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The Liouville-Lanczos approach to linear-response time-dependent density-functional theory is generalized
so as to encompass electron energy loss and inelastic x-ray scattering spectroscopies in periodic solids. The
computation of virtual orbitals and the manipulation of large matrices are avoided by adopting a representation of
response orbitals borrowed from (time-independent) density functional perturbation theory and a suitable Lanczos
recursion scheme. The latter allows the bulk of the numerical work to be performed at any given transferred
momentum only once, for a whole extended frequency range. The numerical complexity of the method is thus
greatly reduced, making the computation of the loss function over a wide frequency range at any given transferred
momentum only slightly more expensive than a single standard ground-state calculation and opening the way to
computations for systems of unprecedented size and complexity. Our method is validated on the paradigmatic
examples of bulk silicon and aluminum, for which both experimental and theoretical results already exist in the
literature.
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I. INTRODUCTION

Plasma oscillations in solids are possibly the simplest
manifestation of collective effects in condensed matter, and
their understanding in terms of plasmon modes is one of the
earliest triumphs of quantum many-body theory.1–3 On the
experimental side, collective charge-density fluctuations can
be probed through electron energy loss (EEL) or inelastic x-ray
scattering (IXS) spectroscopies, two techniques that have been
steadily producing a wealth of data since the early 1960s and
1970s, respectively.4,5 In the present day the engineering of
novel materials down to the nanometer scale makes it possible
to design devices where electromagnetic fields interact with
collective oscillations of structures of subwavelength size. The
strong dependence of plasmon dynamics on the size and shape
of these nanostructures holds the promise of an extraordinary
control over the optical response of the resulting devices, with
applications to such diverse fields as photovoltaics,6 proton
beam acceleration,7 and biosensing,8 to name but a few. This
is plasmonics, i.e., photonics based on collective electronic
excitations in strongly heterogeneous systems, where surface
effects play a fundamental role. Plasma oscillations at surfaces
have recently aroused a renewed attention by themselves since
it was shown that some metal surfaces unexpectedly exhibit
acoustic plasmons.9–14 These are collective charge excitations
localized at the surface, whose frequency vanishes linearly
with the wave vector, and are not damped by the bulk electron-
hole continuum.15,16 It is thought that these modes may offer
the possibility of light confinement at designated locations
on the surface, with possible applications in photonics and
nano-optics.17

Most of the theoretical understanding of the optical
response in nanoplasmonic systems relies on a classical
approach: the nanostructure is usually described as an as-
sembly of components, each characterized by an effective
macroscopic dielectric function and separated from the others
by abrupt interfaces. The overall optical response is then
computed by solving Maxwell’s equation for the resulting het-
erogeneous system.18 When distances between the nanoscale
components are themselves nanometric, however, quantum
effects must be accounted for, and a fully quantum-mechanical
description is called for.

Early quantum-mechanical approaches to the dynamics
of charge-density fluctuations1–3 were based on the random-
phase approximation as applied to the jellium model that, albeit
exceedingly successful in simple metals and semiconductors,
is not suitable for more complex materials, nor can it capture
the fine, system-specific features of even simple ones. The
effects of crystal inhomogeneities on plasmon resonances in
semiconductors (the so-called local-field effects) were first ad-
dressed in the late 1970s,19 using the empirical pseudopotential
method,20 along similar lines as previously followed for the
optical spectra.21 In the present day the method of choice for
describing charge dynamics in real materials (as opposed to
simplified models, such as the jellium one) is time-dependent
(TD) density-functional theory (DFT).22,23 Although some
attempts to investigate EEL and IXS spectra using many-body
perturbation theory have been made,24–27 the vast majority
of the studies existing to date rely on TDDFT, which in fact
has been successfully used to study plasmons in a number of
bulk28–48 and surface9–14 systems.
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The conventional TDDFT approach to plasmon dynamics
relies on the calculation of the charge-density susceptibility χ

(or, equivalently, inverse dielectric matrix ε−1), starting from
the independent-electron susceptibility χ0 via a Dyson-like
equation.49 Although successful in (relatively) simple systems
that can be described by unit cells of moderate size, this
methodology can hardly be applied to more complex systems,
such as low-index or nanostructured surfaces, because of its
intrinsic numerical limitations. In particular, (i) the calculation
of χ0 requires the knowledge of a large number of empty
states, which is usually avoided in modern electronic-structure
methods, (ii) the solution of the Dyson-like equation requires
the manipulation (multiplication and inversion) of (very) large
matrices, and (iii) all the above calculations have to be repeated
independently for each value of the frequency to be sampled.

In this paper we introduce a method, based on TD density-
functional perturbation theory (DFPT),50–53 that allows us to
calculate EEL and IXS cross sections avoiding all the above
drawbacks and thus lending itself to numerical simulations
in complex systems, potentially as large as several hundred
independent atoms. Although this methodology is general in
principle, our implementation relies on the pseudopotential
approximation, which limits its applicability to valence (or
shallow-core) loss spectra. Inner-core loss spectra are currently
addressed using different methods, as explained, e.g., in
Refs. 54–56. The salient features of our method are as follows:
(i) the adoption of a representation from time-independent
DFPT57 allows us to avoid the calculation of Kohn-Sham (KS)
virtual orbitals and of any large susceptibility matrices (χ or
χ0) altogether, and (ii) thanks to the use of a Lanczos recursion
scheme, the bulk of the calculations can be performed only
once for all the frequencies simultaneously. The numerical
complexity of the resulting algorithm is comparable, for the
whole spectrum in a wide frequency range, to that of a single
standard ground-state (or static response) calculation.

This paper is organized as follows. In Sec. II we describe our
basic theoretical and algorithmic frameworks, including the
implementation of the proposed methodology for the response
of a periodic system to a monochromatic perturbation, relevant
to the calculation of EEL and IXS cross sections. In Sec. III
we benchmark our technique on the prototypical examples of
bulk silicon and aluminum, for which many experimental and
well-established theoretical results already exist; finally, our
conclusions are presented in Sec. IV.

II. THEORY AND ALGORITHMS

Electron energy loss spectroscopy probes the diffusion of
a beam of fast electrons through a solid. According to Van
Hove,58 the corresponding double-differential cross section
for inelastic scattering reads4

(
d2σ

d�dω

)
EEL

=
(

4πe2

Q2

)2
m2

4π2h̄4

kf

ki

S(Q,ω), (1)

where −e and m are the electron charge and mass, ki , kf ,
and Q = ki − kf are the incoming, outgoing, and transferred
momenta, respectively, and S(Q,ω) is the dynamic structure
factor per unit volume.

While EEL spectroscopy is not suitable for samples
enclosed in high-pressure cells, plasmon dynamics under

pressure can be probed by IXS spectroscopy.59,60 The double-
differential cross section reads, in this case,(

d2σ

d�dω

)
IXS

=
(

e2

mc2

)2

(ei · ef )2 ωf

ωi

S(Q,ω), (2)

where ei and ef are the incoming and scattered photon
polarization directions and ωi and ωf are the correspond-
ing frequencies. According to the fluctuation-dissipation
theorem,61 S(Q,ω) is proportional to the imaginary part of
the charge-density susceptibility χ (Q,Q; ω):

S(Q,ω) = − h̄

π
Im χ (Q,Q; ω). (3)

In periodic solids the transferred momentum can be split
into a component in the first Brillouin zone q and a reciprocal-
lattice vector G as Q = q + G, and χ is often expressed in
terms of the inverse dielectric matrix, defined as62,63

ε−1
GG′(q,ω) = δG,G′ + 4πe2

|q + G|2 χ (q + G,q + G′; ω), (4)

where ε−1
GG′(q,ω) = ε−1(Q,Q′; ω). The function

−Im[ε−1(Q,Q; ω)] is usually referred to as the loss
function.

A. Time-dependent density-functional perturbation theory

In TDDFT electron dynamics is described by TD one-
electron equations for the occupied molecular orbitals. These
TD KS equations read62

i
∂ϕv(r,t)

∂t
= ĤKS(t) ϕv(r,t), (5)

where ϕv(r,t) and ĤKS(t) are the TD KS orbitals and
Hamiltonian (quantum-mechanical operators are indicated
with a caret), respectively, the index v spans the Nv occupied
(valence) states, and atomic units (e = m = h̄ = 1) are used
henceforth. The KS Hamiltonian reads

ĤKS(t) = − 1
2∇2 + Vext(r,t) + VHXC(r,t), (6)

where Vext(r,t) and VHXC(r,t) are the external and Hartree-
plus-exchange-correlation (HXC) potentials, respectively. Let
us assume that the external potential can be split into a static
term plus a small TD perturbation:

Vext(r,t) = V ◦
ext(r) + λ(t)V ′

ext(r), (7)

where λ(t) is the TD strength of the perturbation. The total
KS potential is perturbed accordingly: V ′(r,t) = λ(t)V ′

ext(r) +
V ′

HXC(r,t), with V ′
HXC being the response HXC potential. The

response of the KS orbitals is defined as

ϕv(r,t) = e−iεv t [ϕ◦
v (r) + ϕ′

v(r,t)], (8)

with ϕ◦
v (r) and εv being the unperturbed ground-state KS

orbitals and energies, respectively. The charge-density suscep-
tibility is the response of the electron charge density, which
only depends on the projection of the response of the valence
KS orbitals onto the empty-state (conduction) manifold. The
Fourier transforms [indicated by a tilde (˜ ) hereafter] of
such projected response orbitals are obtained from standard
first-order perturbation theory via the linear systems:

(Ĥ ◦ − εv − ω)ϕ̃′
v(r,ω) = −P̂cṼ

′(r,ω)ϕ◦
v (r), (9)
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where P̂c is the projector over the unperturbed conduction-state
manifold. Expressing the latter in terms of valence orbitals
(P̂c + P̂v = 1) allows one to compute response KS orbitals
without making any reference to unoccupied states, much in
the same way as it is done in time-independent DFPT.57 The
solution of Eq. (9) requires one to express the total response
potential Ṽ ′(r,ω) in terms of its own solutions, through
the response charge density, which is the diagonal of the
response density matrix, n′(r,t) = ρ ′(r,r; t), whose Fourier
transform is defined as

ρ̃ ′(r,r′; ω) = 2
Nv∑
v=1

[ϕ̃′
v(r,ω) ϕ◦ ∗

v (r′) + ϕ◦
v (r)ϕ̃′ ∗

v (r′,−ω)],

(10)

where the factor 2 accounts for spin degeneracy in a nonpolar-
ized system. Note that ñ′(r,ω) = ñ′∗(r,−ω), as a consequence
of the reality of n′(r,t). The equation for the complex conjugate
of ϕ̃′

v(r,ω) reads

(Ĥ ◦ − εv + ω)ϕ̃′ ∗
v (r,−ω) = −P̂cṼ

′(r,ω)ϕ◦ ∗
v (r), (11)

where use has been made of the reality of the perturbing
potential [Ṽ ′(ω) = Ṽ ′∗(−ω)]. Equations (9) and (11) describe
the resonant and antiresonant contributions to charge-density
response, respectively. Their left-hand sides just differ by the
sign of the frequency, while, by using time-reversal symmetry
of the unperturbed system (ϕ◦ ∗

v = ϕ◦
v ), their right-hand sides

can be made to look alike. The equations for the resonant
and antiresonant components of the charge-density response
are coupled by the HXC potential, which is determined
self-consistently by the density response itself, through the
relation

Ṽ ′
HXC(r,ω) =

∫
κ(r,r′) ñ′(r′,ω) dr′, (12)

where

κ(r,r′) = 1

|r − r′| + δVXC(r)

δn(r′)
(13)

is the HXC kernel, which we assume to be independent of
frequency, consistent with the adiabatic DFT approximation.64

The TD KS equations (5) can be equivalently expressed
in terms of a quantum Liouville equation for the one-particle
density matrix ρ̂(t):51,53

i
dρ̂(t)

dt
= [ĤKS(t),ρ̂(t)]. (14)

Upon linearization and Fourier transformation, Eq. (14) takes
the form

(ω − L̂) · ρ̂ ′(ω) = λ̃(ω)[V̂ ′
ext,ρ̂

◦], (15)

where ρ̂◦ is the unperturbed density matrix and L̂ is the
Liouvillian superoperator, defined by the relation51,53

L̂ · ρ̂ ′ = [Ĥ ◦,ρ̂ ′] + [V̂ ′
HXC[ρ̂ ′],ρ̂◦]. (16)

The response of an arbitrary one-electron Hermitian operator Â

to an external perturbation V̂ext is described by the generalized

susceptibility:

χAV (ω) ≡ 1

λ̃(ω)
Tr[Âρ̂ ′(ω)] (17)

= (Â,(ω − L̂)−1 · [V̂ ′
ext,ρ̂

0]), (18)

where (·,·) indicates a scalar product in an abstract operator
manifold.52 Equation (18) states that, within TDDFT, the most
general susceptibility can be expressed as an off-diagonal
element of the resolvent of the Liouvillian.

B. The Liouville-Lanczos algorithm

The calculation of susceptibilities from Eq. (18) requires
the explicit representation of the response density matrix and
of the Liouvillian superoperator acting on it. The minimum
dimension of such a representation is 2 × Nv × Nc, where
Nc = N − Nv is the number of virtual (conduction) orbitals
and N is the dimension of one-electron basis set.65 The
inversion of the Liouvillian appearing in Eq. (18) is a
formidable task in typical large-scale plane-wave calculations,
where the number of occupied states can be as large as several
hundreds to a few thousands and the number of virtual orbitals
can be a hundred times as large. The recursion method by
Haydock, Heine, and Kelly66 offers an elegant solution to a
similar problem, namely, the calculation of a diagonal element
of the resolvent of a Hermitian matrix in terms of a continued
fraction, whose coefficients are frequency independent. The
Lanczos biorthogonalization algorithm51,53,67 allows one to
generalize this procedure to the calculation of off-diagonal
elements of the resolvent of a non-Hermitian matrix. The
resulting numerical workload for calculating the full spectrum
in a whole wide frequency range is comparable to that of
a single ground-state (or static response) calculation. Other
flavors of the Lanczos-type algorithm can be found in Refs. 68
and 69.

1. The Lanczos biorthogonalization algorithm

We want to calculate matrix elements such as

g(ω) = (u,(ω − L)−1v), (19)

where L is a P × P non-Hermitian matrix and u and v are
generic P -dimensional arrays. To this end we define two
sets of Lanczos vectors, {vj } and {uj }, through the recursive
relations67

βj+1 vj+1 = Lvj − αj vj − γj vj−1, (20)

γj+1 uj+1 = L� uj − αj uj − βj uj−1, (21)

where one defines u0 = v0 = 0, u1 = v1 = v and the αj , βj ,
and γj Lanczos coefficients are determined by the biorthogo-
nality conditions (uj ,vj ) = 1 and (uj−1,vj ) = (uj ,vj−1) = 0.
The set of vectors and coefficients generated through the
recursion relations (20) and (21) is often referred to as a
Lanczos chain. The details of this algorithm are reviewed,
e.g., in Ref. 67, and its specialization to TDDFT is presented in
Refs. 51 and 53. For the purposes of the present paper, we limit
ourselves to observe that the Lanczos vectors thus generated
have the property that they provide a tridiagonal representation
of the L matrix. More specifically, if we define the P × M
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matrices MU = {u1,u2, . . . ,uM} and MV = {v1,v2, . . . ,vM}
(M being the number of Lanczos iterations), one has

(MU )�L MV = MT, (22)

where MT is the tridiagonal matrix,

MT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 γ2 0 . . . 0

β2 α2 γ3 0
...

0 β3 α3
. . . 0

... 0
. . .

. . . γM

0 . . . 0 βM αM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

In this Lanczos representation, the matrix element of Eq. (19)
can be expressed as51

g(ω) � (Mz,(ω MI − MT )−1 · Me1), (24)

where Me1 = {1,0, . . . ,0} and Mz is the M-dimensional vector,
defined as51,53

Mz = (MV )�u. (25)

The right-hand side of Eq. (24) can be conveniently computed
by solving, for any given value of ω, the equation

(ω MI − MT )Mx = Me1 (26)

and calculating the scalar product

g(ω) = (Mz,Mx). (27)

The vector Mz, Eq. (25), can be computed on the fly during
the Lanczos recursion, through the relation zj = (u,vj ). In
practice, the procedure outlined above is performed in two
steps. In the first step, which is by far the most time-consuming,
one generates the tridiagonal matrix MT , Eq. (23), and the
vector Mz, Eq. (25). In the second step g(ω) is calculated
from Eq. (27) upon the solution of Eq. (26), for different
frequencies ω. In practice, a small imaginary part η is added
to the frequency argument, ω → ω + iη, so as to regularize
the function g(ω).51,53 Setting η to a nonzero value amounts
to broadening each individual spectral line or, alternatively, to
convoluting the function g(ω) with a Lorentzian. Because of
the tridiagonal form and the small dimension of the matrix MT

(a few hundreds to a few thousands), the second step is
essentially gratis. Different responses to the same perturbation
can be computed simultaneously from the same Lanczos
recursion by computing different z vectors on the fly.

2. The batch representation

Equation (10) shows that the response density matrix is
uniquely determined by the two sets of functions {ϕ̃′

v(r,ω)} and
{ϕ̃′ ∗

v (r,−ω)}. It is convenient to consider a linear combination
of these functions, defined as

qv(r) = 1
2 [ϕ̃′

v(r,ω) + ϕ̃′ ∗
v (r,−ω)], (28)

pv(r) = 1
2 [ϕ̃′

v(r,ω) − ϕ̃′ ∗
v (r,−ω)]. (29)

The two sets {qv} and {pv} are called, respectively, the upper
and lower components of the standard batch representation

(SBR)51,53 of the response density matrix supervector: ρ̂ ′ SBR−−→

{{qv},{pv}}.52 The SBR of a Hermitian operator Â has a

vanishing lower component, Â
SBR−−→ {{P̂c Â ϕ◦

v (r)},0}, while
that of its commutator with the unperturbed density matrix

[see Eq. (15)] has a vanishing upper component, [Â,ρ̂◦]
SBR−−→

{0,{P̂c Â ϕ◦
v (r)}}. The SBR of the Liouvillian superoperator

has the block form51,53

L̂ =
(

0 D̂
D̂ + K̂ 0

)
, (30)

where the D̂ and K̂ superoperators are defined by their action
on response batches,

D̂{qv(r)} = {(Ĥ ◦ − εv)qv(r)}, (31)

K̂{qv(r)} =
{

4P̂c

∑
v′

∫
κ(r,r′)ϕ◦ ∗

v′ (r′)qv′ (r′)dr′ ϕ◦
v (r)

}

= {P̂cV
′

HXC(r)ϕ◦
v (r)}, (32)

κ(r,r′) is the HXC kernel of Eq. (13), and V ′
HXC is the HXC

potential [see Eq. (12)] generated by the response charge-
density distribution whose SBR is [see Eq. (10)]

n′(r) = 4
∑

v

ϕ◦ ∗
v (r) qv(r). (33)

According to the above equations, operating with the Liouvil-
lian on a test supervector essentially requires the calculation
of the HXC potential response, its application to each valence
KS orbital, and the operation of the unperturbed Hamiltonian
onto twice the number of valence KS states.

The starting supervector of the Lanczos recursion is the
right-hand side of Eq. (15), whose SBR is

v1 = u1
SBR−−→

(
0

{P̂c Ṽ ′
ext(r) ϕ◦

v (r)}

)
. (34)

Because of the special block structure of the Liouvillian,
Eq. (30), the SBR of odd Lanczos iterates have vanishing
upper components, whereas the even ones have vanishing
lower components. As a consequence, the number of response
wave functions onto which the unperturbed Hamiltonian must
operate per Lanczos iteration is halved. Also, the diagonal
elements of the resulting tridiagonal matrix (the α coefficients)
are all vanishing.

3. Lanczos-chain extrapolation

It was previously noted that the components of the vec-
tor Mz, Eq. (25), decrease rather rapidly to zero, whereas the
βj (and γj ) coefficients oscillate around two distinct values
for odd and even iterations, whose average is approximatively
equal to one half of the kinetic-energy cutoff (in a plane-wave
implementation) and whose difference is approximately twice
as large as the excitation gap in insulating or semiconducting
materials.51,53 This finding can be used to speed up consid-
erably the calculation by adopting a suitable extrapolation
technique. In practice, the Lanczos recursion is stopped after
M0 iterations, such that the components of the z array are small
enough. The dimension M of the linear system, Eq. (26), is then
set to a very large (and to a large extent arbitrary) value. The
z components from M0 + 1 to M are set to zero, whereas the
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corresponding β and γ coefficients are set to the average of
the values that have been actually computed. The accuracy of
the calculated spectrum is then checked a posteriori with
respect to the value of M0. In many applications it turns out
that M0 may vary from a few hundreds up to a few thousands
(depending on the plane-wave kinetic energy cutoff), and
M is a (to a large extent arbitrary) number reaching up to
several thousands. As the solution of tridiagonal systems
can be performed very efficiently via standard factorization
techniques, the numerical overhead of this procedure is
negligible. More on Lanczos extrapolation can be found in
Refs. 51–53.

C. A Liouville-Lanczos approach to EEL and IXS
spectroscopies in crystals

In a periodic solid the unperturbed KS orbitals are ϕ◦
v (r) =

ϕ◦
n,k(r), where {v} = {n,k}, n is a band index, and k is a point

in the Brillouin zone. These KS orbitals can be cast into the
Bloch form:

ϕ◦
n,k(r) = eik·r u◦

n,k(r), (35)

where u◦
n,k(r) is the lattice-periodic function. Similarly, the

total perturbing potential can be conveniently decomposed into
Bloch components:

Ṽ ′(r,ω) =
∑

q

eiq·r ṽ′
q(r,ω), (36)

where ṽ′
q(r) is also lattice periodic and the sum extends over the

first Brillouin zone. A similar decomposition can be applied
to the external and HXC response potentials. The response of
each KS orbital can be correspondingly expressed as a linear
combination of the responses to each Bloch component of the
perturbing potential:

ϕ̃′
nk(r,ω) =

∑
q

ei(k+q)·rũ′
n,k+q(r,ω), (37)

where ũ′
n,k+q(r,ω) is a lattice-periodic response orbital that

satisfies the equation

(Ĥ ◦
k+q − εn,k − ω) ũ′

n,k+q(r,ω) = −P̂ k+q
c ṽ′

q(r,ω) u◦
n,k(r).

(38)

In Eq. (38), as well as in the rest of this paper, quantum-
mechanical operators bearing a wave-vector subscript (such
as Ĥ ◦

k+q) or superscript (such as P̂
k+q
c ) are thought to operate

on lattice-periodic functions and are defined in terms of their
coordinate representations as

H ◦(r,r′) =
∑

k

eik·(r−r′) H ◦
k (r,r′) , (39)

Pc(r,r′) =
∑

k

eik·(r−r′)P k
c (r,r′). (40)

The projector onto the conduction manifold in Eq. (38) can
be expressed in terms of the periodic parts of the unperturbed
Bloch functions as

P k
c (r,r′) = δ(r − r′) −

∑
n

u◦
n,k(r) u◦ ∗

n,k(r′), (41)

where the sum extends over all the occupied bands. A similar
decomposition into Bloch components holds for the response

density matrix, which reads, in this case,

ρ̃ ′(r,r′; ω) =
∑

q

eiq·(r−r′)ρ̃ ′
q(r,r′,ω), (42)

where

ρ̃ ′
q(r,r′; ω) = 2

∑
n,k

[ũ′
n,k+q(r,ω) u◦ ∗

n,k(r′)

+u◦ ∗
n,k(r) ũ′ ∗

n,−k−q(r′,−ω) ]. (43)

The antiresonant contribution to the density-matrix response
in Eq. (43) satisfies the equation

(Ĥ ◦
k+q − εn,k + ω) ũ′ ∗

n,−k−q(r,−ω)

= −P̂ k+q
c ṽ′

q(r,ω) u◦
n,k(r), (44)

which can be obtained from Eq. (38) by complex conjugation
and simple manipulations deriving from time-reversal invari-
ance of the unperturbed system (u◦

n,k = u◦ ∗
n,−k) and the reality

of the perturbing potential [ṽ′
q(r,ω) = ṽ′ ∗

−q(r,−ω)].

1. Batch representation for periodic solids

In analogy with Eq. (10), Eq. (43) shows that the response
density matrix of a periodic solid to a perturbation of wave
vector q is uniquely determined by the two sets of response
orbitals {ũ′

n,k+q(r,ω)} and {ũ′ ∗
n,−k−q(r,−ω)}. Note that n and k

are running indices, whereas q is fixed. The SBR can in this
case be defined as

qn,k+q(r) = 1
2 [ũ′

n,k+q(r,ω) + ũ′ ∗
n,−k−q(r,−ω)], (45)

pn,k+q(r) = 1
2 [ũ′

n,k+q(r,ω) − ũ′ ∗
n,−k−q(r,−ω)]. (46)

The two sets of response orbitals, qq = {qn,k+q} and pq =
{pn,k+q}, satisfy the coupled set of equations(

ω −D̂q

−D̂q − K̂q ω

) (
qq

pq

)
=

(
0

yq

)
, (47)

where yq = {P̂ k+q
c ṽ′

ext,q(r)u◦
n,k(r)}, D̂q and K̂q are the super-

operators defined by the relations

D̂qqq = {(Ĥ ◦
k+q − εn,k) qn,k+q(r)}, (48)

K̂qqq = {
P̂ k+q

c ṽ′
HXC,q(r)u◦

n,k(r)
}
, (49)

and

ṽ′
HXC,q(r) =

∫
κ(r,r′)n′

q(r′)dr′ (50)

is the HXC potential generated by the response charge density:

n′
q(r) = 4

∑
n,k

u◦ ∗
n,k(r) qn,k+q(r). (51)

Equations (48), (49), and (51) are closely parallel to
Eqs. (31), (32), and (33) of Sec. II B2.
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In practice, the sum over k points is limited to the portion
of the Brillouin zone that is irreducible with respect to the
small group of q and the resulting function symmetrized
accordingly, in close analogy with time-independent DFPT for
lattice-dynamical calculations.57 More about the exploitation
of crystal symmetry in the calculation of dynamical charge-
density susceptibilities can be found in Ref. 70.

The χ (Q,Q; ω) component of the charge-density suscep-
tibility is obtained from Eq. (18) as the response of the
Q = q + G Fourier component of the charge-density operator,
whose coordinate representation reads n̂(q + G) → ei(q+G)·r,
to a monochromatic perturbation, V ′

ext(r) = ei(q+G)·r. The SBR
of the periodic part of n̂(q + G) is {{P̂ k+q

c eiG·ru◦
n,k},0}. The

final expression for the susceptibility is

χ (Q,Q; ω) = ({{
P̂ k+q

c eiG·ru0
n,k

}
,0

}
,{qq,pq}

)
, (52)

where {qq,pq} is the solution of Eq. (47), obtained when the
periodic part of the external perturbing potential is ṽ′

ext,q(r) =
eiG·r.

In practice the susceptibility in Eq. (52) is computed
following the procedure outlined in Sec. II B1 [see Eq. (24)]:

χ (Q,Q; ω) � (M
zq,

(
ω MI − MTq

)−1 · Me1
)
, (53)

where MTq is a tridiagonal matrix of dimension M of the
form (23) and Mzq = (z1,q,z2,q, . . . ,zM,q) is an M-dimensional
array whose coefficients zj,q are defined as

zj,q = ({{
P̂ k+q

c eiG·ru◦
n,k(r)

}
,0

}
,vj

)
. (54)

2. Metals

The Liouville-Lanczos approach for EEL and IXS spectro-
scopies can be extended to metals by a suitable generalization
of the smearing technique introduced by de Gironcoli in
the static case for lattice-dynamical calculations.57,71 In the
smearing approach, each KS energy level is broadened by a
smearing function (1/σ ) δ̃(ε/σ ), which is an approximation to
the Dirac δ function in the limit of vanishing smearing width
σ . The monochromatic q component of the charge-density

response Eq. (51) can then be cast into the form

n′
q(r) = 2

∑
n,k

u◦ ∗
n,k(r)[u′

n,k+q(r,ω) + u′ ∗
n,−k−q(r,−ω) ], (55)

where the functions u′
n,k+q(r,ω) and u′ ∗

n,−k−q(r,−ω) satisfy the
equations

(Ĥ ◦
k+q − εn,k − ω) u′

n,k+q(r,ω)

= −(
θ̃F ;n,k − P̂

k+q
n,k

)
ṽ′

q(r,ω) u◦
n,k(r), (56)

(Ĥ ◦
k+q − εn,k + ω) u′ ∗

n,−k−q(r,−ω)

= −(
θ̃F ;n,k − P̂

k+q
n,k

)
ṽ′

q(r,ω) u◦
n,k(r) (57)

[cf. Eqs. (38) and (44)], where

P̂
k+q
n,k =

occ∑
m

βn,k;m,k+q|u◦
m,k+q〉〈u◦

m,k+q|, (58)

βn,k;m,k+q = θ̃F ;n,kθ̃n,k;m,k+q + θ̃F ;m,k+qθ̃m,k+q;n,k, (59)

with θ̃F ;n,k ≡ θ̃ [(εF − εn,k)/σ ] and θ̃m,k+q;n,k ≡ θ̃ [(εm,k+q −
εn,k)/σ ] being smooth approximations to the step function
and εF being the Fermi energy. It can be easily verified that
the coefficients βn,k;m,k+q vanish when any of their indices
refers to an unoccupied state. Therefore, the operator P̂

k+q
n,k

involves only a small number of partially occupied bands, and
the first-order variation of the wave functions and of the charge
density can be computed avoiding any explicit reference to
unoccupied states, much in the same way as for insulating
materials. More details about the Liouville-Lanczos approach
for metals can be found in Ref. 70.

III. APPLICATION TO BULK SI AND AL

The technique described above has been implemented in
the QUANTUM ESPRESSO suite of computer codes72 and is
scheduled to be distributed in one of its future releases. We now
proceed to validate it by calculating the loss function in bulk
silicon and aluminum, for which several TDDFT studies exist
and whose spectra are known to be accurately described within
the adiabatic local-density (LDA) and generalized gradient

FIG. 1. (Color online) Bulk Si: Loss function at Q = 0.53 a.u. along [100]. (a) Convergence with respect to the number of Lanczos
iterations and effect of the extrapolation technique using a 10 × 10 × 10 Monkhorst-Pack k-point mesh. (b) Convergence with respect to the
size of the k-point mesh for 1500 Lanczos iterations. Both plots have been obtained with a Lorentzian broadening η = 0.035 Ry. Curves have
been shifted vertically for clarity.
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FIG. 2. (Color online) Bulk Si: Comparison of the loss function calculated for two different values of the transferred momentum Q using
the Liouville-Lanczos (LL) approach, with experiment46 and with previous calculations.46 (a) Q = 0.53 a.u. along [100] and (b) Q = 1.45 a.u.
along [111]. LL data have been obtained using 400 Lanczos iterations plus extrapolations. A 10 × 10 × 10 (6 × 6 × 6) MP k-point mesh and
a Lorentzian broadening η of 0.035 (0.080) Ry have been used for the case in (a) [in (b)].

(GGA) approximations (see, e.g., Refs. 42 and 46 for Si and
Refs. 47 and 26 for Al).

All the calculations have been performed within the LDA
approximation using the Perdew-Zunger parametrization of
the electron-gas data,73 norm-conserving pseudopotentials
from the QUANTUM ESPRESSO database,74 and plane-wave
basis sets up to a kinetic-energy cutoff of 16 Ry. The first
Brillouin zone has been sampled with a Monkhorst-Pack
(MP) k-point mesh, supplemented, in the case of Al, by the
Methfessel-Paxton smearing technique75 with a broadening
parameter σ = 0.02 Ry. The frequency argument of the
susceptibility has been assumed to have a small imaginary part
η, thus resulting in a Lorentzian smearing of the spectra (see
Sec. II B1). For both Si and Al we have used the experimental
lattice parameters [10.26 a.u. (Ref. 76) and 7.60 a.u. (Ref. 77),
respectively], which are very close to the theoretical one
and result in no appreciable difference in the computed
spectra.

A. Bulk silicon

Figure 1(a) shows the convergence of the loss spectrum
of Si, as calculated for a transferred momentum Q = 0.53
a.u. along the [100] direction, as a function of the number

of Lanczos iterations. After 400 iterations the spectrum
displays spurious wiggles, which disappear by increasing
the number of iterations up to 1500. Also displayed are
results obtained by the extrapolation procedure outlined at
the end of Sec. II B2, performed with M0 = 400 Lanczos
iterations and extrapolating the results up to a linear system
of dimension M = 5000. We see that the numerical workload
can be considerably reduced without any appreciable loss of
accuracy. In Fig. 1(b) we show the convergence of the loss
function with respect to the k-point sampling of the Brillouin
zone. The 4 × 4 × 4 MP k-point mesh is not dense enough
to obtain a well-converged spectrum due to the presence of
spurious wiggles, which disappear by increasing the size of
the MP mesh up to 10 × 10 × 10.

In Fig. 2 we compare our present results with those obtained
from the conventional approach based on the Dyson-like
equation for the susceptibility46,49 and with experiment.46 The
agreement is excellent in both cases. All the salient features
observed in the experiments at small transferred momentum
[Fig. 2(a)] are correctly predicted: the main plasmon peak
around 20 eV, a shoulder around 15 eV, and a weak peak
around 6.5 eV. We attribute the slight differences between the
two theoretical spectra to the slightly different technical details
used in the two works. In particular, the authors of Ref. 46

FIG. 3. (Color online) Bulk Al: Loss function calculated for Q = 0.513 a.u. along [100]. (a) Convergence with respect to the number of
Lanczos iterations using a 10 × 10 × 10 MP k-point mesh and effect of the extrapolation technique. (b) Convergence with respect to the size
of the k-point mesh using 600 Lanczos iterations. Both plots have been obtained with a Lorentzian broadening η = 0.056 Ry. Curves have
been shifted vertically for clarity.
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FIG. 4. (Color online) Bulk Al: Comparison of the loss function calculated for two different values of the transferred momentum Q using
the Liouville-Lanczos (LL) approach with experiment47 and with previous theory.47 (a) Q = 0.616 a.u. along [100] and (b) Q = 0.821 a.u.
along [100]. LL data have been obtained using 400 Lanczos iterations plus extrapolations. A 10 × 10 × 10 (14 × 14 × 14) MP k-point mesh
and a Lorentzian broadening η of 0.051 (0.068) Ry have been used for the case in (a) [in (b)].

mimicked electron- and hole-lifetime effects with an energy-
dependent broadening, in contrast to the constant Lorentzian
broadening, η = 0.035 Ry, used in our calculations. At larger
momentum transfer [Fig. 2(b)] the interaction of the plasmon
with the electron-hole continuum broadens the spectrum.78

The agreement with experiment,79 remarkable also in this
case, is enhanced by increasing the Lorentzian broadening
up to η = 0.080 Ry, which allowed us to reduce the size of the
MP mesh down to 6 × 6 × 6 without any appreciable loss of
accuracy.

B. Bulk aluminum

Figure 3(a) shows the convergence of the loss function
of Al, calculated at a transferred momentum Q = 0.513 a.u.
along the [100] direction, as a function of the number of
Lanczos iterations. Although the qualitative behavior is similar
to that observed in Si (wiggles showing up for a small
number of iterations disappear by increasing this number), the
convergence appears to be faster in the present case. As for the
large-iterate behavior of the Lanczos coefficient, we observe
that, in contrast to Si, in Al the odd and even coefficients
oscillate around the same value, which is also in this case of the
order of one half the plane-wave kinetic-energy cutoff. This is
due to the vanishing of the gap, as discussed in Refs. 51 and 53.
Figure 3(b) shows the convergence with respect to the size of
the k-point mesh: very satisfactory convergence is achieved
with a 10 × 10 × 10 MP mesh and a broadening parameter
η = 0.056 Ry.

In Fig. 4 we compare the loss function of Al as calculated by
the present method for two different values of the transferred
momentum along the [100] direction, with IXS experiments
and with previous theoretical work. At small transferred mo-
mentum [Fig. 4(a)] theoretical predictions agree remarkably
well with each other (the slight discrepancies being attributable
to the usual small differences between the technical details
of the calculations) and with experiment. Both theoretical
spectra display a small blueshift (∼0.5 eV) of the plasmon
peak with respect to experiments. At larger transferred mo-
mentum [Fig. 4(b)] the theoretical spectra display a feature at
∼24 eV, which is not observed experimentally. We attribute
the remaining discrepancies to the lifetime effects,47 which

have been treated in our calculations by a constant Lorentzian
broadening parameter (η = 0.068 Ry, requiring a 14 × 14
× 14 MP mesh).

IV. CONCLUDING REMARKS

We believe that the Liouville-Lanczos approach introduced
in this paper will open new perspectives in the calculation
of loss spectra in extended systems. Its main features are the
adoption of a representation for the charge-density response
borrowed from density-functional perturbation theory and of
a Lanczos recursion scheme for computing selected elements
of the inverse of (very) large matrices. The combination of
these two elements permits us to compute the loss spectrum
of a given system, for a given transferred momentum, and for
an entire wide frequency range, with a numerical workload
of the same order as needed for a standard ground-state
calculation for the same system (the prefactor being only a
few times larger). In principle, the convergence of the com-
puted loss spectra with respect to the length of the Lanczos
chains depends on the spectral range: the lower the frequency
is, the faster the convergence is, as was already observed
for optical spectra in finite systems.50,51 In practice, how-
ever, adoption of the extrapolation techniques explained in
Sec. II B3 substantially alleviates this dependence. Also, the
spectral range accessible to EEL/IXS spectroscopies is limited
by the so-called f -sum rule:78

∫ ∞

0
Im[ε−1(Q,Q; ω)]ω dω = −π

2
ω2

p, (60)

where ωp = 4πe2ne/m is the plasma frequency, with ne being
the average electron density, i.e., the number of electrons
(valence electrons, in a pseudopotential calculation) per unit
volume.80 Of course, the spectral range that needs to be
sampled by Lanczos recursion is correspondingly limited.

The Liouville-Lanczos approach introduced in this paper
also lends itself to an easy generalization to those methods
[such as hybrid functionals or the static Bethe-Salpeter
equation (BSE)] that require the full density-matrix (rather
than just charge-density) response, which is in fact as easily
accessible to the batch representation utilized here.81 Further
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generalization to frequency-dependent exchange-correlation
kernels (or to the BSE with dynamical screening) may simply
require computing the loss function at shifted frequencies
[ω′ = ω + �(ω)], as proposed, e.g., in Ref. 46, or further
methodological developments. Further work is required to
clarify this issue.

All in all we believe that the advances presented in this
paper will allow for the simulation of complex, possibly
nanostructured, surfaces, as well as of systems where valence
and shallow-core loss spectra overlap. Examples of the former
include low-Miller-index surfaces and plasmonic materials,
while bulk bismuth is an example of the latter. Work is in
progress on both lines.
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