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Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica
trick we derive a version of the coherent potential approximation (CPA) suited for describing (i) the diffusive
(hopping) motion of classical particles in a random environment, and (ii) the vibrational properties of materials
with spatially fluctuating elastic coefficients in topologically disordered materials. The effective medium in the
present version of the CPA is not a lattice but a homogeneous and isotropic medium, representing an amorphous
material on a mesoscopic scale. The transition from a frequency-independent to a frequency-dependent diffusivity
(conductivity) is shown to correspond to the boson peak in the vibrational model. The anomalous regimes above
the crossover are governed by a complex, frequency-dependent self-energy. The boson peak is shown to be stronger
for non-Gaussian disorder than for Gaussian disorder. We demonstrate that the low-frequency nonanalyticity of
the off-lattice version of the CPA leads to the correct long-time tails of the velocity autocorrelation function
in the hopping problem and to low-frequency Rayleigh scattering in the wave problem. Furthermore we
show that the present version of the CPA is capable of treating the percolative aspects of hopping transport
adequately.
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I. INTRODUCTION

The coherent potential approximation (CPA) is a very
successful mean-field theory for calculating single-particle ex-
citations in quenched-disordered1–7 and strongly correlated8–11

quantum systems. Quenched disorder in a solid can manifest
itself as an impurity and alloy disorder in an otherwise
crystalline material, and the CPA has nowadays become a
powerful tool to calculate the electronic band structure of
such materials.12 The principle of the CPA is to introduce a
crystalline effective medium in which the spatially fluctuating
random potential is replaced by a constant but energy-
dependent potential (coherent potential, self-energy). The self-
energy is determined in such a way that the configurationally
averaged Green’s function is forced to be equal to the Green’s
function of the effective medium. Correspondingly, the T

matrix due to scattering from the fluctuating potential minus
the coherent potential vanishes.

A much more difficult task than the crystalline alloy
problem is the calculation of the electronic excitations in
a topologically disordered solid like a liquid or amorphous
metal. This is so because one cannot use Bloch’s theorem
and the established band-structure methods for calculating the
electronic structure of the effective medium. Based on the
multiple-scattering theory of Lax13 and Halperin14 a CPA
has been formulated by Györffy,15 who already included
correlations between the fluctuating potentials (see also the
related paper by Hall and Faulkner).16

In order to include the short-range correlations of the
amorphous solid in a more fundamental way, the tight-
binding formalism for metals17 has been used by a large
number of authors to formulate effective-medium theories of
liquid metals.18–21 These approaches have been brought in
mathematical correspondence to liquid-state integral-equation
theories by Logan and Winn22 and Winn and Logan.23

The Schrödinger equation for tight-binding electrons has
a close resemblance to the equation of motion for diffusing
particles as well as vibrations in a topologically disordered
system. Correspondingly the single-site CPA on a lattice has
been generalized to a two-site CPA in order to treat diffusion
in a disordered crystal.24–26

Effective-medium theories for hopping transport in a
topologically disordered system had been formulated along
the lines of the electronic tight-binding theories.27–29 However,
the effective medium in these treatments is a Bethe lattice, i.e.,
a system without closed loops. In a disordered system it is
just the closed paths, which must be included to calculate the
correct nonanalyticity of the self-energy, which leads to long-
time tails30,31 and Rayleigh scattering.32,33 Therefore Ganter
and Schirmacher34 combined the integral-equation scheme of
Logan and Winn22 with the repeated-indices renormalization
technique of Feenberg35 in order to formulate an effective-
medium theory on the CPA level, in which the closed paths, and
hence the nonanalyticities, were included. However, the result-
ing integral equations have very poor convergence properties,
which, if applied to vibrations of vector character,36 could
only have been solved with severe simplifications. Later Ganter
and Schirmacher33 formulated a self-consistent hopping theory
based on the so-called Euclidean random-matrix approach37,38

which contains the appropriate nonanalyticity. The integral
equations of this approach are easier to solve.

In the present work we derive a CPA for topologically
disordered systems, in which no short-range correlations
are considered, but in which the effective medium is not a
crystal. Our effective medium is a homogenous and isotropic
continuum. For the electronic problem a similar CPA has
already been derived39 along the lines of the formalism of
Yonezawa and Morigaki,4 and it has been shown there, how to
introduce correlations.
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In the present work we use a replica field-theoretical
approach, in which the CPA appears as a saddle point of an
interacting matrix field theory. The introduction of correlations
will be postponed to future work.

Section II is devoted to the mathematically equivalent prob-
lems of diffusion and scalar waves with spatially fluctuating
diffusivity/elastic modulus. For this model our version of the
CPA is derived and solved. From the numerical solutions
it is demonstrated that the existence of a dc-ac crossover
in the diffusion problem corresponds to the presence of an
excess of vibrational states (boson peak)40–45 in the wave
propagation problem. It is shown that the height of the boson
peak is unrestricted for certain non-Gaussian distributions
(inverse-power law distribution, log-normal distribution) but
restricted for a box-shaped and a Gaussian distribution. For
the non-Gaussian distributions a scaling relation between the
height of the boson peak and its frequency position is shown
to hold within the CPA. For weak disorder the CPA is shown
to reduce to the self-consistent Born approximation (SCBA),
which proved very successful to describe the anomalous
vibrational properties of disordered solids.40–45 In Sec. III
the CPA for vector displacements in an elastic continuum
with fluctuating shear modulus is presented (heterogeneous-
elasticity theory).40–45 The vector theory is shown to possess
the same boson-peak features as the scalar theory.

II. DIFFUSION AND SCALAR VIBRATIONS IN A
DISORDERED ENVIRONMENT

A. Models and mathematic correspondence

Let us start our discussion with considering hopping
transport of electrons or ions in a disordered semiconductor,
or—equivalently—among the impurities of a doped crystalline
semiconductor.46,47 Such a motion of particles between spe-
cific sites i,j in a disordered material can be described by a
master equation for the probability ni(t) for being at site i at
time t ,

d

dt
ni(t) = −

∑
j �=i

Wij (ni(t) − nj (t)), (1)

where the transition (hopping) probabilities per unit time
Wij can depend on the distance rij = |ri − rj | and/or on an
energy barrier Eij between the sites i and j (representing
a symmetrized version of diffusion in a landscape of states
with disordered local energies with phonon-assisted transitions
between them).46,47 The distance dependence is supposed to
fall off exponentially, so that we do not have a long-range
model.

It has been shown recently33 that by a coarse-graining
procedure such a transport equation can be transformed to
a diffusion equation on a mesoscopic scale,

∂

∂t
n(r,t) = ∇D(r)∇n(r,t), (2)

with a spatially fluctuating diffusion coefficient D(r), which
is supposed to be a random variable in the three-dimensional
space with a suitable distribution density P [D(r)]. Performing
the Laplace transform n(r,s) = ∫ ∞

0 dte−stn(r,t) with s =
iω + ε we obtain from (2) the diffusion equation in frequency

space (disregarding the t =0 term),

sn(r,s) = ∇D(r)∇n(r,s). (3)

On a macroscopic scale the (quenched) disorder is known
to lead to a diffusion equation with a space-independent but
frequency-dependent complex diffusivity D(s),

sn(r,s) = D(s)∇2n(r,s). (4)

D(s) is the Laplace transform of the velocity autocorrelation
function Z(t) of the moving particle. If the particle carries a
charge q, D(s) is related to the complex, frequency-dependent
conductivity σ (s) by the Nernst-Einstein relation,

σ (s) = nμq2D(s), (5)

where nμ ≡ ∂n/∂μ is the derivative of the number of carriers
with respect to the chemical potential. In degenerate quantum
systems this quantity is equal to the density of electronic states
at the Fermi level, in classical systems nμ = n/kBT , where T

is the temperature.
Let us now consider a topologically disordered mass-spring

system in which the masses (which we suppose to be equal
to unity) are connected by distance-dependent force constants,
which we call Kij . The corresponding equation of motion for
the scalar displacements of the masses at point i is

d2

dt2
ui(t) = −

∑
j �=i

Kij (ui(t) − uj (t)). (6)

The same coarse-graining procedure, which leads from (1) to
(2) produces the following stochastic wave equation:

∂2

∂t2
u(r,t) = ∇K(r)∇u(r,t), (7)

or in frequency space,

s2u(r,s) ≡ s̃u(r,s̃) = ∇K(r)∇u(r,s̃), (8)

where now K(r) ≡ v(r)2 has the meaning of a space-
dependent modulus, which is equal to the square of the
wave velocity v. K(r) is again a random variable in the
three-dimensional space and can be identified with D(r) in
the diffusion problem.

On a macroscopic scale one deals with an equation of
motion in frequency space for scalar wave amplitudes u(r,z)
with a frequency-dependent, complex sound velocity v(s̃),

s̃u(r,s̃) = K(s̃)∇2u(r,s̃). (9)

Here s̃ = s2 = −ω2 + iε̃ and K(s̃) = v2(s̃) is a complex,
frequency-dependent elastic modulus, which is equal to the
square of a complex wave velocity. As in optics the imaginary
part of v(s̃), v′′(ω) is related to the disorder-induced mean-
free path of the waves, �(ω), and to the sound-attenuation
coefficient �(ω) by33

1

�(ω)
= 2ωv′′(ω)

|v(s̃)|2 = 1

2|v(s̃)|�(ω). (10)

In a quenched-disordered system, i.e., a medium with either
spatially fluctuating density or elastic modulus the sound
attenuation exhibits Rayleigh scattering,32,33

�(ω) ∝ ω4 for ω → 0. (11)
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This means that both v(s̃) and K(s̃) have a contribution, which
varies as s̃3/2 for small frequencies. If we now mathematically
identify the diffusion coefficient D(s) with K(s̃) we conclude
that D(s) has a low-frequency nonanalytic s3/2 contribution,

�D(s) = D(s) − D(0) ∝ s3/2, (12)

which becomes �D(s) ∝ sd/2 in d dimensions. This nonana-
lytic asymptotics has been proven to hold for any quenched-
disordered system governed by equations of motion of
the form (1), (2), (6), and (7). As D(s) is the Laplace
transform of the velocity autocorrelation function Z(t) one
obtains the nonanalytic long-time asymptotics (“long-time
tail”) Z(t) ∝ −t (d+2)/2. This long-time-tail property, which
has been known already for some time,30,31,48 is obviously
equivalent to Rayleigh scattering via the correspondence
D(s) ↔ K(s̃).33,49 The analogy, in fact, goes further: In a
quenched-disordered system (which is the subject matter of the
present work) it is known that a crossover happens between
a frequency-independent diffusivity and a strong frequency
dependence, which can be parametrized as D(s) ∝ sx with
x ≈ 0.8.50–52 This disorder-induced diffusivity transforms
under the correspondence D(s) ↔ K(s̃) to disorder-induced
anomalous frequency dependence of the elastic modulus,
the onset of which corresponds to the boson peak.53,54 This
correspondence will be discussed in more detail below.

B. Derivation of the CPA

We now consider the mathematically equivalent problems
Eqs. (3) and (8), identifying the quantities D(r) ↔ K(r),
D(s) ↔ K(s̃), and s ↔ s̃. We define55

(s − ∇D(r)∇)δ(r − r′) ≡ 〈r′|A[D(r)]|r〉. (13)

The Green’s function corresponding to Eq. (2) is given by the
inverse matrix element of A:

G(r,r′) = 〈r′|A−1|r〉. (14)

Applying standard methods in replica field theory56 we
represent the Green’s function as a functional integral over
mutually complex conjugate fields u(r)α and ū(r)α present in
α = 1, . . . ,n replicas of the system as follows:

G(r,r′) =
n∏

α=1

∫
D[ūα(r),uα(r)]ū1(r)u1(r′)e−∑

α〈uα |A|uα〉

(15)

= δ

δJ (1)(r,r′)
Z[J (r,r′)], (16)

with the generating functional,

Z[J (r,r′)] =
n∏

α=1

∫
D[ūα(r)]D[uα(r)] e− ∑

α〈uα |A|uα〉

× e− ∑
α〈u(α)|J (α)|u(α)〉, (17)

and the source-field J α . By an integration by part the matrix
elements of the inverse Green operator A can be written as

〈uα|A[D]|uα〉 =
∫

d3r(s|uα(r)|2 + D(r)|∇uα(r)|2).

(18)

We now apply the Fadeev-Popov procedure,57 which consists
of the replacement of the fluctuating diffusivity D(r) by a
complex auxiliary field Q(α)(r,s) with the help of a delta
functional, which, in turn, is represented by another auxiliary
field �(α)(r,s):

Z[J ] =
∫

D[u,ū]
∫

D[Q] e−〈u|A[Q]−J |u〉δ[D − Q]

=
∫

D[u,ū]D[Q,�] e−〈φ|A[Q]−J |φ〉e〈�|D−Q〉

=
∫

D[Q,�] e−Tr{ln [A[Q]−J]}e〈�|D−Q〉, (19)

where we have suppressed the replica indices for brevity. The
third equality in Eq. (19) follows from integrating out the
displacement fields ūα and uα . In order to proceed further we
devise another coarse-graining procedure. We tile the total
space into Nc cells of (approximate) volume Vc = V/Nc,
where V = L3 is the total volume.58,81 This could just be
done by means of a cubic grid. However, in order to avoid any
relation to a crystalline lattice we think, instead, of a Voronoi
tessellation around midpoints of a closed-packed hard-sphere
structure. This gives Vc = L3

c = (π/6)ηcd
3
c , where ηc ≈ 0.56

is the close-packed packing fraction, resulting in Lc ≈ 0.66dc.
Within a cell with label i we replace the diffusivity by their
average in each cell and assume that a diffusion equation,

∂

∂t
n(r,t) = ∇Di∇n(r,t), (20)

holds within a cell with label i. We now assume that the
random numbers Di are independent of each other, i.e.,
the joint distribution density is assumed to factorize as
P (D1 · · · DNc

) = ∏
i p(Di).

Our assumption of independent fluctuations of the quan-
tities Di implies that the size of the cells Lc must be larger
or at least equal to the correlation length ξ of the diffusivity
fluctuations �D(r) = D(r) − 〈D〉, which is defined by the
spatial decay of the correlations of these fluctuations:

ξ 3 = 1

〈�D2〉
∫

d3r〈�D(r + r0)�D(r0)〉. (21)

Correspondingly we confine the k summations in the subse-
quent analysis to remain below a cutoff |k| < kξ = ν/ξ , where
ν is an adjustable number of the order of 1.

Within our model D(r) is now a piecewise constant function
in real space and the same should hold for the auxiliary fields
Q and �, which are now labeled as Q

(α)
i , �

(α)
i . Using this the

scalar product, which appears in the exponential in Eq. (19),
can be written as

〈�|D − Q〉 = Vc

V

∑
α

∑
i

�
(α)
i (r)

(
D

(α)
i − Q

(α)
i

)
. (22)

We now start to evaluate the configurational average. Due to
the Fadeev-Popov transformation the only term to be averaged
over is the term e〈�|D−Q〉.

Assuming that all the Nc coarse-graining cubes behave the
same on average and using that the individual cubes are not
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correlated, we can write

〈e〈�|D−Q〉〉 =
∏
α

∏
i

〈
e

Vc
V

�
(α)
i (D(α)

i −Q
(α)
i )

〉
i

= e
∑

α
V
Vc

ln (〈exp[ − Vc
V

�
(α)
i (D(α)

i −Q
(α)
i )]〉i ). (23)

Note that the two occurring volume ratios do not cancel each
other due to the average inside the logarithm. Using (23) the
generating functional (19) can be written as

Z[J̃ ] =
∫

D[Q,�] e−Seff[Q,�,J̃ ], (24)

where we have now replaced the source field J α(r,r′) by
the translational-invariant source field J̃ (r − r′) which is not
supposed to depend on the replica index α. The effective action
takes the form,

Seff[Q,�,J̃ ] = Tr{ln(A[Q] − J̃ )}

−
n∑

α=1

V

Vc

ln
(〈
e− Vc

V
�

(α)
i (D(α)

i −Q
(α)
i )

〉
i

)
. (25)

Since the factor V
Vc

in the effective action (25) is much larger
than unity a saddle-point approximation can be employed to
evaluate the integral in (24). In general this factor will scale as

V

VC

=
(

L

ξ

)d
d→∞−→ ∞. (26)

Accordingly the CPA becomes exact for d → ∞.7

We now assume that the fields Q and � are replica
independent.

Seff[Q,�,0] = n S ′
eff({Qi},{�i}), (27a)

S ′
eff({Qi},{�i}) = tr{ln[ Ã(Q)]}

−
∑

i

ln
(〈
e− Vc

V
�i (Di−Qi )

〉
i

)
, (27b)

where “tr” now means a trace without the replica indices.
The saddle point is determined by the equations,

∂S ′
eff

∂Qi

∣∣∣∣
Qi=Qi,S

= 0, ∀i, (28a)

∂S ′
eff

∂�i

∣∣∣∣
�i=�i,S

= 0, ∀i. (28b)

The derivative with respect to � is easily performed and yields

0 =
〈−Vc

V
�i,s(Di − Qi,s)e− Vc

V
�i (Di−Qi,s )

〉
i〈

e− Vc
V

�i,s (Di−Qi,s )
〉
i

,

(29)

⇒ 0 =
〈

Di − Qi,s

exp
[

Vc

V
�i,s(Di − Qi,s)

]〉
i

.

Since Vc

V
� 1 the exponential in the denominator can be

expanded to first order,59

0 =
〈

Di − Qi,s

1 + Vc

V
(Di − Qi,s)�i,s

〉
i

. (30)

The second saddle-point equation gives

∂ tr{ln[Ã(Q)]}
∂Qi

∣∣∣∣
Qi=Qi,s

=
Vc

V
�i,s

〈
e− Vc

V
�i (Di−Qi,s

〉
i〈

e− Vc
V

�i,s (Di−Qi,s
〉
i

= Vc

V
�i. (31)

The left-hand side can be evaluated under the assumption that
the saddle-point field QS is constant in space,

Qi,s ≡ Q, ∀i.

This corresponds to the introduction of an effective homoge-
neous medium. In this medium (31) becomes

Vc

V
� = Vc

V

∂

∂Q
tr ln[Aeff] = Vc

V

∑
k

k2

s + Qk2
. (32)

In the second step the effective-medium operator,

Aeff(k,̃k) = (s + Qk2)δkk̃, (33)

was defined. From this representation one can see that in the
CPA the following holds:

〈G〉(k,̃k,s) = 1

s + Qk2
δkk̃ =

〈
1

s + Dk2

〉
δkk̃, (34)

under the assumption that the averaged system exhibits
translational invariance. This equation expresses the averaged
Green’s function in terms of the Green’s function of a
homogeneous medium, where the spatially fluctuating diffu-
sivity is replaced by the self-energy Q, which, however, is
now frequency dependent: The space dependence due to the
disorder has been transformed to a disorder-induced frequency
dependence.

From (32) it follows that if Q is homogeneous in space,
the same holds for �. Defining a new field �̃ = 3Vc/̃νV �

with ν̃ = ν3/2π2 and performing the summation in (32) with
a cutoff |k| < kξ the CPA equations become

0 =
〈

Di − Q(s)

1 + ν̃
3 [Di − Q(s)]�̃(s)

〉
i

, (35a)

�̃(s) = 3

k3
ξ

∫ kξ

0
dkk2 k2

s + k2Q(s)

= 1

Q(s)
[1 − sG(s)], (35b)

with the local Green’s function,

G(s) = 3

k3
ξ

∫ kξ

0
dkk2 1

s + k2Q(s)
. (35c)

We call �̃(s) the susceptibility function, because it is pro-
portional to the local dynamic susceptibility of the diffusing
particle.

The CPA equation (35a) can be cast into the following
equivalent forms:

1 =
〈

1

1 + ν̃
3 [Di − Q(s)]�̃(s)

〉
i

, (35d)

Q(s) =
〈

Di

1 + ν̃
3 [Di − Q(s)]�̃(s)

〉
i

. (35e)
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It is worthwhile to note that the k integral in Eq. (35b) for
the susceptibility function can be carried out analytically. The
diffusion pole in the denominator of the integrand produces
a �̃(s) = �̃(0) + const × s2/3 low-frequency asymptotics,
which is inherited by the function Q(s). So, independent of
the type of disorder, we obtain a correct long-time behavior
for Z(t) and Rayleigh scattering for the wave problem.
Because for the vibrational problem in the s → 0 limit the
disorder scattering is suppressed by the Rayleigh frequency
dependence, the CPA expression for the imaginary part of
Q(z) can be shown to reduce to the Born approximation in
agreement with the previous derivations.32,33

In the dc limit s = 0 we have �̃(0) = 1/Q(s), so we obtain
from Eq. (35e),

Q(0) =
〈

Di

1 − ν̃
3 + ν̃

3
Di

3Q(0)

〉
. (36a)

[From now on we suppress the index i, which indicates the
average over p(Di).] In the case Q(0) �= 0 (which is not trivial;
see the paragraph on percolation) one can divide by 3Q(0)/̃ν
to obtain

ν̃

3
=

〈
1

1 + (
3
ν̃

− 1
)

Q(0)
Di

〉
. (36b)

C. Relation with previous effective-medium theories

1. Lattice CPA

The standard two-site coherent potential approximation for
the hopping problem of Eq. (1) on a lattice is24–26〈

Wij − �(s)

1 + (Wij − �(s)) 2
Z�(s) (1 − sGii(s))

〉
= 0. (37)

Here �(s) is the effective frequency-dependent hopping rate
and Gii(s) is the local Green’s function of the effective
medium, which within this theory is a simple-cubic lattice
with coordination number Z = 2d = 6. The lattice Green’s
function has the form,

Gii(s) =
∑

k∈BZ

1

s + �(s)f (k)
, (38)

where the sum goes over the first Brillouin zone (BZ), and

f (k) = 6 − 2[cos(kxa) + cos(kya) + cos(kza)], (39)

with a being the lattice constant. Defining the local suscepti-
bility function,

�ii(s) = 1

�(s)
(1 − sGii(s))

=
∑

k∈BZ

f (k)

s + �(s)f (k)
, (40)

the CPA equation (37) takes the form,〈
Wij − �(s)

1 + (Wij − �(s)) 1
3�ii(s)

〉
= 0. (41)

Now we take the continuum limit by replacing the BZ k
summation by

∑
k → 3

k3
ξ

∫ kξ

0 dk and f (k) by its low-wave-

number limit k2a2. If we now define the local diffusivities

by Di = Wija
2, the effective-medium diffusivity by Q(s) =

�(s)a2, and the continuum susceptibility function by �̃(s) =
�ii(s)/a2 we arrive at the continuum-off-lattice CPA result
(35a), provided we take ν̃ = 1. In order to be consistent with
the continuum limit of the lattice CPA one may take always
this value. On the other hand, one can also use this value such
that the CPA percolation threshold pCPA

c = ν̃/3 (see below)
agrees to the continuum percolation threshold pc of a certain
topology.28,29

2. Self-consistent Born approximation, SCBA

If one takes Gaussian disorder for the local diffusivity
one can perform the disorder average over the generating
functional (17) exactly, which leads to an interacting effective
field theory with the variance of D(r) as coupling constant.
Taking apart this interaction by a Hubbard-Stratonovich
approximation and then performing a saddle-point approx-
imation [assuming a small relative variance of D(r)] one
arrives at the self-consistent Born approximation for the scalar
problem.60–62 We can, however, recover the SCBA from the
CPA in the following way. Defining D0 to be the average
of the fluctuating diffusivities and defining the quantities
Q(s) = D0 − �(s), Di = D0 − �i , we obtain from (35a) the
two (equivalent) CPA equations:

0 =
〈

�i − �(s)

1 − ν̃
3 (�i − �(s))�̃(s)

〉
i

, (42a)

�(s) =
〈

�i

1 − ν̃
3 (�i − �(s))�̃(s)

〉
i

. (42b)

We now expand the interior of the average in (42b) with respect
to �i − �(s) to lowest nonvanishing order (respecting 〈�i〉 =
0) we obtain

�(s) = 〈
D2

i

〉 ν̃
3
�̃(s), (43)

which is the SCBA for the scalar problem. As indicated
already above, the SCBA can also be obtained from the
saddle-point equation (29) by putting the exponential not into
the denominator but into the numerator and then expand with
respect to the small number Vc/V to first order. Because then
only the first two cumulants of the distribution of the Di enter,
this corresponds to assuming Gaussian disorder.

So we recover the SCBA from the CPA in the Gaussian and
weak-disorder limit.

3. Network effective-medium approximation, EMA

The CPA-like effective-medium treatment of the
impedances of a heterogeneous medium or network date
back to Bruggeman63 and Landauer.64 For a disordered Z-
fold coordinated network of fluctuating conductances gi the
expression for the effective-medium conductance gm is65

0 =
〈

gm − gi

gi + (
Z
2 − 1

)
gm

〉
. (44)

It has been generalized for the ac problem,52,66 setting Z/2 =
d,

0 =
〈

gm(s) − gi

gi + (d − 1)gm(s) + ds

〉
, (45)
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which can be rearranged as

0 =
〈

g − gm(s)

1 + [g − gm(s)] 1
d

1
gm(s)+s

〉
, (46)

which has—for d = 3—the same form as the CPA equation
(35a) with

�̃(s)EMA = 1

s + Q(s)
. (47)

This EMA has the same analytical structure as EMA versions
derived earlier in the literature.27–29 While these ac effective-
medium theories describe rather nicely measured hopping
conductivity data they violate the nonanalyticity requirement
(12). As stated above, in CPA the function �̃(s) has a
contribution, which varies as s3/2, whereas �̃(s)EMA does not,
as can be clearly seen from Eq. (47).

D. CPA results for the dc diffusivity

1. Percolation

In order to treat the percolation problem, which can
be considered as the continuum version of the Lorentz
problem,31,48,67,68 we assume a distribution of local diffusivi-
ties of the form,

P (Di) = pδ(Di − D0) + (1 − p)δ(Di), (48)

where p is the volume fraction in which the diffusivity is
nonzero. Inserting this into Eq. (36a) one obtains

Q(0)
ν̃

3
= Q(0)

1

1 + (
3
ν̃

− 1
)

Q(0)
D0

, (49)

which has, like Eq. (36a), always the trivial solution Q(0) = 0.
For the case Q(0) �= 0 we obtain from Eq. (49),

Q(0) = 2
3D0(p − pc)/(1 − pc), (50)

with pc = ν̃
3 . For p < pc the trivial solution of (49), Q(0) = 0

takes over.

2. Activated diffusion

In this class of models the diffusion of a particle is
considered to take place by jumps over barriers of height Ei

with a certain distribution P (ε) (“random barrier model”).52

So we write

Di = D0e
−Ei/kBT , (51)

and parametrize the dc diffusivity as ( 3
ν̃

− 1)Q(0) =
D0e

−Ea/kBT . Then Eq. (36b) takes the form,

ν̃

3
=

∫
dEP (E)

1

e(E−Ea )/kBT + 1
. (52)

In the low-temperature limit the Fermi function becomes a
step function and we obtain

ν̃

3
= pc =

∫ Ea

0
dEP (E), (53)

which means that the parameter Ea becomes temperature
independent. From this follows that in the random-barrier
problem the dc diffusivity is always of Arrhenius form, as
observed frequently in fast-ion conducting glasses.69

It is worthwhile to point out that (53) corresponds to the
so-called percolation construction for obtaining the dc conduc-
tivity of a disordered hopping-conduction network.47,52 It has
been nicely demonstrated recently that the low-temperature
physics of the random-barrier model is essentially percolation
physics.70

3. Variable-range hopping

A rather widely investigated type of carrier diffusion
in disordered materials is that of electrons performing
phonon-assisted tunneling transitions between localized states
(“hopping transport”).47 Understanding the mechanisms of
electronic hopping transport has been shown recently to be of
extreme importance for devising organic light-emitting diodes
(OLEDs).71 Here we show that by the CPA one recovers
the classical results of Mott72 and Efros, Shklovskiı̆47 for
variable-range hopping.

The local diffusivity depends on an activation barrier E and
a characteristic hopping distance r with distributions P (E) and
P (r),

Di = D0e
−αr−βE, (54)

where e−αr is the tunneling factor and β = 1/kBT . Depending
on the density of localized electronic states near the Fermi en-
ergy P (E) is either considered to be constant (Mott hopping) or
proportional to E2 (Coulomb-gap, Efros-Shklovski hopping).
The distribution of sites is

P (r) = 1

Z
4πρr2θ (R − r) = 3

R3
r2θ (R − r), (55)

where Z = 4
3 4πρR3 is the number of adjacent sites within a

given radius R. If we parametrize the dc diffusivity as ( 1
pc

−
1)Q(0) = D0e

−ξ , we obtain from Eq. (36b)

pc =
∫

dEP (E)
∫

drP (r)
1

eαr+βE−ξ + 1
. (56)

In the low-temperature limit the Fermi function becomes again
a step function, and, by means of integrations by part one
obtains the famous results ln Q(0) ∝ −(T0/T )1/4 for P (E) =
const (Mott hopping); ln Q(0) ∝ −(T0/T )1/2 for P (E) ∝ E2

(Efros-Sklovskii hopping). Again, these results are equivalent
to the percolation construction.47

E. CPA results for the ac diffusivity

We consider activated transport of the form (51) with a
constant barrier distribution,

P (E) = 1

E∗ , 0 � E � E∗, (57)

which is equivalent to an inverse-Power distribution for D,

P (D) = 1

ln μ/σ

1

D
, μ � D � σ, (58)

with σ = D0 and μ = D0e
−βE∗

.
In Fig. 1 we show ac conductivity data collected from

the literature over a very wide range of frequencies by
Wong and Angell73 together with the CPA prediction for the
constant-barrier model (57). The only input is the measured
dc activation energy of Ea = 75 KJ/mole.74 However, it
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FIG. 1. (Color online) Comparison of ionic ac conductivity data
of sodium trisilicate glass73 with the CPA prediction for activated
hopping with a constant-barrier distribution. We use units in which
D0 = kξ = 1. The arrows indicate the boson-peak positions ωBP ≡
ω̃2

BP of Fig. 3.

should be made clear that the old EMA theories27–29,75,76 are
also able to produce such a fit. The difference to the CPA
can be seen from the “loss function”50,77 [σ (ω) − σ (0)]/ω ∝
[Q′(ω) − 1]/ω, which is shown in Fig. 2. At low frequencies
this function behaves as ω1/2 for ω → 0 due to the Rayleigh-
type nonanalyticity. The old EMA theories do not exhibit this
nonanalyticity. In the figure this behavior is demonstrated.
There is experimental77 and simulational78 evidence for the
presence of this low-frequency nonanalyticity of hopping
transport.

F. Model calculations for the scalar phonon problem

We shall now exploit the mathematical correspondence
iω ↔ −ω̃2, Q(s) ≡ D(s) ↔ Q(s̃) ≡ K(s̃) and, correspond-
ingly, discuss the vibrational anomalies induced by the
quenched disorder, as given in CPA. Similar discussions have
already been published in the literature,53 where it was pointed

0.0001 0.001 0.01 0.1 1 10 100 1000
ω/Q(0)

0.1

1

10

[Q
’(ω

)-
Q

(0
)]

 / 
ω

  456  K
  756 K
1273 K
1673 K

ω1/2

FIG. 2. (Color online) Loss function [Q′(ω) − Q(0)]/ω ∝
[σ (ω) − σ (0)]/ω calculated from the CPA curves in Fig. 1. Below
the dc-ac crossover the Rayleigh-type nonanalyticity is visible.

TABLE I. Probability distributions used to model the disorder.

Name P(K)

Uniform (σ − μ)−1, K ∈ [μ,σ ]

Truncated Gaussian
√

2
πσ

exp[−(K−μ)2/(2σ )]
1+Erf(μ/

√
2σ )

Power law (K ln[ σ

μ
])−1, K ∈ [μ,σ ]

Log-normal 1√
2πσ

1
K

e
− ln[ K

μ ]2/(2σ )

out that the boson peak (BP) in the vibrational problem
corresponds to the dc-ac crossover in the diffusion problem.

As shown in the last subsection, the activated-diffusion
model with a constant barrier distribution corresponds to an
inverse-power-law distribution for the local diffusivities. For
the corresponding local moduli K we rewrite this distribution:

P (K) = 1

ln μ/σ

1

K
, μ � K � σ. (59)

Other possible distributions, namely a uniform distribution,
a Gaussian distribution, truncated at K = 0 and a log-normal
distribution are detailed in Table I. The density of states (DOS)
of the scalar phonons can be calculated as

g(ω) = 2ω

π
Im{G(s̃)}, (60)

where G(s̃) is given by Eq. (35c), and we identify the
correlation cutoff kξ with the Debye cutoff kD .

As mentioned above, the CPA makes it possible to describe
highly disordered systems, i.e., systems in which the variance
of the spatial fluctuations of the quantity of interest exceeds
the square of its average. In order to quantify the strength
of the disorder, we define a disorder parameter as the ratio
between the variance and the squared mean of the disorder
distribution γ = 〈K2〉/〈K〉2. For the truncated Gaussian and
the uniform distribution γ has an upper bound. For the uniform
distribution a maximum disorder strength of γ = 1

3 can be
reached; for the truncated Gaussian this limit is γ = π

2 − 1.
Thus two of the four distributions can only model medium
to weak disorder. On the other hand, the inverse-power and
log-normal distributions have no upper bound of the disorder
parameter. In particular, for the inverse-power distribution with
μ = σe−βE∗

the relation γ = βE∗/2 holds.
In Fig. 3 we show the so-called reduced DOS g(ω̃)/gD(ω̃),

calculated for the inverse-power-law distribution. We use units,
in which kξ = kD = 1 and K0 = 1. gD(ω) = 3ω2/ω3

D is the
Debye DOS, and ωD = √

Q(0) is the Debye frequency.
The disorder parameters γ = βE∗/2 have been chosen to

agree to those in the conductivity calculations of Fig. 1. The
boson peaks shown in Fig. 3 increase with increasing disorder,
while its position decreases. The positions ω̃BP of the boson
peaks are indicated in Figs. 1 and 2 via the correspondence
ωBP ↔ ω̃2

BP. It is clearly seen that the boson peak marks the
onset of the disorder-induced frequency dependence of the
diffusivity (≡conductivity). Via the correspondence D(ω) ↔
K(ω̃) = v(ω̃)2 this means that the boson peak marks the
beginning of the frequency dependence of the sound velocity
in the disordered vibration model. This is in agreement with
earlier conclusions from effective-medium calculations using
the EMA53,54 and the SCBA.40–45
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FIG. 3. (Color online) Reduced density of states g(ω̃)/gD(ω̃) for
inverse-power-law disorder with the same disorder parameters as in
Figs. 1 and 2. As the disorder increases so does the height of the
boson peak; it is also shifted to lower frequencies.

In Fig. 4 the boson-peak height is plotted against its
frequency position for all four distributions considered. We
include also the prediction of the self-consistent Born approxi-
mation (SCBA). Figure 5 shows a closeup of the small-disorder
region.

The down-shift and reinforcement of the boson peak
with increasing disorder has been shown in the SCBA-based
earlier treatments of vibrational anomalies45 to result from
the disorder-induced level repulsion, which is present in the
anomalous frequency regime above the boson peak. This level
repulsion, which is typical for random-matrix spectra, results
from the absence of symmetries on the microscopic scale.

From our CPA calculations, displayed in Fig. 4 it follows
that the height of the BP scales with its frequency position
ωBP as g(ωBP)

gD(ωBP) ∝ (ωBP)c with c = 1.25. It is suggestive that
this scaling should be related to the power-law frequency
dependence of the diffusivity in the mathematically equivalent
diffusion problem, but we did not find a way to prove this.
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FIG. 4. (Color online) Relation between boson peak height and
position for the CPA solutions of different distributions and disorder
strength for kξ = kD .
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FIG. 5. (Color online) Closeup of the low disorder region of
Fig. 4. Note that in the low-disorder limit ωBP → 0.5333, indepen-
dently of of the chosen disorder distribution.

III. CPA FOR HETEROGENEOUS-ELASTICITY THEORY

A. Model

We start with the equations of motion of elasticity theory
in frequency space, formulated in terms of the stress tensor
σij = ρσ̃ij (ρ is the mass density):79

−ω2ui(r,ω) −
∑

j

∂j σ̃ij (r,ω) ≡
∑

j

Aijuj (r,ω), (61)

where ui(r,ω) are the Cartesian components of the displace-
ment field. We consider an elastic medium in which the elastic
shear modulus may fluctuate in space. If the system is assumed
to be still isotropic, the stress tensor can be represented in two
ways:

σ̃ij = 1

ρ
σij = λ̃δij tr{ε} + 2G̃(r)εij (62a)

= 1

ρ
σij = K̃δij tr{ε} + 2G̃(r)̂εij . (62b)

Here λ = ρλ̃ = K + 2
3G is the longitudinal Lamé modulus,

K = ρK̃ is the bulk modulus, and G = ρG̃ the shear modulus.
εij is the strain tensor (∂j ≡ ∂/∂xj ):

εij = 1/2(∂iuj + ∂jui), (63)

and ε̂ij the traceless strain tensor,

ε̂ij = εij − 1
3δij tr{ε}, (64)

(∂j ≡ ∂/∂xj ). The spatial fluctuations of the shear modulus
can be modeled in two ways: In what we call Model I40,41

the longitudinal Lamé modulus λ is assumed to be constant
[referring to the representation (62a)], in Model II42,43 the K

modulus [referring to the representation (62b)] is assumed to
be constant. As can be shown easily, in model I the macro-
scopic longitudinal Lamé modulus is frequency independent;
in model II the macroscopic bulk modulus is frequency
independent.40,42,43
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B. Derivation of the CPA for heterogeneous elasticity

For model I the matrix Aij takes the explicit form,

Aij = −ω2δij − λ̃∂i∂j

−
(

∂j G̃(r)∂i + δij

∑
�

∂�G̃(r)∂�

)
, (65)

for model II we have

Aij = −ω2δij − K̃∂i∂j + 2

3
∂iG(r)∂j

−
(

∂j G̃(r)∂i + δij

∑
�

∂�G̃(r)∂�

)
. (66)

The Green matrix G = A−1 is represented as

G(r,r′)ij =
n∏

α=1

∫
D

[
ūα

� (r),uα
m(r)

]
ū1

i (r)u1
j (r′)e− ∑

α〈uα
� |A|uα

m〉

(67)

= δ

δJ
(1)
ij (r,r′)

Z[J (r,r′)], (68)

with the generating functional,

Z[J (r,r′)] =
n∏

α=1

∫
D

[
ūα

� (r)uα
m(r)

]
e− ∑

α〈uα
� |A|uα

m〉,

× e−∑
α〈uα

� |J α
�m|uα

m〉, (69)

and the source-field matrix J α . By an integration by part one
arrives at the following representation of the action:

∑
ij

〈
uα

i

∣∣A[G]
∣∣uα

j

〉 =
∫

d3r

(
s̃
∑

i

∣∣uα
i (r)

∣∣2 + 1

2
K̃tr{εα(r)}2

+G(r)
∑
ij

∣∣̂εα
ij (r)

∣∣2

)
. (70)

Applying again the Fadeev-Popov procedure and performing
all the steps we have done before, we arrive at an effective
action, which looks similar to that of the diffusion problem
(25):

Seff[Q,�,J̃ ] = Tr{ln(A[Q] − J̃ )}

−
n∑

α=1

V

Vc

ln
(〈
e− Vc

V
�

(α)
i (D(α)

i −Q
(α)
i )

〉
i

)
. (71)

But now the trace operation goes also over the Cartesian
indices.

The homogeneous matrix Aeff[Q] is both diagonal in the
Cartesian indices and with respect to the k vectors. The
diagonal elements are 1/GL(k,s̃) and twice 1/GT (k,s̃), which
are given by

1/GL(k,s̃) = s̃ + k2[λ̃ + 2Q(s̃)] Model I, (72a)

1/GL(k,s̃) = s̃ + k2
[
K̃ + 4

3Q(s̃)
]

Model II, (72b)

1/GT (k,s̃) = s̃ + k2Q(s̃). (72c)

The saddle-point equations, followed by the expansion of the
exponential in the denominator leads to the CPA equations,

0 =
〈

Gi − Q(s̃)

1 + ν̃
3 (Gi − Q(s̃))�(s̃)

〉
i

. (73a)

The susceptibility functions for the models α = I,II take the
form,

�α(s̃) = 3

k3
ξ

∫ kξ

0
dkk4(qαGL(k,s̃) + 2GT (k,s̃)), (73b)

with qI = 2 and qII = 4/3. The density of states is calculated
from the well-known formula,

g(ω) = Im

{
2ω

3π
(GL(s̃) + 2GT (s̃))

}
, (74)

where we have introduced the local longitudinal and transverse
functions (identifying again ξ with kD),

GL,T (s̃) = 3

k3
D

∫ kD

0
dkGL,T (k,s̃). (75)

We can write the susceptibility function �α(s̃) as follows:

�α(s̃) = 1 − s̃GT (s̃)

Q(s̃)
+ qα

1 − s̃GL(s̃)

pα + qαQ(s̃)

= �̃(s̃)

(
1 + qαQ(s̃)

pα + qαQ(s̃)

1 − s̃GL(s̃)

1 − sGT (s̃

)
, (76)

with pI = λ̃ and pII = K̃ . �̃(s̃), which is the transverse local
susceptibility, is the same mathematical function of Q as the
susceptibility function of Eq. (35b) for the scalar phonon
problem. Because the function inside the big brackets is
only weakly frequency dependent and the density of states
is dominated by the transverse Green’s function all the results
derived and presented for the scalar phonon problem hold also
for the vector phonon problem.

In particular, for non-Gaussian distributions of the shear
modulus the quantity g(ω)/gD(ω) can have boson peaks with
arbitrary heights, and a scaling as depicted in Fig. 4 holds.80

As an example we show in Fig. 6 the reduced density of states,
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FIG. 6. (Color online) Boson peak data for SiO2
81 compared with

the reduced DOS for the inverse-power model with two different
lower cutoffs μ.
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extracted from inelastic x-ray measurements by Baldi et al.81

together with the corresponding quantity calculated for the
inverse-power distribution P (G) given by Eq. (59).

The important difference between the scalar model and
the vector theory (heterogeneous elasticity theory) is that
it describes the physically relevant vector displacements,
in which dilatational and shear degrees of freedom can
be distinguished. Model II represents a theory, in which
the disorder-induced anomalous frequency dependence is
dominated by the dilatation-free shear degrees of freedom in
agreement with recent computer simulations.42,43,82,83

IV. CONCLUSIONS

We have derived a version of the coherent-potential ap-
proximation for both diffusional and vibrational motion in
a quenched-disordered environment, which is suitable for
topologically disordered materials. The effective medium is
not a crystalline lattice but a homogeneous and isotropic
system with frequency-dependent diffusivity or elastic con-
stants, respectively. The results can be directly applied to
experimentally measured spectra. In the weak-disorder limit
the CPA reduces to the self-consistent Born approximation,
which is based on Gaussian disorder. In the strong-disorder
limit, in which the local diffusivities or elastic quantities vary
exponentially, the CPA describes correctly the percolative
aspects of such systems. It has been demonstrated that the
disorder-induced vibrational anomalies become stronger as
the disorder is increased. In particular the height of the
boson peak has been shown to increase indefinitely with the
disorder.

In contrast to some earlier effective-medium theories for
the heterogeneous diffusion and wave propagation problem
the present theory includes the correct low-frequency non-
analyticity, which leads to a long-time tail of the velocity
autocorrelation function of the diffusion problem and to
Rayleigh scattering in the vibrational problem.

The present version of the CPA does not treat correlated
spatial disorder. How to include correlations into the CPA
has been shown by Zimmermann and Schindler.39 It is
straightforward to modify the present theory along the lines of
Ref. 39. The inclusion of correlations will modify the shape of
the calculated spectra but not the general conclusions for the
influence of quenched disorder on these spectra.
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APPENDIX: ELECTRONS IN A RANDOM POTENTIAL

The method developed above for the diffusion and scalar
phonon problem can, with slight modifications, be applied to

the problem of an electron gas in a random potential. This
model is governed by the Schrödinger equation:∫

d3x �†(x)

(
h̄2

2m
� − V (x) − Ẽ

)
�(x)|ϕ〉 = A|ϕ〉 = 0,

Ẽ = E + iε

N
. (A1)

The corresponding Green’s function can then be expressed
with a coherent-state path integral over the Grassmann fields
θ and θ̄ :

G(x,x′,Ẽ) = 1

ζ [0]

δζ [J ]

δJ (x′,x)

∣∣∣∣
J=0

, (A2)

ζ [J ] =
∫

D[θ,θ̄ ] e〈θ |A+J |θ〉. (A3)

From here on all steps are analogous to the previous section.
First the replica trick is performed and a coarse-grained
potential,

V (x) =
∑

i

viχi(x), (A4)

with no correlation between the coarse-graining boxes is
introduced. V (x) is subsequently replaced in A via the Fadeev-
Popov procedure by an auxiliary field Q yielding

〈ζ n[J ]〉 =
∫

D[Q,�] e−nSeff[Q,�,J ] , (A5)

with the effective action,

Seff[Q,�,J ] = −tr ln(A + J ) −
∑

i

ln〈eVc/V �i (vi−Qi )〉i .

(A6)

As described in the body of the paper, the CPA equations
determine the saddle point of (A5). The saddle-point equations
read

�′ = − Vc

V ν̃

∑
k

1

Ẽ − h̄2

2m
k2 − Q

, (A7a)

Q =
〈

v

1 + ν̃(v − Q)�′

〉
. (A7b)

The k-space summation can now be evaluated and the CPA
equations solved. From these results the calculation of the
density of states can be done.

The effective-medium operator that is defined by Eq. (A7)
is

Aeff(k,k′,z) =
(

z − h̄2k2

2m
− Q

)
δk k′ . (A8)

This result has already been obtained in an independent
discussion of the CPA for electrons in a random potential39

and can be interpreted as the continuum version of the classical
lattice theories, e.g.4

1P. Soven, Phys. Rev. 156, 809 (1967).
2D. W. Taylor, Phys. Rev. 156, 1017 (1967).
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