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Effect of strain on the stacking fault energy of copper: A first-principles study
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The intrinsic stacking fault energy (SFE) of copper under volumetric, longitudinal, and shear strains is
investigated using density functional theory (GGA-PBE). Calculations are performed using a copper slab model
aligned perpendicular to the (111) intrinsic stacking fault plane. The calculated SFE for unstrained copper is γ =
41 mJ/m2. Results show a strong dependence of γ on strain and distinct behavior for different types of strain: (a)
volumetric and longitudinal in the direction perpendicular to the stacking fault, (b) longitudinal parallel to the
stacking fault, and (c) shear parallel to the stacking fault. In the first case (a), the SFE decreases monotonically
with strain with a slope dγ /dε|ε=0 = − 0.44 J/m2 and − 0.87 J/m2 for volumetric and longitudinal, respectively,
and with d2γ /dε2 > 0. In contrast, for longitudinal strain parallel to the stacking fault (b), the SFE dependence
exhibits d2γ /dε2 < 0 with a maximum at ε ≈ − 0.015. For the case of shear parallel to the stacking fault (c),
the SFE is nearly constant at small and moderately large strain, but drops rapidly at very large strain (by a factor
of 1/3 for 〈1̄10〉{111} shear at ε = ± 0.1). For large 〈112̄〉{111} shear strains, the SFE can either increase or
decrease at large strain depending on the sign of the strain. In volumetric or longitudinal (perpendicular to the
stacking fault) tension and longitudinal strain in the boundary plane (and for some shear directions), the SFE
can become negative, implying a limit on the stability of the fcc crystal structure. The strong dependence of the
SFE on strain suggests deep implications for the mechanical properties, microstructural evolution, and dynamic
plasticity of metals at high pressure, during severe plastic deformation, and in shock-loading conditions.
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I. INTRODUCTION

Intrinsic stacking faults play a very important role in deter-
mining deformation mechanism and mechanical properties in
face-centered-cubic (fcc) metals.1–6 The stacking fault energy
(SFE) determines equilibrium partial dislocation separations,
the tendency towards dislocation cross slip, the propensity of
twinning, etc. In the perfect fcc crystal lattice, three equivalent
close-packed planes (referred to here as A, B, and C) are
aligned along 〈111〉 directions following a stacking sequence
ABCABCABC. . . . An intrinsic stacking fault occurs when the
stacking sequence is altered by removal of one of the planes in
this stacking sequence, e.g., ABCABABC. . . . The SFE is the
difference in energy between the crystal with a stacking fault
and a crystal with a perfect stacking sequence, normalized
by the stacking fault area. The SFE can be calculated using
atomistic models following exactly this definition. Experimen-
tally, the SFE is usually determined indirectly by measuring
the separation between Shockley partial dislocations.7–9 This
partial dislocation separation results from a balance between
the elastic repulsion between the partial dislocations and the
attraction generated by the energy penalty associated with the
energy of the stacking fault, as first proposed by Heidenreich
and Shockley.10 Following the theory of Heidenreich and
Shockley, Fullman11 deduced the value of the SFE for Cu to
be 42 mJ/m2. This initial measurement was followed by many
other investigations of the SFE in fcc metals using a variety of
methods, often reporting a wide range of values (e.g., see the
review by Gallagher).7

One of the most important effects of the SFE is its role
in determining the partial dislocation separation. Dislocations
have more difficulty to cross slip and climb when the partial

separation is large (SFE is low).12 One example of the impact
of SFE on cross slip may be seen during severe plastic
deformation (SPD) processing13 of fcc Cu-Al alloys; the SPD
steady-state grain size decreases with increasing stacking fault
energy (decreasing partial separation), presumably because the
SFE determines the probability of cross slip.14–16 Experimental
results suggest that the ductility and strength of Cu-Al alloys
can be simultaneously improved by decreasing their SFE. The
widely known effects of SFE on the mechanical behavior of
metals and alloys indicates the importance of determining the
stacking fault energy, the ability to manipulate it via alloying,
and understanding its dependence on external parameters such
as temperature and strain. The latter is the focus of this
investigation.

First-principles methods such as the density functional
theory (DFT) offer a suitable approach to directly determine
the SFE. However, accurate determination of the SFE by
DFT is computationally challenging, since it involves the
use of large supercells and stringent convergence criteria to
properly calculate the minute differences in system energy
introduced by the presence of a stacking fault. There are
two major procedures for the calculation of the SFE using
DFT. One can use periodic systems17 or crystal slabs.18 The
use of periodic systems has the advantages of not requiring
knowledge of a corresponding perfect crystalline reference
system and avoidance of the complicating presence of free
surfaces. It also allows the study of temperature effects.
However, by using periodic systems, one has to consider a
set of at least three stacking faults and make use of very
large supercells to ensure proper convergence. On the other
hand, the use of crystal slabs requires a reference system,
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to eliminate the effect of surfaces. Nevertheless, it allows
relatively smaller supercells. Due to these challenges and
differences in first-principles methodologies a wide range
of theoretical SFE values19–24 have been reported in the
literature for copper with varying degrees of agreement with
experimentally reported data.8,11,25,26

The SFE is commonly considered to be an intrinsic constant
material property. However, it is known that its value can
vary with temperature and strain. In the face of this and
the importance of the SFE for understanding the mechanical
properties of fcc metals it is surprising that there are few reports
on the temperature and strain dependence of the SFE.18,22

The dependence of the SFE on temperature is expected
to be mild.17 However, recent reports claim significant strain
effects on the SFE.18,22 Using empirical modeling, Henio
et al.22 showed that the SFE of copper can undergo significant
change with strain, both for longitudinal strain in the 〈111〉
direction as well as for volumetric strain. However, limitations
of empirical modeling based on the embedded atom model
(EAM) potential restrict the investigation to moderate strains.
Brandl et al.18 investigated the role of volumetric and shear
strain fields on the generalized SFE in Al, Cu, and Ni and
the ratio of the stable to unstable stacking fault energies using
a first-principles method. They reported significant changes
in the SFE of these fcc metals even under mild strain (ε =
0.02). Such strain effects can be of particular importance for
the mechanical behavior of fcc metals in both shock-loading
conditions and in the deformation of nanomaterials.

In this work, we focus on the accurate determination of the
SFE of copper under a wide range of loading conditions using
DFT. In particular, we consider the effects of volumetric (hy-
drostatic), uniaxial, and shear strains (in multiple independent
directions). To calculate quantities relevant for high pressure
and shock conditions we evaluate the dependence of the SFE
under strains as large as ε = 0.1. The results show a very strong
dependence of the SFE on strain and significant effects under
some types of strain even for small elastic deformation.

II. COMPUTATIONAL DETAILS

The present study employs the projector augmented wave
(PAW) method27 within the generalized gradient approxima-
tion plane wave using the DFT code VASP.28 We adopt the
Perdew, Burke and Ernzerhof (PBE)29 version of the exchange
correlation energy functional and the Methfessel and Paxton
method30 to smear the Fermi surface. Within the PAW method
the experimental equation of state for Cu was shown to be
accurately reproduced up to 100 GPa.31 The cutoff energy,
k-mesh grid, and the number of fcc atomic layers used along
the [111] direction are carefully tested for convergence with
respect to system energy, lattice parameters, and the SFE
itself. Details of the convergence test can be found in the
Appendix. Here, we use a 500 eV cutoff energy, 24 ×
24 × 1 (290 irreducible k points) k-mesh grid following the
Monkhorst-Pack method,32 and 24 fcc atomic layers along the
〈111〉 direction. The energy difference between subsequent
self-consistent field iterations is less than 10−6 eV/cell for the
electronic ground state. For instance, the lattice constant of
copper is calculated to be 3.637 Å (after letting the atomic
positions and the simulation box fully relax), which is in
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FIG. 1. (Color online) Illustration of the atomic structures and
computational cell used in the SFE calculations. (a) Copper fcc slab
with 24 (111) layers along the [111] direction used as a reference.
(b) Copper fcc slab with a single stacking fault, highlighted by
the pink rectangle. In both structures, the bottom and top two
layers (highlighted by the light blue rectangles) are frozen and a
15 Å vacuum layer separates the periodic images in the supercell.
(c) Illustration of the Cu fcc atomic layers on three sequential (111)
planes (shown in three colors). (d) Schematic description of the
directions in the (111) plane along which uniaxial strains are applied.
Equivalent directions are shown in same colors. The two directions
with irrational Miller index (shown in green and black) make angles
of π/4 and 3π/8 with respect to the [11̄0] direction, respectively.

excellent agreement with the experimental value 3.613 Å
measured via x-ray diffraction.33

A schematic illustration of the simulation cell is shown in
Fig. 1. We construct supercells with 24 closed-packed (111)
atomic layers along the [111] direction with and without a
stacking fault. A separation layer of 15 Å vacuum is imposed at
the top and bottom of the supercell to avoid interaction between
the periodic images. Figure 1(d) shows the different directions
along which we apply uniaxial strains within the (111) plane.
The strains are produced by suitably rescaling the zero-strain
supercell structure, with relaxed atomic positions and cell size,
by a factor of (1 + ε), where ε is the magnitude of the strain.
Very large strains, up to ε = 0.1, are employed to investigate
the value of SFE in highly strained environments such as
those present in high pressure and shock-loading conditions.
For reference, we investigate the three different approaches
of loading in the [111] direction: (1) simple strain (i.e., pure
uniaxial strain), (2) volume-conserving strain (i.e., apply strain
ε in the [111] direction and strains − ε/2 in two orthogonal
directions such that the volume is conserved), and (3) a strain
consistent with uniaxial tension (i.e., apply strain ε in the [111]
direction and strains − νε in two orthogonal directions, where
ν is the Poisson’s ratio). For loading in directions other than
[111] we employ only simple strain.
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TABLE I. Comparison of stacking fault energy in units of
(mJ/m2) with other experimental and theoretical reports.

Method Publication/year SFE (mJ/m2)

Theor.a This work, 2013 41
Theor.b Cotteril et al. (Ref. 19), 1966 30
Theor.c Schweizer et al. (Ref. 20), 1992 50
Theor.d Rosengaard et al. (Ref. 21), 1993 56
Theor.e Henio et al. (Ref. 22), 1999 78
Theor.f Ogata et al. (Ref. 23), 2002 39
Theor.g Qi et al. (Ref. 24), 2007 33
Expt.h Fullman (Ref. 11), 1951 42
Expt.i Howie et al. (Ref. 8), 1961 40
Expt.j Peissker (Ref. 25), 1965 50
Expt.k Stobbs et al. (Ref. 26), 1971 41

aDFT-GGA-PBE.
bReference 19: Morse potential.
cReference 20: DFT-LDA.
dReference 21: Tight binding linear muffin tin orbital Green’s
function.
eReference 22: EMT/EAM potential.
fReference 23: DFT-GGA-PW91.
gReference 24: DFT-GGA-PW91.
hReference 11: Measurements of intersections of grain boundaries
and coherent twins boundaries.
iReference 8: Measurements of radius of curvature of extended
dislocations by TEM.
jReference 25: Measurements of dependence of critical stress for
cross slip with strain rate.
kReference 26: Measurement of partial dislocations spacing.

III. SFE OF UNSTRAINED COPPER

We first determine the SFE of unstrained copper both
to serve as a baseline and to determine the nature of
the agreement between our results and previous published
values. Table I shows our calculated value of the SFE for
copper as well as values reported in the literature using
experimental8,11,25,26,34 and theoretical19–24 methods. Exper-
imental SFE values vary widely, possibly due to different
experimental conditions, measuring methods, sample purity,
and assumptions in the analyses. The theoretical values
show even a wider range of SFE values, owing to different
calculation methods, approximations, interatomic potentials,
convergence criteria, etc. Therefore, comparison with the
literature is not a straightforward task and is of only limited
utility. Our calculated SFE value for copper is 41 mJ/m2. This
is very close to the preponderance of experimental results and
near the center of the range of values reported from theoretical
studies.

IV. SFE OF COPPER UNDER VOLUMETRIC STRAIN
(�V /V )

It is important to understand the behavior of the SFE
under volumetric (hydrostatic) strain in order to analyze
the deformation behavior at high pressure and under shock-
loading conditions. Figure 2(a) shows the SFE as a function

(a)

(b)

FIG. 2. (Color online) SFE as a function of volumetric strain (a)
and pressure (b). In (a) the pressure, in red, is also shown as a function
of volumetric strain for reference.

of isotropic expansion and compression over a wide range
of elastic strain − 0.1 � (ε = �V /V ) � 0.1. This figure
also shows the corresponding pressure versus strain. At small
strains, the SFE is proportional to the volumetric strain with
a slope of dγ /dε|ε=0 = − 0.44 J/m2. The value of the SFE
decreases monotonically with increasing volumetric strain. In
the large strain range applied, the SFE remains positive, though
it is close to zero at ε = 0.1. A negative SFE suggests loss of
stability of the fcc lattice structure, which could be achieved
at strains larger than 0.1. The dependence of the SFE on
the strain can be well described by a cubic polynomial fit
of the form γ (J/m2) = A + Bε + Cε2 + Dε3. Coefficients
of the fitting are provided in Table II. The parametric
dependence of the SFE with pressure, shown in Fig. 2(b),
is also well described by a cubic polynomial fit (please see
coefficients in Table II). The calculated SFE under isotropic
(hydrostatic) strain is in striking contrast with the prediction of
a previous calculation performed using an EAM potential for
copper.22 In that work, the reported SFE as a function of strain
in the range − 0.02 < ε < 0.02 shows a parabolic dependence
with maximum near ε = 0 and decreases with increasing
strain. The calculated SFE as a function of longitudinal strain
in the [111] direction (discussed below) is also in striking
contrast with our first-principles results—this suggests that
the predicted SFE energies for strained systems calculated
with EAM potentials should be used with extreme caution.

064104-3



P. S. BRANICIO, J. Y. ZHANG, AND D. J. SROLOVITZ PHYSICAL REVIEW B 88, 064104 (2013)

TABLE II. Coefficients in the fitted third order polynomial curves of the SFE as a function of volumetric strain, strain along [111] direction,
and along directions in the (111) plane. SFE unit is J/m2 except for the SFE(P), which is mJ/m2, for pressure given in GPa. The critical strains
(CS) where the SFE becomes negative are also shown if present.

A B C D CS1 CS2

Volumetric strain
SFE (ε) 0.04 −0.43 0.47 − 1.16
SFE (P) 42.12 4.04 − 0.08 0.003

Strain in the [111] direction
Simple strain 0.04 − 0.91 3.24 − 9.73 0.05
Uniaxial stress 0.04 − 0.80 1.40 1.18 0.06
Volume conserving 0.04 − 0.69 1.14 − 2.26 0.06

Strain in the (111) plane
[11̄0] 0.04 − 0.22 − 6.72 7.64 − 0.09 0.07
3π /8 to [11̄0] 0.04 − 0.22 − 6.39 10.86 − 0.09 0.07
[21̄1̄] 0.04 − 0.24 − 7.89 49.97 − 0.07 0.08
π /4 to [11̄0] 0.04 − 0.26 − 6.89 32.35 − 0.08 0.07

V. SFE OF COPPER UNDER UNIAXIAL STRAIN
PARALLEL AND PERPENDICULAR TO [111]

Since Cu, like all crystalline materials, is anisotropic, it is
interesting to investigate the variation of the SFE as a function
of strain in different directions. Since the (111) plane is the
preferred glide plane for edge dislocations in fcc metals34 it is
interesting to examine how the SFE varies with uniaxial strain
applied both in this plane and perpendicular to it.

For longitudinal strain applied along the [111] direction
(perpendicular to the stacking fault plane), we calculate the
SFE values following three procedures: (i) simple strain
(pure uniaxial strain, non-volume-conserving), (ii) volume
conserving, and (iii) uniaxial stress. For the simple strain,
case (i), we simply rescale the cell dimension in the [111]
direction (z direction) by (1 + ε), while keeping the other
two cell dimensions (x and y) fixed. In the volume-conserving
procedure, case (ii), we apply the desired strain along the
[111] direction, by scaling the length of the computational
cell by (1 + ε) in the z direction, while rescaling the cell
dimensions along the x and y directions by (1 + ε)−1/2, in
order to keep the volume constant. This is consistent with a
Poisson’s ratio of exactly 1/2 in the linear elastic limit. For
the uniaxial stress case (iii), we changed the length of the unit
cell in the [111] direction by (1 + ε) and rescale the cell
dimensions along the x and y directions to enforce zero stress
in these directions. In the linear elastic limit, this implies that
we allow the system to deform in a manner consistent with its
own Poisson’s ratio—giving a volume change between that of
the other two cases.

The last procedure is typical of an engineering tensile
test, where the Poisson’s ratio of the material defines the
perpendicular strain of the sample. In the present calculations,
this requires a zero lateral stress optimization of the supercell
and will give a result that is simulation cell size dependent. The
surface (and interfaces) stress will generate a residual stress in
the system which will depend on the length of the sample along
the [111] direction. The residual stress decreases gradually
with increasing cell length. However, for any supercell that
can be practically treated using our first-principles approach,
the residual stress will interfere with the supercell optimization

and affect the value of the calculated SFE. Therefore, in our
implementation, we determined the appropriate Poisson’s ratio
as a function of strain and applied it during the deformation
rather than optimizing a very large supercell. Fortunately, the
Poisson’s ratio can be calculated reliably through optimization
of the geometry of a fully periodic copper unit cell under
strain along the [111] direction. Figure 3 shows the calculated
dependence of the Poisson’s ratio on longitudinal strain along
the [111] direction. The value of the Poisson’s ratio, calculated
from the anisotropic elastic constants35–37 is in good agreement
with the present results. For reference, we also added the
Poisson’s ratio for polycrystalline Cu (Ref. 38) 0.34 to Fig. 3—
the discrepancy is simply related to the anisotropy of Cu.39

The analytical calculation of the Poisson’s ratio as a function
of strain in terms of the second, third, and higher order elastic
constants is in theory possible but this is not the focus of
the present work and is not included here.40 Figure 3 shows
that the Poisson’s ratio of copper, commonly assumed to be
constant, varies from 0.42 to 0.19 within the applied strain
range considered here, − 0.1 < ε < 0.1.

FIG. 3. (Color online) Poisson’s ratio as a function of the
longitudinal strain along the [111] direction. The line is a guide
for the eyes. The Poisson’s ratio derived from the experimental,
anisotropic elastic constants36 is shown for comparison together with
the experimental Poisson’s ratio for polycrystalline Cu.38
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(a)

(b)

FIG. 4. (Color online) SFE versus uniaxial strain in the direction
perpendicular (a) to the stacking fault and (b) in the plane of the
stacking fault. (a) SFE as a function of the longitudinal strain
perpendicular to the (111) stacking fault for cases of simple (uniaxial)
strain, uniaxial stress, and where the volume is conserved. The
induced stress for the uniaxial stress case is shown in red. (b) SFE as
a function of longitudinal strain along different directions in the (111)
stacking fault plane as illustrated in Fig. 1(d). The curves in (b) show
third order polynomial fittings. The inset shows the behavior of the
SFE with strain at small strain. The induced stress for longitudinal
strain along [11̄0] is shown in red.

With the values of the Poisson’s ratio as a function of strain
along the [111] direction, we calculate the SFE for all three
uniaxial strain cases. Figure 4(a) shows the dependence of
the SFE dependence on strain along the [111] direction. All
curves show a similar behavior. Within the strain range 0.02 <

ε < 0.02, the SFE is a nearly linear function of the [111]
longitudinal strain (dγ /dε = − 0.87 J/m2 for the simple
strain case). As for the volume conserving case the SFE over
the entire deformation range can be reasonably well fit by a
cubic polynomial; the values of the coefficients are provided
in Table II. As expected, the SFE curve for the uniaxial stress
case lies between that for simple (uniaxial) strain and the
volume-conserving cases. This can be easily understood since
the simple strain and the volume-conserving strain cases are
the two extreme cases with Poisson’s ratio of 0.0 and 0.5 (for
small deformation), while the Poisson’s ratio of the uniaxial
stress case always lies between these two.

Figure 4(b) shows the dependence of the SFE on longi-
tudinal strain in the (111) plane of the stacking fault. The
longitudinal (normal) strain was applied in four independent
directions: [11̄0], [21̄1̄], and two other directions with irra-
tional Miller indices, making angles of π/4 and 3π/8 with the
[11̄0] direction, as illustrated in Fig. 1(d). In all four cases, the

trends are very similar: A maximum in the SFE occurs at a
(compressive) strain of approximately − 0.015. The similarity
in the strain dependence of the SFE at small strain is simply a
result of the fact that all fcc materials are elastically isotropic
in the (111) plane within the linear elastic limit (e.g., see
Zhang et al.41). The SFE versus longitudinal strain in the (111)
plane curves increasingly deviate as the magnitude of the strain
increases simply because the linear elasticity approximation is
increasingly in error at large strain.

To a reasonable approximation, all of the SFE versus
longitudinal strain in the (111) plane can also be fit via a
third order polynomial. The fitting coefficients are provided in
Table II for all four directions.

VI. SFE OF COPPER UNDER 〈11̄0〉{111} AND 〈112̄〉{111}
SHEAR STRAINS

Edge dislocations in copper tend to dissociate into Shockley
partial dislocations; e.g., a dislocation with burgers vector
(a/2)[011̄] on a (111) glide plane may dissociate into par-
tials with burgers vectors (a/6)[112̄] and (a/6)[1̄21̄]. These
dislocations are driven by shear stresses that have components
in the (111) plane along the direction parallel to the burgers
vectors. Since the spacing between the partial dislocations is
determined, in part, by the SFE, and because dislocation glide
in Cu is driven by shear in the {111} plane, we now consider
the effect of shear on the SFE itself. In particular, we consider
shear strains of the form 〈112̄〉{111} and 〈11̄0〉{111}. In the
former case, the crystal symmetry is such that positive and
negative shear strains are inequivalent, while in the latter they
are identical.

The SFE under shear strain in the 〈11̄0〉{111} directions
shows little effect for strains of magnitude smaller than ∼0.04,
as shown in Fig. 5(a). However, for larger strains, the SFE
drops from its unstrained value of 41 to 12 mJ/m2 at a strain
of ε = ± 0.1.

Figure 5(b) also shows that the SFE is nearly independent of
〈112̄〉{111} shear strain for strains of magnitude smaller than
∼0.04 (i.e., dγ /dε = 0.007 J/m2); there is a rapid decrease
for shear strains beyond this of one sign and a much more
gentle increase for shear strains of the opposite sign. We note
that while the SFE is positive over the entire 〈11̄0〉{111} shear
strain range considered and for one sign of the 〈112̄〉{111}
shear strain, the SFE becomes negative for the other sign of
〈112̄〉{111} shear strain. As above, this indicates a stability
limit for fcc Cu under shear.

VII. DISCUSSION

In order to understand the physical origin of the behavior
of the SFE at large strains, we evaluate the dependence of
the energy difference between the hcp and fcc phases of Cu
as a function of strain. The hcp phase is identical to the fcc
phase with addition of one stacking fault on every other {111}
plane. Figure 6 shows the difference in energy of the fcc and
hcp phases as a function of volumetric strain, and longitudinal
strain along the [111] and [11̄0] directions. The latter direction
is in the (111) plane. Similar trends are observed in the energy
differences and SFE as a function of strain, shown in Figs. 2
and 4. This observation suggests that the presence of the
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(a)

(b)

FIG. 5. (Color online) SFE curve under 〈11̄0〉{111} (a) and
〈112̄〉{111} (b) shear strains. The respective induced stress is shown
in red. The calculated SFE from another theoretical study18 is shown
for comparison.

maximum in the SFE curve under longitudinal strain in the
(111) plane (and its absence in the other two cases) is related to
the underlying lattice thermodynamics and stability. However,
the correlation with the hcp/fcc perfect crystal results is not
expected to be perfect since the stacking fault is a single defect
in an infinite medium, while the perfect crystal differences
correspond to defects just a few atomic planes apart throughout
the entire crystal.

The strain dependence of the SFE is shown to be very large
at experimentally achievable strains in Cu, such as under large
pressures, in high strain rate deformation, shock loading, and
SPD processing. For example, the ultimate tensile strength of
equal-channel angular pressing (ECAP) deformed, ultrafine
grained Cu is in the order of 1 GPa.42 At such stresses, the
SFE value has changed, relative to that in the zero-strain
case, by ∼50%. Such changes can have profound effects on
dislocation deformation mechanisms, such as the propensity
for cross slip or twinning. While it is possible that an fcc metal
will undergo non-{111} slip at very large stress (activation
of other “exotic” slip systems), simulations and experiments
on Cu nanowires43–46 under tensile loading have not observed
such processes at stresses above 1.5 GPa.

Atomic mechanisms of deformation and damage accumu-
lation in materials subjected to large stresses have been studied
using MD simulations.47–55 The present results indicate a
strong variation of the SFE under extreme conditions of strain
(stress) and suggest a revision of interatomic potentials used
in these MD investigations. Widely used empirical interatomic
potentials for Cu, such as those based on the EAM,56,57 are

(a)

(b)

(c)

FIG. 6. Energy difference per atom for Cu in an hcp and fcc phase,
�E = E(hcp) − E(fcc), under volumetric strain (a) and longitudinal
strain along (b) [111] and (c) [11̄0]directions.

able to capture the SFE at zero stress. In fact, such potentials
are routinely fitted to this parameter. However, since they are
never fitted to SFEs at large strain, it is not surprising that
they do not reproduce the SFE found at large strain. An earlier
study of SFE versus strain based on such empirical potentials22

showed unphysical behavior at large strain. This suggests that
use of potentials that are not able to reproduce the correct
SFE versus strain could lead to unphysical results in MD
simulation of high strain rate, shock, or SPD. Dislocation
acceleration and motion at extreme strain rates have been
modeled by MD simulations49,52 based on an EAM potential.
These simulations have shown intriguing dislocation dynamic
effects, such as change in partial dislocation distance and core
structure, and generation and annihilation of trailing partials.
These mechanisms inherently depend on the value of the SFE.
However, the potential used does not properly reproduce the
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SFE with strain. As a result, the intriguing observations made,
may not accurately represent the behavior of the real material.
Therefore, we suggest that simulations under such high stress
conditions should be performed with interatomic potentials fit
to SFE versus strain data in the proper stress range, such as
those found here.

As discussed above, the SFE can vary significantly with
strain. SFE versus volumetric and shear strain calculations
were also performed in another study.18 We note that while
the trends in this study and those found here are similar,
that study showed dγ /dε|ε=0 − 0.001 J/m2, while here
we find dγ /dε|ε=0 = − 0.44 J/m2. In addition, a smaller
discrepancy (∼10%) was found for dγ /dε|ε=0 in 〈112̄〉{111}
shear. We believe these discrepancies arise from the use of
different convergence criteria—the convergence criteria in the
present study are much more stringent (see the Appendix for
convergence test results). While this led to an increase in
computational cost by two orders of magnitude, such stringent
convergence criteria are necessary in some cases.

VIII. CONCLUSIONS

We systematically investigated the dependence of the
intrinsic stacking fault energy in copper on volumetric,
longitudinal, and shear strain from small to large deforma-
tion (up to ε = ± 0.1) using first-principles calculations
within the density functional theory (GGA-PBE). The SFE
in unstrained copper was found to be γ = 41 mJ/m2, in
reasonable agreement with the extant experimental and the-
oretical literature (which show a wide scatter). For volumetric
(hydrostatic) strain and longitudinal strain in the direction
perpendicular to the stacking fault plane, the SFE decayed
monotonically with increasing (tensile) strain and increased
with compressive strain. For small values of these strains, the
SFE was found to be a linear function of strain (volumetric
strain: dγ /dε|ε=0 = − 0.44 J/m2 and longitudinal strain:

FIG. 7. Convergence of the copper lattice constant with (a) plane
wave cutoff energy and (b) k-mesh grid. The reference value for the
lattice constant was calculated using (a) 700 eV cutoff energy and a
(b) 30 × 30 × 30 k-mesh grid. The converged values chosen for the
remainder of the study are indicated with the arrows along with the
deviations.

dγ /dε|ε=0 = − 0.87 J/m2). However, at larger strain, both
SFE versus strain plots showed d2γ /dε2 > 0. On the other
hand, the SFE increasingly drops with increasing strain for
longitudinal strain within the plane of the stacking fault; i.e.,
d2γ /dε2 < 0. Application of shear strain parallel to the (111)
intrinsic stacking fault plane has little effect on the SFE at
small and moderate strain. In the 〈11̄0〉{111} shear strain case,
the SFE falls rapidly with increasing strain magnitude at large
strain. However, application of 〈112̄〉{111} shear strain leads
to a slow rise in the SFE and a sharp drop in SFE at large strain
of the opposite sign. It is interesting to note that application of
large uniaxial strains perpendicular to the stacking fault plane
lead to negative stacking fault energies; this represents bounds
on the stability of the fcc lattice of Cu. Application of both
large compressive and tensile strains in the (111) plane can
also lead to a loss of stability. The trends in the variation of the
SFE with volumetric and longitudinal strains are linked to the
intrinsic energy differences of the fcc and hcp Cu phases. The
present results suggest that care should be taken in atomistic
simulations of materials at high stress based upon empirical
interatomic potentials, which are usually only fitted to the
zero-strain SFE. For such simulations, it is suggested that the
SFE versus strain behavior should be included in the fitting of
such interatomic potentials for use in high stress deformation
studies.
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FIG. 8. Convergence of the SFE as a function of the plane wave
cutoff energy, k-mesh grid, and the number of copper fcc atomic
layers along the [111] direction. The reference SFE is calculated
using an (a) 800 eV cutoff energy, (b) 30 × 30 × 1 k-mesh grid,
and (c) 30 atomic layers along the [111] direction, respectively. The
converged values used in the work are indicated by the arrows along
with the deviations in the SFE.
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APPENDIX: DFT CONVERGENCE TESTS—LATTICE
PARAMETER AND SFE VERSUS CUTOFF ENERGY,
k-MESH GRID, AND NUMBER OF ATOMIC LAYERS

As discussed in the text, the values of the SFE under strain
are very sensitive to the convergence criteria adopted in the
calculations. This can be traced to how the SFE is calculated;
using energy differences between a perfect reference system
and a system with a single stacking fault. Since the energy
differences are in the range of meV, accurate SFE results
require very accurate calculations in each system. We therefore
used strict criteria of the convergence of the calculations
carefully choosing the values of the cutoff energy, k-mesh
grid, and the number of fcc atomic layers employed in the
calculations.

The equilibrium lattice parameter is obtained by full
relaxation of the atomic coordinates and the lattice constants
by minimizing the stress tensor and the atomic forces (with
appropriate boundary conditions). During optimization of the
copper unit cell in VASP, we restarted the calculations several
times in order to achieve strict convergence of the lattice
parameter minimizing the error coming from the constant
basis set used. We plotted the lattice constant as a function of

the cutoff energy and k-mesh grid in Fig. 7. The deviation of
the lattice constant is calculated relative to the perfect crystal
reference calculated with the largest cutoff energy, 700 eV,
and the largest k-mesh grid, 30 × 30 × 30, respectively.
The lattice constant deviation for 500 eV is only 0.014% as
shown in Fig. 7(a), using a k-mesh grid 15 × 15 × 15. The
lattice constant deviation for the k-mesh grid 24 × 24 ×
24 is 0.005% as shown in Fig. 7(b), using a cutoff energy
of 500 eV.

With the convergence parameters obtained from the lattice
parameter optimization, we tested the convergence of the SFE
for the actual supercells used in the investigation. The variation
of the SFE displayed in Fig. 8 is evaluated with respect to
the reference value calculated with the largest cutoff energy,
800 eV, the largest number of k-mesh grid, 30 × 30 × 1,
and the largest atomic layers along the [111] direction, 30,
respectively. From the convergence tests the final values of
cutoff energy, k-mesh grid, and atomic layers chosen and their
deviations were 500 eV (0.13%), 24 × 24 × 1 (1.2%), and
24 layers (1.4%). The fixed k-mesh grid, number of atomic
layers, and energy cutoff used in the tests (two fixed at a time)
is 14 × 14 × 1, 24, and 500 eV, respectively.
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