Eg = a0qVL/2 − C(qVL)

1 − a0baqVL + 2C(qVL)[ba − bl]
,

where I define C(qVL) = (a0qVL/lscr0)2/(16κ). Thus the
right-hand side of this equation is the Escr(aqVL) mentioned
in the body of the text. As mentioned earlier, I assume that
tunneling at energies ε < Epc is negligible, soALM(ε − Epc >

0) = −1 and ALM(ε − Epc < 0) = 0. To see that this respects
gauge invariance, I recall that ε,Epc,VL,g are all measured
relative to the island’s potential, and replace them by quantities
measured from a fixed external reference, so the island is
at ṼM. For clarity, here [unlike in the paragraph containing
Eq. (6)] it is necessary to use a tilde to explicitly indicate
quantities measured from the external reference. I make the
replacement qVL = (̃ε − qṼM) − (̃ε − qṼL). From this, one
sees that ALM(ε − Epc) is only a function of the set of
differences {̃ε − qṼk}, and so respects gauge invariance.
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