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Possible origin of the discrepancy in Peierls stresses of fcc metals: First-principles simulations
of dislocation mobility in aluminum
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Dislocation motion governs the strength and ductility of metals, and the Peierls stress (σp) quantifies dislocation
mobility. σp measurements carry substantial uncertainty in face-centered cubic (fcc) metals, and σp values can
differ by up to two orders of magnitude. We perform first-principles simulations based on orbital-free density
functional theory (OFDFT) to calculate the most accurate currently possible σp for the motion of 1

2 〈110〉 {111}
dislocations in fcc Al. We predict the σps of screw and edge dislocations (dissociated in their equilibrium state)
to be 1.9 × 10−4G and 4.9 × 10−5G, respectively (G is the shear modulus). These values fall within the range of
measurements from mechanical deformation tests (10−4–10−5G). OFDFT also finds a new metastable structure
for a screw dislocation not seen in earlier simulations, in which a dislocation core on the glide plane does not
dissociate into partials. The corresponding σp for this undissociated dislocation is predicted to be 1.1 × 10−2G,
which agrees with typical Bordoni peak measurements (10−2–10−3G). The calculated σps for dissociated and
undissociated screw dislocations differ by two orders of magnitude. The presence of undissociated, as well as
dissociated, screw dislocations may resolve the decades-long mystery in fcc metals regarding the two orders of
magnitude discrepancy in σp measurements.
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I. INTRODUCTION

Dislocation motion plays a critical role in plastic deforma-
tion of crystals. Dislocations, the carriers of plasticity, are
ubiquitous in real materials. Their presence is responsible
for shear strengths many orders of magnitude less than the
theoretically predicted strength of a hypothetical defect-free
crystal.1 Dislocation mobility is quantified by the Peierls stress
(σp), which is the minimum external stress required to move
a stationary dislocation irreversibly at 0 K.

Interpreting σp measurements in face-centered cubic (fcc)
metals has been challenging when studying metal plasticity.
σp can be estimated experimentally from the critical resolved
shear stress measured by a mechanical deformation test or
from the Bordoni relaxation peak of an internal friction
measurement,2 where the Bordoni peak has been interpreted
in terms of the thermally activated kink pair formation
mechanism.3 Both methods provide similar σp values in body-
centered cubic (bcc) metals and NaCl- and CsCl-type ionic
crystals. However, the two methods can differ by two orders
of magnitude in fcc metals. For the σp of fcc Al, mechanical de-
formation tests yield estimates of 10−4–10−5G,4 while the typ-
ical Bordoni peaks in internal friction measurements provide
estimates of 10−2–10−3G.5–8 Notably, a lower-temperature
Bordoni peak corresponding to a σp of 10−4–10−5G was
observed more recently in ultra–high-purity, zone-refined
Al.9,10 This value, similar to those from mechanical tests,
provides a clue of the true σp for a pure Al single crystal. Un-
fortunately, in situ measurements of the atomic-scale motion of
dislocations are not yet possible. To discern what is occurring
at that scale instead requires accurate computer simulations
of dislocation motion in order to reconcile the long-lasting
puzzle of the drastically differing σp measurements in fcc
metals.

Numerous theoretical simulations have directly calculated
σp to help elucidate plastic deformation mechanisms in fcc
metals. These models can be divided into two groups: (1)
direct atomic simulations using molecular dynamics (MD)
and molecular statics and (2) indirect estimation of the
σp from first-principles generalized stacking fault energies
(GSFEs) based on the framework of the Peierls-Nabarro (PN)
model.1,11,12 Direct atomic simulations have used primarily
the classical embedded atom method (EAM) interatomic
potential,13,14 since accurate quantum mechanics (QM) meth-
ods such as Kohn-Sham density functional theory (KSDFT)15

are too computationally demanding for dislocation structure
and motion simulations. The direct atomic simulations predict
σps for screw and edge dislocations within ranges of 1–82 and
1–13 MPa, respectively.16–23 Indirect PN estimations generally
yield much larger values for a screw dislocation (∼256 MPa)
but similar values for an edge dislocation (∼1–3 MPa)
compared to those from atomistic simulations17,24–26 (vide
infra). Although the calculations fall within a large range of
measurements—10−2–10−5G, where G is measured to be
∼25 GPa (Ref. 27)—it is not clear which simulation technique
reliably models which experimental method.

EAM atomic simulations have achieved widespread success
for modeling mechanical properties of simple metals and
intermetallics. Their computational efficiency enables large-
scale atomic simulations that account for inherent material
relaxation properties. However, EAM potentials are not fully
transferable, and their accuracy can suffer when modeling
states of matter significantly different from those used in
their original fitting. First-principles QM methods should be
more transferable because each term in the energy expression
is based on fundamental physical laws. Additionally, QM
calculations can describe metal stacking fault energies (SFEs)
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more accurately than do EAM calculations.28 The PN model,
which bridges SFEs to dislocation core structures, is likely to
be overly simplistic and does not account for atomic relaxation.
What is needed is a sufficiently accurate QM method that is
also fast enough to follow structural changes so that atomic
simulations of dislocation motion can be run to extract reliable
σps. Orbital-free density functional theory (OFDFT) is a
transferable first-principles QM method that can be made
to scale linearly with system size.29 It does so by directly
solving for the electron density instead of introducing an
auxiliary set of one-electron orbitals (as done in conventional
KSDFT). Although KSDFT can be made to scale linearly for
nonmetals,30 a large prefactor for metals (due to the delocalized
nature of electrons in metals) means large-scale calculations
are still prohibitively expensive (unless extraordinary comput-
ing resources are used.31). By contrast, OFDFT permits more
efficient atomic simulations of metals.29,32–35

OFDFT accuracy relative to KSDFT depends on the quality
of two approximations beyond the usual electron exchange-
correlation functional. One is the kinetic energy density
functional (KEDF) used to evaluate the electron kinetic energy,
and the second is the local pseudopotentials (LPPs) used
when calculating the ion (screened nucleus)–valence electron
interaction energy. Several OFDFT applications with state-of-
the-art KEDFs36–39 and transferable bulk-derived LPPs40,41

reveal that OFDFT can describe many properties (e.g.,
equilibrium volumes and structures, relative phase stabilities,
elastic constants, and SFEs35,39,42–45) of main group metals
and semiconductors with comparable accuracy to KSDFT.
For Al, complex mechanical phenomena, such as vacancy
aggregation, deformation of nanowires, ductile processes at
crack tips, and dislocation structures, have been successfully
studied with OFDFT simulations,28,46–49 lending credence to
its use in what follows.

In this study, we first calculate the σp of 1
2 〈110〉 {111}

screw and edge dislocations with OFDFT. In pure Al, such
dislocations typically dissociate into two 1

6 〈112〉 {111} Shock-
ley partials that bound a locally hexagonal close-packed (hcp)
stacking fault (SF) region. We then compare the σp of the disso-
ciated screw dislocation to that of a metastable, undissociated
1
2 〈110〉 {111} screw dislocation that we have found. Elasticity
theory predicts that an undissociated screw dislocation can be
in a metastable state when the equilibrium dislocation width is
narrow (<10b, where b is the Burgers vector).50 Al’s disloca-
tion width is indeed narrow (∼4b) due to its high SFE. How-
ever, the undissociated dislocation in Al has not been observed
experimentally, since the narrow width makes it difficult to
distinguish dissociated and undissociated core structures. The
presence of this undissociated 1

2 〈110〉 {111} screw dislocation
in Al, its structure, and its motion have not been reported
previously. To the best of our knowledge, only OFDFT has
found this metastable, undissociated core structure. As we shall
show, the two possible dislocation core structures (dissociated
and undissociated) are likely the origin of the two orders of
magnitude discrepancy in the σp measurements.

II. COMPUTATIONAL DETAILS

We employ the climbing image nudged elastic band
(CINEB) transition state search algorithm51,52 within the

OFDFT simulation to evaluate the minimum energy path
(MEP) and energy barrier for dislocation motion. We then
compare the CINEB prediction to atomic simulations under
quasistatic loading conditions as another measure of σp.

Our linear scaling OFDFT method was presented in several
previous papers.29,48,53 All OFDFT calculations are carried out
using PROFESS 2.0 (PRinceton Orbital-Free Electronic Struc-
ture Software), an open-source FORTRAN90 code developed by
Carter and co-workers.29,53

We calculate electronic exchange and correlation (XC)
using the local density approximation (LDA) derived from
the quantum Monte Carlo results of Ceperley and Alder54 as
parameterized by Perdew and Zunger.55 The LDA XC provides
a good description of nearly-free-electron–like metals such as
Al because it is exact for the uniform electron gas. The LDA
XC typically overestimates binding energies and accordingly
overestimates shear moduli and SFEs. However, since LPPs
in OFDFT tend to underestimate SFEs48 compared to those
estimated from experiments,56–59 we use the LDA XC, which
should give better agreement with experiments due to error
cancellation between the LDA and the LPP.

We treat the electron kinetic energy using the 1999 Wang-
Govind-Carter (WGC99) nonlocal KEDF, which contains two
universal density exponents α,β = 5

6 ±
√

5
6 . The two-body

Fermi wave vector mixing parameter γ is set to 2.7. This
parameter set is optimal for main group metals.38 The reference
density ρ∗ in the Taylor expansion of the WGC99 kernel is
chosen to be the average electron density of equilibrium fcc Al.
The nonlocal term of WGC99 KEDF may diverge in very low
electron density (vacuum) regions that surround an isolated
dislocation treated within periodic boundary conditions. Since
the vacuum region should not physically contribute to any
energy term evaluated via a density functional, we are free to
neglect these spurious contributions. In order to numerically
handle these artifacts, we multiply the diverging term by a
smooth cutoff function48

f (r) = exp
{

ρ(r)
D

} − 1

exp
{

ρ(r)
D

} + exp
{

ρc

D

} , (1)

where ρc is the cutoff density below which f (r) goes to
zero quickly and above which it approaches unity quickly.
D controls the smoothness of f (r) at ρc. We set ρc = 10−5

and D = ρc/10.
We calculate the ion-electron interaction energy using a

transferable bulk-derived local pseudopotential (BLPP). We
generate the BLPP by inverting the Kohn-Sham (KS) equations
to obtain the KS effective potential, using as input the densities
of various phases containing different coordination numbers
(fcc, bcc, simple cubic, and cubic diamond). We obtain each
input density from KSDFT using a standard Troullier-Martins
(TM) nonlocal pseudopotential (NLPP).60 We derive the BLPP
from the KS effective potential by unscreening the latter
by the XC and Hartree potentials. This BLPP accurately
approximates TM NLPP predictions of KSDFT electron
densities in various Al structures. Detailed procedures for
deriving BLPSs and the quality of the Al BLPS were reported
previously.40,41

A plane wave basis kinetic energy cutoff of 600 eV
sufficiently converges the total energy and the lattice parameter
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TABLE I. Details of various supercells used in dislocation motion simulations.

Simulation method Dislocation No. of atoms Crystallographic orientation Cell size (Å × Å × Å)

CINEB MEP calculation Screw 2112 X [11̄2], Y [11̄1̄], Z [110] 107.0 × 110.1 × 2.809
Edge 2982 X [110], Y [1̄11̄], Z [1̄12] 101.1 × 96.3 × 4.866

Quasistatic loading simulation Screw 4224 X [11̄2], Y [11̄1̄], Z [110] 155.7 × 151.4 × 2.809
Edge 4482 X [110], Y [1̄11̄], Z [1̄12] 118.0 × 123.9 × 4.866

of fcc Al to within 0.03 meV/atom and 1.2 × 10−5 Å,
respectively. It also converges dislocation core structures in
terms of the partial splitting width, which did not change,
even with a much larger basis in which the cutoff was
increased to 1200 eV. Recall that k-point sampling and Fermi
surface smearing are not used in OFDFT since there are
no one-electron orbitals or energy levels but rather only a
density and a total energy. For density optimizations, we use
a truncated Newton method with a tolerance for the total
energy convergence of 2.7 × 10−5 eV (1.0 × 10−6 Ha) so
that the energy is well converged even for samples containing
thousands of atoms.

We model dislocations based on an anisotropic linear
elastic displacement field.1 A dislocation core is built in the
center of a rectangular super cell with one unit lattice vector
periodically replicated along the dislocation line direction
Z, thereby modeling an infinitely long dislocation line. Our
supercell contains an even number of periodic unit cells
along the X and the Y directions so that the initial core is
located in the exact center of the periodic supercell. This
initial condition produces the metastable undissociated core
of the screw dislocation, as well as the more stable dissociated
cores of the screw and edge dislocations. Table I provides
details of the various simulation cells used in this work.
The cell sizes given therein are large enough to converge
the dislocation core structures (e.g., partial splitting widths)
and energies; i.e., the structures and energies do not change
with larger cell sizes. We use an isolated dislocation model
in which 10 Å of vacuum between neighboring periodic slabs
eliminates artificial interactions between periodic images. This
vacuum layer thickness was verified to be sufficiently thick to
produce converged results. As an alternative to the isolated
dislocation model, we also considered quadrupolar arrays in
which a surrounding vacuum layer is not needed in periodic
supercells. However, the non-negligible interaction between
neighboring, opposing dislocations in a moderately-sized cell
significantly lowered the σp. Thus, we concluded that the
isolated dislocation model provides more realistic physical
properties.

We compare two boundary conditions for the surfaces
normal to the X and Y directions (Table I). The first is a
fixed boundary condition [Fig. 1(a)] where atoms within 6 Å
of the surfaces are fixed at their initial positions (determined by
elasticity theory) during ion relaxation to impose the correct
far-field displacement boundary condition on the dislocation
(this allows the dislocation to reside in bulk-like surroundings
in the far field, where long-range elastic strain is dominant).
The second is a mixed boundary condition [Fig. 1(b)] where
atoms within 6 Å of the surface normal to the Y direction
are fixed only in the normal direction; the other surface

(normal to the glide direction X) is a free boundary to
accommodate the glide of the dislocation. Isotropic linear
elasticity theory estimates an image stress on the free surface
as σimg ∼ Gx2/πd2 as the isolated single dislocation moves
by one unit vector x along the glide plane, where G and d

are respectively the shear modulus and the cell dimension.
Hence, any calculated σps of similar magnitude to this image
stress could be questionable (vide infra). CINEB calculations
impose both boundary conditions, while quasistatic loading
simulations use only the mixed boundary condition to model
deformation on the boundary of a moving dislocation.

As further verification of the robustness of these boundary
conditions, we compared the positions of the boundary atoms
built by elasticity theory for a perfect core vs Shockley partials
to estimate how much the boundary atoms are affected by core
dissociation. For the cell sizes listed in Table I, the maximum
difference in atomic positions within the 6-Å constrained
surface region was ∼0.00025 Å, suggesting that the cell size
is large enough to describe both dissociated and undissociated
cores within the fixed boundary condition without introducing
misfit strain. (More boundary condition tests and test details
are included as supplemental material.61) Furthermore, in
our previous work examining Al dislocation structures,48 we
thoroughly benchmarked boundary conditions (a quadrupolar
array of dislocations in a periodic boundary vs an isolated
core in a constrained boundary) by comparing their predictions
of the partial splitting width to the most recent experimental
data.62 The two boundary conditions predicted similar widths
and were in reasonable agreement with experiment, which
validates the isolated core model in a constrained boundary
condition. Finally, we note that the constrained boundary
condition is commonly used for simulating dislocation motion;
see, for example, Ref. 63.

The first and last dislocation structures within CINEB
simulations are optimized using the conjugate gradient
(CG) method. We set the convergence threshold for the
maximum force component on atoms to be 2.5 meV/Å
(4.9 × 10−5 Ha/bohr). The distance between the dislocation
core positions in the first and last structures is set to one
periodic unit along the glide direction X. Fifteen replica
images are constructed from a linear interpolation between
the optimized first and last structures. Images are then
optimized with a maximum force threshold of 5.0 meV/Å
(9.8 × 10−5 Ha/bohr). For CINEB calculations with the
undissociated screw dislocations, atoms within a 5-Å radius
from the core are frozen in their interpolated positions. Not
doing so causes CINEB calculations to not converge within
the force tolerance. Imposing this constraint predicted slightly
larger (∼1.2×) σp for the dissociated screw dislocations,
where we could compare results with or without this constraint.
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The close agreement between the results obtained from the
two conditions suggests that imposition of this constraint
is acceptable. The relative dislocation core energy EC(x) is
calculated as

EC (x) = ECINEB (x) − ECINEB(0)

−{ECINEB (L) − ECINEB (0)} · (x/L), (2)

where ECINEB (x) is the total energy at x, the travel distance of
the dislocation core, and L is one periodic unit. {ECINEB (L) −
ECINEB (0)} · (x/L) averages the slight difference in the dis-
location core energies of the two terminal CINEB images
(this difference is negligible compared to the energy barrier
(max |EC (x)|)).EC(x) is then interpolated so that its gradient
(vide infra) can be calculated by numerical differentiation.
Assuming the deformation occurs slowly enough to achieve
a quasistatic equilibrium, then the stress σ (x) applied to or
experienced by the dislocation during its motion is given by64

σ (x) = 1

b2

dEc(x)

dx
. (3)

By definition, the Peierls stress is defined as

σp = max |σ (x)| . (4)

For the quasistatic loading simulations, we explicitly apply
a shear stress along the Burgers vector to the supercell
by shearing all atoms therein according to the strain field
corresponding to this shear stress. We increase the shear strain
and then relax the atoms based on the CG method with a max-
imum force threshold of 2.5 meV/Å (4.9 × 10−5 Ha/bohr).
To estimate the σp, we repeat this procedure until the
dislocation core starts to move from its strain-free position.
Strain increments are �ε = 10−4 and 10−5 for the screw and
edge dislocations, respectively; accordingly, the uncertainty of
the calculation is the same as �ε.

We identify dislocation cores based on the common
neighbor analysis (CNA) pattern for each atom,65 which is
built in the LAMMPS MD code.66 CNA can recognize five
local structures: fcc, hcp, bcc, icosahedral, and “unknown.”
We assume that a dislocation core is located at the center of
unknown structure atoms, implying a distorted region around
the core.

III. RESULTS AND DISCUSSION

As stated earlier, experimentally measured and theoretically
predicted σps for fcc metals can differ by up to two orders
of magnitude. Our first goal is to calculate the most accurate
possible σps to provide guidelines for computing σps in metals
and for evaluating the quality of previous simulation methods
(Sec. III A). Our second goal is to explain the significant
discrepancies of σps measured and calculated for fcc metals.
OFDFT atomic simulations show two screw dislocation core
structures are possible, i.e., dissociated and undissociated
cores. Their σps differ by two orders of magnitude, which
finally identifies the probable origin of the long-standing
discrepancy in measured σps (Sec. III B).

FIG. 1. (Color online) (a) Fixed and (b) mixed boundary condi-
tions used for the screw and edge dislocation calculations listed in
Table II. (Figures are drawn for a screw dislocation as an example,
but an edge dislocation used the same fixed and mixed boundary
conditions.) The supercell is rectangular. Atoms in red are fixed during
ion relaxation. Atoms in yellow are fixed only in the Y direction.
Atoms in gray are free to move in all directions. See text for details.

A. Peierls stresses of dislocations in fcc Al

1. Results

We optimize the position of each (nonfixed) atom in the
supercell based on ab initio forces calculated using OFDFT. To
the best of our knowledge, Al σp values have not been extracted
previously from QM-based atomic simulations, so σp values
from our OFDFT atomic simulations maybe the most accurate
ones available. We compare two types of simulations with
OFDFT: a CINEB construction of an MEP and a quasistatic
loading simulation in which energy minimization of the
structure is performed after each loading increment. We also
compare two boundary conditions within the OFDFT CINEB
calculations: fixed and mixed boundary conditions (Fig. 1).

The 1
2 〈110〉 {111} dislocations in fcc metals typically

separate into two 1
6 〈112〉 {111} Shockley partials in their

equilibrium states. The present OFDFT simulations predict
the spacing between these partials (the dislocation width)
to be 10.9 Å (screw) and 20.4 Å (edge). The CINEB
calculation for the edge dislocation with the fixed boundary
condition does not show a clear energy barrier for dislocation
motion. We therefore employ the mixed boundary condition
explained in Sec. II to fairly compare the Peierls barriers
for the screw and edge dislocations. On the basis of the
CINEB results shown in Fig. 2 and using Eqs. (3) and
(4), we predict σp for Al screw and edge dislocations to
be 9.9 MPa (3.0 × 10−4G) and 1.6 MPa (4.9 × 10−5G),
respectively (Table II). The shear modulus, relating stress and
strain along a 〈110〉 direction on a {111} plane, is evaluated
within OFDFT to be G = (C44+C11−C12)

3 = 32.7 GPa (with
C11 = 114.9 GPa, C12 = 62.8 GPa, and C44 = 46.0 GPa). We
then verified those CINEB predictions by quasistatic loading
simulations using the same mixed boundary condition. The
latter method predicts 11.4 ± 1.6 MPa (3.5 ± 0.5 × 10−4G)
and 1.8 ± 0.2 MPa (5.5 ± 0.5 × 10−5G) for screw and edge
dislocations, respectively. The range of values corresponds to
the uncertainty in the strain increment �ε. The two different
simulation methods with the same boundary condition predict
nearly the same σps for each dislocation. Both simulations
predict around six times larger σp for the screw dislocation,
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FIG. 2. (Color online) Variation of the relative dislocation core
energies EC(x) for screw and edge dislocations [calculated using the
CINEB method with the mixed boundary condition of Fig. 1(b)] as a
function of the normalized displacement x traveled by the dislocation
core. The energy unit is meV/b where b is the Burgers vector. Insets
show corresponding atomic configurations of the screw (upper inset)
and the edge (lower inset) dislocation cores along the MEP. Atoms
are superimposed on the XY plane noted in Table I. Gray, blue, and
red spheres indicate atoms locally in fcc, hcp, and unknown crystal
structures, respectively, as derived from CNA. (Partial) dislocation
core positions are determined as the center of “unknown structure”
atoms (red). Between the partial dislocation cores lies an hcp stacking
fault region (blue). The same convention is used in Fig. 4.

implying that the screw dislocation moves less readily than the
edge dislocation. This result is also qualitatively predicted by
its smaller width between partial cores.

In the mixed boundary simulation, an image force may exist
on the free boundary surface that could pull the subsurface
dislocation toward the surface. This force can be estimated
as σimg ∼ Gx2/πd2 as the isolated single dislocation moves
by one unit vector x along the glide plane (Sec. II). In
our quasistatic loading simulation for the edge dislocation,
x = 1.4 Å and the cell dimension d =∼120 Å so that
σimg = ∼1.4 MPa. Since the image force is of the same order

of magnitude as the calculated σp for the edge dislocation,
the latter value may be questionable. However, in the CINEB
calculation, the image force is essentially corrected by the last
term on the right-hand side of Eq. (2).67 The two different
simulation methods predict nearly the same σp, which implies
the image force was negligible in our quasistatic loading
simulation with the mixed boundary condition. For the screw
dislocation, the two simulation methods predict almost the
same σp as well, and this σp is much larger than the image
force. Thus, the results for the screw dislocation should be
reliable. We also predict a σp of 6.2 MPa (1.9 × 10−4G) for
the screw dislocation based on the fixed boundary CINEB
calculation, in which no image force error exists. We see that
the fixed boundary condition predicts a somewhat smaller
σp than the mixed boundary condition, though it is still
significantly larger than the σp for the edge dislocation so
that qualitative trends remain unchanged.

The CINEB calculations also provide structures along the
MEP for moving a dislocation, revealing the mechanism of
motion. For the screw dislocation (Fig. 2, upper inset), the
trailing partial core moves first, decreasing the SF region
between the partials, then the leading partial core starts to move
before the trailing one arrives in its equilibrium position, in an
overall caterpillar motion. For the edge dislocation (Fig. 2,
lower inset), the leading partial core moves first, increasing
the SF region between the partials, and then the trailing partial
core follows. The widths of both dislocations at the top of
the barrier are the same as the equilibrium widths. Thus,
we predict that at least in Al and perhaps in all fcc metals,
partials do not move simultaneously; rather, one moves first,
thereby providing the impetus to push or drag the other partial
afterward. The different strain fields of the screw vs edge
dislocations are probably responsible for why the order of
partial dislocation motion (which one moves first) is not the
same for the two dislocation types.

2. Discussion

We now compare our predictions to measurements so
as to determine the accuracy of our OFDFT simulations
(Table III). The kink pair formation mechanism, related to
the Bordoni peak as discussed earlier, is widely believed
responsible for the mobility of screw dislocations.5,68 We
therefore first compare the calculated σps of the screw
dislocation to those derived from the Bordoni relaxation peak
of internal friction measurements. This Al σp is estimated to be

TABLE II. OFDFT Peierls stresses (σps) for edge and screw dislocations in fcc Al using two different simulation methods and two different
boundary conditions.

Simulation method Boundary condition Dislocation σp (MPa)a

Edge (dissociated) No energy barrier observed
CINEB MEP calculation Fixed Screw (dissociated) 6.2 (1.9 × 10−4G)

Screw (undissociated) 355 (1.1 × 10−2G)

Mixed
Edge (dissociated) 1.6 (4.9 × 10−5G)
Screw (dissociated) 9.9 (3.0 × 10−4G)

Quasistatic loading simulation Mixed
Edge (dissociated) 1.8 ± 0.2 (5.5 ± 0.5 × 10−5G)
Screw (dissociated) 11.4 ± 1.6 (3.5 ± 0.5 × 10−4G)

aG is the OFDFT-calculated shear modulus, 32.7 GPa, along a 〈110〉 direction on a {111} plane.
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TABLE III. Calculated and measured Peierls stresses (σps) for screw and edge dislocations in fcc Al.

Method References Screw σp (MPa) Edge σp (MPa)

OFDFT simulation This worka 6.2, 9.9, 355b 1.6

Kosugi and Kino9 0.68
Internal friction measurement Koizumi et al.10 1.4

Various5–8,c 25∼250d

Mechanical deformation test Seeger and Schiller4 0.25∼2.5e

Initial flow stress
Howe et al.69 1.06
Wang70 0.71

Bulatov et al.16 82
Lu et al.17 82
Fang and Wang18,f 2.3

EAM simulation Olmsted et al.19 14–18 2
Pasianot and Moreno-Gobbi20 35, 66
Srinivasan et al.21,f 1 1, 13g, 225b,g

Tsuru et al.23 39 1.75

Lu et al.17 256, 88h 3.2, 24h

PN-based model calculation
Lu et al.25 256
Lu and Kaxiras26 254, 20i 2.9, 1.4i

Hartford et al.24 0.9

aCINEB results listed again for comparison (from Table II).
bUndissociated core structure (for all other simulations, a dissociated core structure was modeled).
cFantozzi et al. (Ref. 5), Benoit et al. (Ref. 6), Bujard et al. (Ref. 7), and Nabarro (Ref. 8).
dGenerally reported as 10−2–10−3 in the unit of shear modulus, which is ∼25 GPa (Ref. 27).
eGenerally reported as 10−4–10−5 in the unit of shear modulus.
fMD results within EAM (unless noted, the rest are molecular statics simulations).
gBaskes et al.’s EAM potential (Ref. 72) was used (for all other EAM simulations, Ercolessi-Adams potential (Ref. 71) was used).
hEAM GSFE was used within a PN-based model calculation (unless noted, KSDFT GSFE was used).
iDislocation model includes vacancies (for all other simulations, vacancies were not included).

10−2–10−3G,5–8 corresponding to the Bordoni relaxation peak
between ∼100 and ∼200 K.5 More recently, Kosugi and Kino9

and Koizumi et al.10 found a lower-temperature peak below
20 K with ultra–high-purity, zone-refined Al single crystals
(impurity concentration of ∼1 ppm), corresponding to σps
of 2.7 × 10−5G and 5.4 × 10−5G, respectively. Since most
theoretical simulations (including ours) model a dislocation in
a pure Al single crystal, such predictions should be compared
to Kosugi and Kino’s9 and Koizumi et al.’s10 measurements.
Our OFDFT simulation predicts somewhat larger σps: 6.2 MPa
(1.9 × 10−4G) or 9.9 MPa (3.0 × 10−4G) based on the
fixed or mixed boundary CINEB calculations, respectively.
However, our values are much closer to the experimental σp

estimated from the lower-temperature Bordoni peak9,10 than
all but one previous simulation21 (Table III, vide infra). The
σp based on the fixed boundary condition shows slightly
better agreement with the experimental σp. We use this
value for comparison to the σp of the undissociated screw
dislocation in the next section, for which we use only the (more
accurate) fixed boundary condition. Our result also agrees well
with mechanical deformation tests (10−4–10−5G).4 In such
critical resolved shear stress measurements, screw dislocation
mobility is considered to be the determining factor, rather than
its edge counterpart, due to the former’s lower mobility. Our
predicted mobility of an edge dislocation, σp of ∼1.6 MPa
(4.9 × 10−5G) from both CINEB and quasistatic loading

simulations, is in good agreement with experimental values for
edge dislocation motion estimated from initial flow stresses,
e.g., 1.06 MPa (Ref. 69) and 0.71 MPa (Ref. 70).

In principle, OFDFT should be the most robust theoretical
method for calculating σp in metals used to date because it si-
multaneously considers QM effects and atomic relaxations for
thousands of atoms around the dislocation core. Comparison to
experiment verifies its accuracy. We next compare our OFDFT
results to those from other theoretical methods (Table III). For
the screw dislocation, all EAM simulations but one predicted
much larger values than our OFDFT predictions, yielding
larger disagreement with the experimental σp estimated
from the lower-temperature Bordoni peak.9,10 All of these
EAM simulations employed the Ercolessi-Adams potential,71

generally considered to be the most reliable EAM potential
for Al. Srinivasan et al. predicted a smaller σp of 1 MPa
for both screw and edge dislocations from MD simulations21;
however, the σp values for both types of dislocations were
predicted to be the same, which points to a problem with
these MD simulations. Lu et al. predicted a much larger
value of 256 MPa based on the semi-discrete PN model,17,25,26

which differs by two orders of magnitude compared to σp

estimated from the lower-temperature Bordoni peak. For the
edge dislocation, our OFDFT result agrees well with both the
EAM simulation results and PN-based model calculations that
employed a KSDFT GSFE. However, an order of magnitude
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larger σp for an edge dislocation of 13 MPa was derived
from Srinivasan et al.’s MD simulation21 that employed a
different EAM potential.72 This may be attributed to the
quality of this EAM potential, which is less accurate than
the Ercolessi-Adams potential71 for evaluating SFEs. Finally,
Lu et al.’s PN-based model calculation employing an EAM
GSFE predicts a σp for an edge dislocation of 24 MPa.17 This
significantly overestimated value is due to the less accurate
EAM GSFE compared to the KSDFT one. This comparison
of σp values leads us to conclude that QM simulation methods
are needed to accurately model the motion of Al dislocations.

B. Peierls stress of an undissociated screw dislocation in fcc Al

1. Results

As the last section demonstrated, OFDFT CINEB simula-
tions provide accurate σps for screw and edge dislocations
in Al. By considering both QM and atomic relaxation
effects simultaneously, we can now address the discrepancy
between σp values estimated from mechanical tests and the
lower-temperature Bordoni peak (10−4–10−5G) compared
to those from the typical, higher-temperature Bordoni peak
(10−2–10−3G).

During structural optimization of the screw dislocation
starting with the initial conditions given in Sec. II, we
unexpectedly discovered a metastable, undissociated core
structure where the maximum force component on any atom
is less than 10.5 meV/Å (Fig. 3), suggesting a metastable state

FIG. 3. Maximum force component and total energy per atom as
a function of CG iteration steps for the screw dislocation structure
optimization. Quick minimization (Ref. 78) and Broyden-Fletcher-
Goldfarb-Shanno (Ref. 79) algorithms also predict the same results
as CG minimization. Unlike the maximum force component, the
total energy always decreases as iterations proceed. Until the first
vertical line, the dislocation core remains undissociated. Point A
indicates the lowest energy structure for the undissociated core.
Beyond point A, the dislocation starts to dissociate into partials.
After the second vertical line, the dislocation core fully dissociates.
At the final iteration indicated by point B, we obtain the optimized,
fully dissociated partial dislocation core structure.

that may exist before partial dislocations are formed. We find
that the peak in the maximum force component between the
undissociated (point A) and the dissociated (point B) cores is
due to core atoms only. Forces on atoms near the boundaries
do not change noticeably throughout the optimization. This
undissociated core structure has not been reported in any pre-
vious simulation, and our own EAM test calculations using the
classical Ercolessi-Adams potential71 do not find this structure.
This means the metastable, undissociated core exists due to
subtle QM effects—electron density fluctuations—inherent in
the screw dislocation. By contrast, no undissociated structures
are found by OFDFT for the edge dislocation, just as expected
by elasticity theory.50 As mentioned earlier, the difference in
dislocation core widths predicted by OFDFT (small for screw
and large for edge), coupled with elasticity theory thresholds
for dissociation, is consistent with these findings. Recall that
both OFDFT and EAM simulations agreed well for the σp

of an edge dislocation; however, the OFDFT-calculated σp

for a screw dislocation showed much better agreement than
EAM when comparing to experimental estimations from the
lower-temperature Bordoni peak (Sec. III A).

We then investigated the behavior of this undissociated
screw dislocation using OFDFT CINEB simulations to cal-
culate its σp for comparison with the dissociated screw
dislocation σp. Along its MEP (Fig. 4, upper inset), the
undissociated core starts to move by broadening along the
glide direction, becoming widest at the top of the barrier.
After the barrier, the core starts to narrow. This motion is
contrary to its dissociated counterpart, which starts to move

FIG. 4. (Color online) Variation of the relative dislocation core
energies EC(x) for dissociated and undissociated screw dislocations
[calculated using the CINEB method with the fixed boundary
condition of Fig. 1(a)] as a function of normalized displacement x

traveled by the dislocation core. The energy unit is meV/b where b is
the Burgers vector. Insets show corresponding atomic configurations
of the undissociated (upper inset) and the dissociated (lower inset)
screw dislocation along the MEP.
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by shortening the width between partial cores (Fig. 4, lower
inset). As mentioned above, the σp of the dissociated screw
dislocation is predicted to be 6.2 MPa (1.9 × 10−4G). For the
undissociated core, we predict a σp of 355 MPa (1.1 × 10−2G),
consistent with the two orders of magnitude discrepancy in
σp measurements in fcc metals. Our work suggests that both
dissociated and undissociated cores can exist in Al at both low
and high temperature. At low temperature, the only motion
will be of dislocations that can move easily, while at higher
temperature, dislocations that are harder to move will do
so as well. The smaller σp for the dissociated dislocation
corresponds to the lower-temperature (<20 K) Bordoni peak
observed in ultra–high-purity samples,9,10 since a lower energy
cost is incurred to form a kink pair by moving a segment
of a dislocation line. The larger σp for the undissociated
dislocation corresponds to the (typical) higher-temperature
(between ∼100 and ∼200 K) Bordoni peak,5–8 since it needs
to overcome a larger energy barrier to move. We suggest that
the undissociated screw dislocations may exist intrinsically or
may be further stabilized by impurity pinning.

2. Discussion

These results provide the first evidence that partially sup-
ports Takeuchi’s earlier hypothesis.73 Takeuchi first assumed
that most dislocations in the dislocation network produced
by annealing do not lie on {111} glide planes (dislocations
skewed from the glide plane by >10◦ do not dissociate73).
Takeuchi then proposed that the typical Bordoni peak in
annealed and deformed fcc metals corresponding to the σp

of 10−2–10−3G could be attributed to the motion of undisso-
ciated dislocations. Takeuchi did not present experimental or
simulation data to test this assumption; the idea that dislocation
dissociation is the origin of the σp discrepancy in fcc metals
has been confirmed by our simulations. Unlike Takeuchi’s
interpretation, however, our OFDFT simulation suggests the
undissociated screw dislocation, in addition to the dissociated
one, may exist on {111} glide planes.

Clearly, impurities play a key role in determining the
σp in fcc metals. Kosugi and Kino determined that keeping
straight dislocation segments along the Peierls valley (where
the dislocation line resides in its equilibrium configuration)
requires the pinning distance to be larger than 10−3 cm;
otherwise, kinks will overlap and dislocation lines will become
tangled. Thus, impurity concentrations must be controlled
within parts per million (ppm).9 Unfortunately, this cannot
be tested directly in simulations, since atomic simulations,
even within EAM, are not feasible for pinned dislocation
segments larger than 10−3 cm with ppm order impurities.
However, our first-principles OFDFT simulations suggest that
metastable, undissociated dislocations may exist in typical
Al samples with impurity concentrations larger than the ppm
level, since these simulations find a difference of two orders
of magnitude in σp for dissociated vs undissociated cores. Our
results further suggest that the impurities are responsible for
preventing dissociation of the screw dislocations.

Srinivasan et al. also suggested that this discrepancy could
be attributed to dislocation dissociation,21 but the proposal
was based on faulty reasoning. Using MD simulations with
Baskes et al.’s EAM potential,72 they predicted σps of 13

and 225 MPa, respectively, for dissociated and undissociated
edge dislocations. However, perfect edge dislocations cannot
give rise to a Bordoni relaxation because they cannot form
kink pairs in the temperature domain of the Bordoni peak.5,68

Moreover, the authors did not observe such changes in the σp

for screw dislocations, as they should have. Furthermore, the
more widely-used, higher-quality Ercolessi-Adams potential71

does not predict an undissociated configuration for either the
screw or the edge dislocations. We therefore dismiss these
earlier findings as not well founded.

A vacancy lubrication effect has been suggested as an
alternative origin of the σp discrepancy in fcc metals.74,75

Lu and Kaxiras predicted σps of 254 and 20 MPa for screw
dislocations without and with vacancies, respectively, based
on the semi-discrete PN calculation with KSDFT GSFE.26

However, their simulation model contained 4% vacancies,
which is a much larger concentration than typical experimental
specimens contain (ppm). Although the vacancy concentration
at the dislocation core will be larger than the average bulk value
due to local stress-induced reduction in the vacancy formation
energy, it seems unlikely that the vacancy concentration will be
four orders of magnitude higher than the bulk value. Because
the actual vacancy concentrations at dislocation cores are not
known, it remains an open question as to whether potentially
vastly lower concentrations of vacancies in a real sample could
lead to such lubrication.

IV. CONCLUSIONS

We have investigated Al dislocation motion via OFDFT
simulations. This method provides σp values with first-
principles accuracy. To the best of our knowledge, these first-
principles σp values calculated from atomic-scale simulations
are the first reported for Al. For the equilibrium configurations
of screw and edge dislocations in which they separate into
Shockley partials, OFDFT predicts σps of ∼10−4–10−5G,
in good agreement with those estimated from mechanical
deformation tests and a lower-temperature Bordoni relaxation
peak. The approximately six times smaller σp of the edge
dislocation implies edge dislocations move more readily than
do screw dislocations, as expected from the former’s larger
width. OFDFT also predicts a metastable configuration for a
screw dislocation in which the core remains undissociated.
For this structure, OFDFT predicts σp of ∼10−2–10−3G, in
good agreement with those estimated from the typical, higher-
temperature Bordoni relaxation peak. By comparing the
values obtained from the dissociated vs undissociated screw
dislocations, we have successfully reproduced the differences
of two orders of magnitude for measured σps in fcc metals.
Kosugi and Kino attributed their smaller σp (10−4–10−5G) to
the use of a high-purity Al sample.9 We therefore conclude
that the difference in screw dislocation configurations, i.e., a
dissociated core in a high-purity crystal vs an undissociated
core induced by impurities in a typical crystal, is the most
likely origin of the σ p discrepancy in fcc metals.

The metastable, undissociated screw dislocation structure
has only been obtained using a method that accounts for
QM effects, i.e., OFDFT. This suggests that transferable and
accurate QM methods are necessary to reliably calculate
dislocation structures and motion, even in a pure single
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crystal. If we consider more complicated material properties,
e.g., vacancy effects on dislocation behavior, dislocations in
metal alloys, and dislocation interactions with other defects,
accurate QM methods are likely to be even more important
to use. Although OFDFT is inexpensive yet accurate enough
compared to standard KSDFT to be applied to dislocation
simulations in simple metals like Al, its current computational
cost still precludes, e.g., long MD trajectories with millions of
atoms. In addition, the nearly-free-electron response function
used to derive most nonlocal KEDFs still hinders its general
application to other types of materials (though recent advances

hold promise76,77). Nevertheless, OFDFT can play a useful role
in providing insight into characterizing the properties of novel
main group metals and their alloys.
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