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A screened environment-dependent reactive empirical bond-order (SED-REBO) potential has been developed
for large-scale molecular dynamics (MD) simulations of carbon materials. Based on the second-generation REBO
potential developed by Brenner and co-workers [J. Phys.: Condens. Matter 14, 783 (2002)], the SED-REBO
potential overcomes the deficiencies of the REBO potential, which arise from a short range of interatomic
interactions and their abrupt switching off at the cutoff distance, by increasing the range of interatomic interactions
and eliminating the explicit switching function while introducing a simple yet efficient screening function. The
increased cutoff distance allows the inclusion of interactions critically important for the physically correct
description of bond breaking and bond remaking. An analytic form of the attractive and repulsive pairwise
terms was devised to automatically become zero at distances above the cutoff, thus, eliminating the need for
the switching function. The screening function effectively screens off the second- and further-nearest-neighbor
interactions for calculation of energy and forces in a smooth and continuous way for both compression and
expansion. The pairwise attractive and repulsive terms were refitted within a wide range of interatomic distances
to properly describe large compressions and expansions of diamond and graphene as well as their behavior near
equilibrium. Good performances of the SED-REBO potential to describe bond-breaking processes at extreme
tensile stresses are demonstrated in large-scale MD simulations of the nanoindentation of graphene membranes.
A computationally efficient version of the SED-REBO potential is introduced for large-scale MD simulations
of shock-wave compression in carbon materials. The SED-REBO potential is implemented as a module in the
Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and is freely available.
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I. INTRODUCTION

Elemental carbon, due to its ability to possess several
hybridization states, exists in various allotropes including
diamond, graphite, graphene, amorphous carbon, fullerenes,
and carbon nanotubes (CNTs). The diversity of the unique
physical and chemical properties of carbon materials is
explored by atomistic simulations, which delivers information
sometimes difficult or even impossible to obtain in experi-
ments. For example, molecular dynamics (MD) simulations
were used to investigate the fundamental growth mechanisms
of the chemical vapor deposition of diamond;1 properties of
amorphous carbon films;2–6 the friction, fracture, and inden-
tation response of diamond and other carbon materials;7–15

mechanical properties of carbon nanotubes,16–23 graphene
membranes, and nanoribbons;24–32 formation of nanodia-
monds under pressure;33 carbon sputtering;34 collision of
carbon clusters;35,36 and shock compression of diamond,37,38

just to mention a few.
Interatomic potentials are at the heart of atomistic sim-

ulations; their ability to capture the essential physics and
chemistry is of critical importance for the reliable prediction
of fundamental materials properties. One of the popular
carbon potentials is the reactive empirical bond-order (REBO)
potential, originally developed by Brenner in 199039 and later
improved by Brenner and co-workers in its second-generation
version.40 The REBO potential was extended by Stuart et al.
to include torsional contributions for hindered rotations about
single bonds and long-range dispersive interactions in the
adaptive intermolecular REBO (AIREBO) potential.41 The
other notable carbon potentials are the environment-dependent
interatomic potential (EDIP),42 the long-range bond-order

potential (LCBOP),43–45 and the reactive force field (ReaxFF)
potential.46

Most existing carbon potentials were developed with a
focus on the behavior of carbon materials under normal
conditions of ambient pressure and temperature. However,
there is no guarantee that they perform well under con-
ditions of high stresses and temperatures, which involve
processes of bond making and bond remaking. Sometimes
the existing interatomic potentials are used in simulations
involving bond-breaking events without proper validation.
For example, AIREBO and ReaxFF potentials are popular
methods for studying the mechanical properties of graphene in
regimes involving large stresses. Although ReaxFF performs
much better than AIREBO, which mirrors the unsatisfactory
behavior of the REBO potential as discussed below, both
the AIREBO and the ReaxFF potentials fail to provide
a quantitative description of bond-breaking phenomena in
carbon materials (see the Supplemental Material).47

One illustrative example, involving the application of
REBO-type interatomic potentials beyond their domain of
applicability, is an erroneous prediction of ductile fracture
in CNT17,48 and graphene49 under tensile stress, which is
due to artificial strengthening of the bonds upon tensile
deformations. These excessively large restoring forces arise
from the switching function, which is used in the potentials to
switch off the atomic interactions at a fixed cutoff distance rc.
The latter is usually chosen between the first- and the second-
nearest-neighbor distances in uncompressed materials so that
only nearest-neighbor interactions are included in calculations
at normal conditions. Although the switching function does not
influence interactions in materials under normal conditions,
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it subjects atoms to large switching-induced forces under
high tensile deformations because the interatomic distances
fall within the switching region close to rc. This causes the
erroneous description of bond-breaking processes.

To correctly simulate the failure of a material at tensile
loads, an interatomic potential should provide a good descrip-
tion of its spinodal instability, which occurs at a point where
the bulk modulus becomes zero.50 This critical “spinodal”
bond length r∗ is defined as an inflection point of the
binding-energy curve E(r), d2E(r∗)/dr2 = 0. Moreover, to
deliver a physically viable mechanism of crack generation and
propagation, the range of interatomic interactions should be
extended beyond the point of mechanical instability at r∗ to
include explicit contributions of the interatomic interactions at
distances larger than the lengths of the broken bonds.51

Several attempts were undertaken to improve the de-
scription of bond-breaking and bond-remaking phenomena
within the REBO approach by increasing the fixed cutoff
distance.48,52,53 However, such simple analytic continuation of
the original energy and force dependencies to distances r > rc

does not guarantee good accuracy upon bond breaking because
such distances were not included in the fitting database of
the original REBO potential. More importantly, the increase
in rc results in contributions of second- and further-nearest-
neighbor interactions, which contradicts the concept of the
saturated covalent bond implemented in the angular-dependent
REBO. The further-nearest-neighbor interactions also start to
contribute at large compressions to energy and forces in the
REBO potential with the original cutoff distance of rc = 2.0 Å,
producing an unphysically abrupt increase in energy upon
compression.54

The contradiction between the requirements of having a
first-nearest-neighbor model and a large cutoff can be con-
structively resolved by invoking the idea of effective screening
of further-nearest-neighbor interactions. The interactions are
discriminated by looking at the local environment about a
bond, the screening function effectively playing the role of
a variable cutoff. The fixed cutoff distance is set to be large
enough to include unscreened nearest-neighbor interactions
at large distances, covering the range critically important for
bond-breaking phenomena. At the same time, the second- and
further-nearest-neighbor interactions are effectively screened
and, consequently, are removed from calculations of energy
and forces at both normal conditions and under compression.

Baskes55–57 was the first to develop the idea of screening
while devising the modified embedded atom potential for
metals (MEAM). This screening was also developed within the
environment-dependent tight-binding model.58–60 Screening
was implemented in a MEAM-type potential for Si61 as well
as in two recent REBO-based carbon potentials.49,62 However,
both carbon REBO-type potentials still employ a switching
function that produces artificially large forces within the
switching regions.

This paper successfully addresses the fundamental difficul-
ties arising from the short range of interatomic interactions and
their abrupt switching off at the cutoff distance by introducing
a new screened environment-dependent reactive bond-order
(SED-REBO) potential, which was specifically developed to
simulate carbon materials at extreme compressive and tensile
stresses. By increasing the range of interatomic interactions,

eliminating the explicit switching function, and introducing
a simple yet efficient screening function, the SED-REBO
potential provides for the first time the accurate description of
bond-breaking and bond-remaking events in carbon systems
under extreme tensile and compressive stresses. The excellent
performance of the SED-REBO potential in describing bond
breaking is illustrated in large-scale MD simulations of the
nanoindentation of graphene membranes. A computationally
efficient version of the SED-REBO potential has been devel-
oped for large-scale simulations of shock-compressed carbon
materials.

II. DEVELOPMENT OF THE SED-REBO POTENTIAL

The new SED-REBO interatomic potential includes several
critical advances. First, the cutoff distance rc is increased
beyond spinodal bond length r∗ to rc = 3.3 Å to include in-
teratomic distances occurring in bond-breaking events at high
tensile stresses. Second, it employs the screening function,
which plays the role of a “variable cutoff” to maintain the first-
nearest-neighbor nature of the potential. Third, the switching
function is completely eliminated by using a new analytic
form of pairwise repulsive and attractive functions with built-in
switching behavior at rc, thus, providing a smooth continuous
dependence of the energy and forces on atomic coordinates
in the entire region of interatomic distances 0 � r � rc.
Fourth, the pairwise attractive and repulsive functions are
refitted using density functional theory (DFT) binding-energy
curves for graphene and diamond to cover small and large
interatomic distances, which were previously excluded from
the fitting database. Finally, computationally inexpensive but
quite flexible analytic rational functions were employed to fit
pairwise attractive and repulsive terms.

The general form of the SED-REBO potential is similar to
the original REBO potential, except that the switching function
fc(rij ) is replaced by an environment-dependent screening
function Sij ,

U = 1

2

∑
j �=i

Sij [VR(rij ) + bijVA(rij )], (1)

where VA and VR are the attractive and repulsive pairwise
functions and bij is the bond-order term.

The screening function Sij for a bond i-j depends on the
local environment surrounding the bond in the following way.
A bond between two atoms i and j is not screened if there
are no atoms in the neighborhood of the bond, Sij = 1. If an
atom k comes close to the i-j bond, its strength gradually
decreases as new bonds are formed between pairs of atoms
i-k and/or j -k. In the limiting case of an atom k positioned
between i and j , the i-j bond is completely screened, Sij = 0.
This qualitative behavior is quantitatively accounted for by
the analytic Sij function, defined below in Eq. (2). As an
illustration, Sij is calculated for a bond i-j as a function of
position of the neighboring atom k along the perpendicular
line passing through the middle of the i-j bond, see Fig. 1.
When the i-k distance is small (atomic configuration on the
left in Fig. 1), atom k screens the i-j bond. As the i-k distance
increases, the influence of atom k on the i-j bond diminishes
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FIG. 1. (Color online) Screening function Sij for a bond i-j as
a function of the distance rik = rjk between the atom i (or j ) and a
neighbor atom k. The bond length rij is kept constant, whereas, atom k

moves up along the perpendicular line passing through the midpoint of
the bond. The left configuration displays screened bond i-j (Sij = 0)
and new bond i-k, and the right configuration—unscreened bond i-j
(Sij = 1) and no bond between atoms i and k.

(Sij increases). Finally, the i-j becomes unscreened (Sij = 1),
see the atomic configuration on the right in Fig. 1.

The screening function Sij for bond i-j depends on the bond
length rij and the environment (env(i-j )) around the bond,

Sij (rij ,env(i-j )) = exp

(
−

∑
k �=i,j

(gijk)n
)

, (2)

where k is a neighbor of atoms i and j . The individual
contribution gijk due to atom k is calculated as

gijk =
{ rij

R̄ik + R̄jk − rij

− 1
2 , R̄ik + R̄jk � 3rij ,

0, R̄ik + R̄jk > 3rij ,
(3)

with

R̄ik(jk) = R̄(rik(jk)) ≡ rik(jk)

1 − (rik(jk)/rc)m
. (4)

The condition R̄ik + R̄jk � 3rij in Eq. (3) defines an ellipsoid
around the i-j bond, which contains possible positions of
neighboring atoms k contributing to the screening of the i-j
bond.

The functional form of the screening function Sij is adapted
from Ref. 61 with an important modification: renormalized in-
teratomic distances R̄ik,R̄jk , rather than interatomic distances
rik,rjk , are used in Eq. (3). They are introduced to ensure the
continuity of the potential energy, defined in Eq. (1), when a
neighboring atom is approaching the interaction region defined
by the cutoff distance rc. To illustrate the situation, a simple
case of the symmetric configuration rik = rjk is displayed in
Fig. 2(a) where only an upper half of the entire picture above
the i-j bond is shown for simplicity. The semi-ellipse with
the red boundary specifies the region rik + rjk � 3rij where
gijk �= 0, and the dashed and dotted semicircles represent the
boundaries of the interaction regions rik(jk) � rc for neighbors
of atom i(j ).
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FIG. 2. (Color online) Effect of the renormalized distance R̄,
Eq. (4), on the screening function Sij for the case of a neighboring
atom k approaching the fixed bond i-j (with rij = 3.0 Å) along
the line perpendicular to the bond, rik = rjk . Panel (a) displays the
geometry where only the upper half of the entire picture above the
i-j bond is shown for simplicity. The semi-ellipse with the red
boundary specifies the region rik + rjk � 3rij where gijk �= 0, see
Eq. (3); dashed and dotted semicircles represent the boundaries of
the interaction regions rik(jk) � rc for a neighbor k of atom i(j ).
The intersection of all three regions is indicated by a pink segment
referred to as a screening region. Panel (b) shows the dependence
of two screening functions Sij on the distance rik = rjk: the original
Sij from Ref. 61, which uses rik = rjk—black line, and the Sij used
in this paper, which employs renormalized distances Rik = Rjk—red
line. The original Sij from Ref. 61 displays discontinuity from Sij = 1
to Sij �= 1 when atom k crosses the boundary of the screening region
while moving from above towards the i-j bond. The lower panel
of (b) shows the dependence of the renormalized distance R̄ik on
distance rik. R̄ik approaches infinity at the cutoff distance rik = rc,
thus, avoiding a discontinuity in Sij .

An atom k contributes to Sij if it belongs to the intersection
of all three regions, which is referred to as a screening region
shown in Fig. 2(a) as a pink segment. When an atom k

crosses the boundary of the screening region while moving
from above towards the i-j bond, the original screening
function Sij from Ref. 61 experiences a jump from Sij = 1
to Sij �= 1, which causes a discontinuity in energy and forces,
see Fig. 2(b). To solve this problem, renormalized distances
R̄ik,R̄jk are introduced, see Eq. (4). The renormalized distance
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is constructed to have Rik = ∞ when atom k enters the
interaction region rik � rc of atom i. This ensures that Sij = 1
when atom k crosses the boundary of the screening region with
a subsequent decrease in Sij as atom k approaches the i-j bond.
Figure 2(b) shows Sij as a function of the bond length rik = rjk

for the case with rij = 3.0, rc = 3.3 Å, and n = 5. The Sij

calculated using renormalized distances R̄ik,R̄jk displays a
continuous behavior in contrast to Sij calculated using rik

and rjk .
An attractive feature of the screening function Sij is its

dependence on the ratio of the atomic distances rather than
their absolute values, allowing effective screening in systems
having the same topology of first-, second-, and further-nearest
neighbors at both compressions and expansions of the system.

The adjustable parameters n and m in Eqs. (2) and (4)
determine the strength of the screening and the divergence rate
of renormalized distances, respectively. Several combinations
of values for n and m were screened in the graphene membrane
“pull-out” computational experiment, see Sec. III D. It was
found that switching behavior is quite insensitive to specific
values of these parameters. Therefore, the values n = 5 and
m = 48 were chosen to achieve the best agreement between
DFT and SED-REBO data.

The bond-order function bij in Eq. (1) is defined as in
Ref. 40, except that the switching function fc(rij ) is replaced
by the product fc × Sij such that the screening discriminates
between first- and further-nearest neighbors,

bij = 1

2

(
bσ−π

ij + bσ−π
ji

) + bπ
ij , (5)

bσ−π
ij =

[
1 +

∑
k �=i,j

fc(rik) × Sik(rik,env(i-k))

×G( cos(θijk))eλijk + Pij

(
NC

i ,NH
i

)]
, (6)

bπ
ij = πRC

ij + bDH
ij . (7)

The switching function fc(rik) is still needed inside the bond
order bij because the screening function Sik(rik,env(i-k))
depends on ratios but not on absolute values of the interatomic
distances; see Eqs. (2) and (3). Therefore, Sik(rik,env(i-k))
cannot be used alone to describe a continuous change in
the coordination number of atom i as its neighbor k enters
the interaction sphere rik � rc and starts contributing to the
bond-order term bσ−π

ij . The product fc(rik) × Sik(rik,env(i-k))
gives a smooth change from 0 to some nonzero value as
atom k enters the interaction sphere rik � rc and excludes
any contributions to bij from the fully screened bond i-k.

The expressions for the quantities λijk, NC
i , NH

i , the spline
function Pij , the angular term G( cos(θ )), as well as the
conjugation πRC and dihedral bDH

ij contributions are given
in the original second-generation REBO potential paper.40

All of these terms were kept the same as in Ref. 40, except
for the switching function fc(rik), which was replaced by
the product fc(rik) × Sik(rik,env(i-k)). Modifications of the
bond-order term bij were specifically avoided to preserve all
of the essential physics and chemistry of chemical bonding
incorporated in the original REBO potential. Rather, the
current paper concentrates on the accurate description of bond-
breaking and bond-remaking processes under large tensile and

compressive stresses, which are not properly described by
REBO.

The switching function fc, used in the bond-order term,
takes a different form compared to that in the original REBO,

fc(r) =

⎧⎪⎨
⎪⎩

1, r < rmin,

1 − χ3
(
6χ2 − 15χ − 10

)
, rmin � r � rmax,

0, r > rmax,
(8)

χ = (r − rmin) / (rmax − rmin) .

The polynomial form of fc is similar to that used in Ref. 41. It
has an advantage over the cosine function used in the original
REBO potential: both fc(r) and its first and second derivatives
are continuous at the boundaries r = rmin and r = rmax for the
interval of interatomic distances where the switching function
is applied. Therefore, the energy, forces, and their first deriva-
tives are continuous functions of atomic coordinates, which
results in a better conservation of energy during numerical
integration of Newton’s equations of motion. The values for
the parameters rmin and rmax are 3.0 and 3.3 Å, respectively.

Finally, the pairwise repulsive VR and attractive VA terms
are expressed as analytical rational functions,

V (r) = r̄3

rA1
× A2 + A3r̄ + A4r̄

2 + A5r̄
3 + A6r̄

4

1 + B3r̄ + B4r̄2 + B5r̄3 + B6r̄4
, (9)

where r̄ = r − rc. By using r̄ instead of r , the pairwise
functions and their first and second derivatives are automati-
cally zero at the cutoff distance rc. Therefore, the switching
function is not required. Thus, the artificial forces present
in the REBO potential due to switching functions are not
observed in the SED-REBO potential; see Figs. 3 and 4 in
which REBO, SED-REBO, and DFT energies, along with their
first derivatives, are compared for the cases of diamond and
graphene upon isotropic compressions and expansions.

The pairwise attractive VA and repulsive VR terms in
the SED-REBO expression, Eq. (1), were fitted to graphene
and diamond DFT binding-energy curves in the range of
interatomic distances of 0.5 Å � r � 2.7 Å. The isotropic
compressions and expansions do not change the topology
of the ideal crystal lattice. Therefore, the bond-order term
is constant, the screening function is Sij = 1 for first-nearest
neighbors and is zero for all other further-nearest neighbors.
These simplifications allow the extraction of numerical values
of the VR and VA at each interatomic distance, which then
were fitted using analytic rational function representation,
Eq. (9). The excellent quality of the fit is evident from Figs. 3
and 4, which compare SED-REBO binding energies and the
forces along the C-C bond with DFT and old REBO data. The
parameters of the SED-REBO potential can be found in the
Supplemental Material.63

III. SED-REBO VALIDATION

A. Graphene and diamond properties

An important test of the new SED-REBO potential is
concerned with the mechanical properties of graphene and
diamond (see Table I), which include elastic constants Cij ,
bulk modulus B0 and its pressure derivative B

′
0 for diamond,

two-dimensional (2D) elastic modulus E2D for graphene,
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FIG. 3. (Color online) Binding energy E and its first derivative
dE/dr upon isotropic compression and expansion of graphene as
a function of nearest-neighbor distance rCC : comparison between
REBO, SED-REBO, and DFT. Large artificial forces appear within
the switching region of 1.7 Å � r � 2.0 Å of the REBO potential,
whereas, the SED-REBO potential has a nice smooth behavior
throughout the entire range of interatomic distances in excellent
agreement with DFT.

and diamond’s σ ∗
♦ and graphene’s σ ∗

gr breaking strengths.
Although the graphene and diamond binding-energy curves
were included in the fitting of the SED-REBO potential, their
first derivatives (interatomic forces and stresses) and second
derivatives (elastic constants) were not. In contrast, the elastic
constants were included in the REBO fitting database.40 As
seen from Figs. 3 and 4, the graphene and diamond interatomic
forces between a pair of carbon atoms are in very good
agreement with the DFT data over a wide range of interatomic
distances.

For the purpose of consistent comparison, the REBO
and DFT elastic properties were recalculated to address
some errors and inconsistencies in previous papers. For
example, Brenner et al.40 reported C12 = 100 GPa and
C44 = 680 GPa for diamond, whereas, Stuart et al.41 obtained
C12 = 120 GPa and C44 = 720 GPa, citing discussions with
Brenner and co-workers. The bulk modulus was obtained
from the Birch-Murnaghan fit of pressure versus volume
P (V ) upon hydrostatic compressions-expansions. The elastic
constants were calculated by fitting stress-strain curves upon
2% compression-expansion of the lattice along specific
crystallographic directions.

As seen from Table I, the SED-REBO bulk modulus
B0 for diamond and elastic constant C11 for both graphene

FIG. 4. (Color online) Binding energy E and its first derivative
dE/dr upon isotropic compression and expansion of diamond as
a function of nearest-neighbor distance rCC : comparison between
REBO, SED-REBO, and DFT. Large artificial forces appear within
the switching region of 1.7 Å � r � 2.0 Å of the REBO potential,
whereas, the SED-REBO potential has a nice smooth behavior
throughout the entire range of interatomic distances in excellent
agreement with DFT.

and diamond are in good agreement with both REBO and
DFT data, even though the SED-REBO C11 and B0 were
not fitted as was done in the case of REBO. An error of
∼30% in C12, obtained by the SED-REBO potential, is not
surprising as an error of the same magnitude was seen for
REBO’s C44, which was not included in the fitting database
either. These errors in C12 and C44 can easily be addressed
in future work by including the uniaxial compressions and
expansions in the fitting database. The SED-REBO elastic
modulus E2D of graphene obtained from the stress-strain
curve upon equibiaxial expansion is in good agreement with
both DFT and REBO. The experimental value of E2D was
not measured directly but was obtained from nanoindentation
experiments. Therefore, a 10% experimental error can be
attributed to the existence of complicated three-dimensional
(3D) deformations, which were analyzed by the finite-element
method to extract the value of E2D; see Ref. 64.

The breaking strengths of graphene σgr and diamond σ♦
are important indicators of the quality of the bond-breaking
description by the new potential. They are obtained as
spinodal maxima of 2D pressure σ for graphene and 3D
pressure P for diamond upon isotropic expansion/compression
of the lattice; see Fig. 5. As discussed above, the REBO
potential fails to correctly predict the breaking strengths of
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TABLE I. Mechanical properties of graphene and diamond: com-
parison of SED-REBO results with REBO, DFT, and experimental
data.

SED-REBO REBOa DFTb Expt.

r0 (Å) 1.422 1.420 1.425 1.421c

C11 (N/m) 337.7 352.4 351.5 370.4d

Graphene C12 (N/m) 47.8 49.1 59.9 46.4d

E2D (N/m) 380.2 387.0 373.0 340e

σ ∗
gr (N/m) 30.4 102.0 32.2 42e

r0 (Å) 1.549 1.544 1.547 1.545c

C11 (GPa) 1096.3 1053.1 1086.0 1076f

C12 (GPa) 88.8 137.8 129.7 125f

Diamond C44 (GPa) 736.5 711.8 585.5 576f

B0 (GPa) 424.6 442.9 448.5 442f

B ′
0 3.0 4.7 3.9 4.0g

σ ∗
♦ (GPa) 90.0 360.0 80.2

aRecalculated in this paper.
bCalculated in this paper.
cFrom Ref. 65.
dFrom Ref. 66 using 3.34 Å as the thickness of graphene for
conversion from GPa to N/m.
eFrom Ref. 64.
fFrom Ref. 67.
gFrom Ref. 68.

graphene and diamond due to excessively high maxima in
forces produced by the REBO switching function in the
cutoff region (σ ∗

♦ = 360 GPa). In contrast, the SED-REBO
potential provides the values of σ ∗

gr = 30.4 N/m and σ ∗
♦ =

90.0 GPa in good agreement with DFT: σ ∗
gr = 32.2 N/m

and σ ∗
♦ = 80.2 GPa. The experimental breaking strength of

diamond under isotropic expansion is unknown. In the case of
graphene, the experimental σ ∗

gr was obtained indirectly from
nanoindentation experiments with the use of finite-element
analysis,64 which explains the somewhat higher value of the
experimental σ ∗

gr compared to those obtained from DFT and
SED-REBO calculations.

B. Binding-energy curves and structural stability

As is well known, graphite is the lowest-energy crystal
structure of carbon, metastable diamond being slightly higher
in energy. Both REBO and SED-REBO correctly describe
the relative stability of graphene (one layer of graphite)
compared to diamond. Other zero-dimensional (0D), one-
dimensional (1D), and three-dimensional (3D) structures of
carbon, such as dimer, linear chain (LC), simple cubic (SC),
face-centered cubic (FCC), and body-centered cubic (BCC)
are much higher in energy, which makes their experimental
observation highly unlikely. Nevertheless, we calculated the
binding-energy curves with the SED-REBO potential and
determined the relative structural stability as judged by the
corresponding energies per atom at the minimum of the
binding-energy curves. The energy scale was set to zero at the
minimum of the diamond binding-energy curve; see Fig. 6.
In addition, equilibrium lattice parameters for these structures
that correspond to minima of the binding-energy curves were
also obtained.

800 DIAMOND800 DIAMOND800 DIAMOND
600

 (G
Pa

) DFT
DIAMOND

600

 (G
Pa

) DFT
SED-REBO600

 (G
Pa

) DFT
SED-REBO

 (G
Pa

) SED-REBO
REBO

400 (G
Pa

)

REBO
400

P=
 - 

dE
/d

V 
(G

Pa
)

REBO
400

P=
 - 

dE
/d

V 
(G

Pa
)

P=
 - 

dE
/d

V

200

P=
 - 

dE
/d

V

200

P=
 - 

dE
/d

V

200

P=
 - 

dE
/d

V
P=

 - 
dE

/d
V

0

P=
 - 

dE
/d

V

0

P=
 - 

dE
/d

V
P=

 - 
dE

/d
V

-200

P=
 - 

dE
/d

V

-200-200

-400
1.2 1.6 2 2.4 2.8 3.2

-400
1.2 1.6 2 2.4 2.8 3.2

-400
1.2 1.6 2 2.4 2.8 3.2

r  (Å)rCC (Å)rCC (Å)CC

300300
GRAPHENEGRAPHENEGRAPHENE

 (N
/m

) DFT
200

 (N
/m

) DFT
REBO200

 (N
/m

) REBO
SED-REBO

200

 (N
/m

) REBO
SED-REBO

 (N
/m

)

SED-REBO

=
 - 

dE
/d

A 
(N

/m
)

=
 - 

dE
/d

A 
(N

/m
)

100

=
 - 

dE
/d

A

100

=
 - 

dE
/d

A

100

=
 - 

dE
/d

A
=

 - 
dE

/d
A

=
 - 

dE
/d

A
0σ=

 - 
dE

/d
A

0σ=
 - 

dE
/d

A
0σ

-100-100
1.2 1.6 2 2.4 2.8 3.2

-100
1.2 1.6 2 2.4 2.8 3.21.2 1.6 2 2.4 2.8 3.2

r  (Å)rCC (Å)rCC (Å)

FIG. 5. (Color online) Three-dimensional pressure for diamond
P and two-dimensional pressure for graphene σ . The breaking
strength σ ∗ of a material is defined as the pressure at the spinodal
point ∂P/∂V = 0.

In Table II, the SED-REBO structural stability predictions
and equilibrium properties are compared with those obtained
from REBO and DFT calculations. The structural order-
ing, graphene → diamond → LC → SC → BCC → FCC, is
predicted by SED-REBO in agreement with DFT; see Fig. 6
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FIG. 6. (Color online) SED-REBO binding-energy curves for 1D
linear chain, 2D graphene, and 3D simple cubic, face-centered cubic,
and body-centered cubic, and diamond crystal structures of carbon.
Similarly colored symbols indicate positions of the corresponding
minima obtained from DFT calculations.
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TABLE II. Equilibrium bond length and energies for various
carbon structures calculated using SED-REBO, REBO, and DFT.
The binding energy of diamond at the minimum of the binding-energy
curve is taken as the reference energy.

SED-REBO REBO DFTa

E0 (eV) r0 (Å) E0 (eV) r0 (A) E0 (eV) r0 (Å)

Dimer 4.580 1.349 4.265 1.325 4.238 1.243
LC 1.380 1.353 1.253 1.332 0.823 1.27
Graphene −0.091 1.422 −0.025 1.420 −0.111 1.42
Diamond 0.000 1.549 0.000 1.544 0.000 1.55
SC 2.576 1.860 2.637 1.77
BCC 4.154 2.019 4.331 2.07
FCC 4.241 2.079 4.486 2.21

aCalculated in this paper.

and Table II. This is quite remarkable as only graphene and
diamond binding-energy curves were included in the fitting
database. In addition, the SED-REBO binding energies at the
minima are close to the DFT energies. In contrast, the REBO
potential fails to produce minima in binding-energy curves
for SC, FCC, and BCC structures because their minima are
either in the switching region (SC) or outside the cutoff region
(FCC and BCC). Physically correct structural predictions by
the SED-REBO potential are a sign of its markedly improved
transferability compared to the REBO potential.

C. Graphene nanoribbon pull-out experiment

To investigate the performance of the SED-REBO potential
in simulating bond-breaking phenomena in carbon systems, a
simple but physically illuminating model is used: a single atom
pulled out of a graphene nanoribbon (GNR) edge. The system
consists of a rectangular piece of graphene (30 Å × 14 Å),
periodically repeated in the lateral direction. The relatively
small size of the system allows us to perform DFT calculations
to validate SED-REBO predictions. A zigzag row of the atoms
at the bottom of the sample is pinned while a central atom at the
top zigzag edge is pulled up vertically in increments of 0.05 Å,
all the atoms being constrained to be in the vertical plane of
the GNR, see the inset in Fig. 7. After each displacement of the
central atom, the entire system is relaxed using the conjugate
gradient (CG) algorithm while keeping the bottom zigzag row
and the top central atom fixed.

The energy of the system as a function of the atom
displacement, obtained using REBO, SED-REBO, and DFT,
is shown in Fig. 7. The SED-REBO and REBO predictions
of the GNR response to the pull-out of the central atom are
noticeably different: the REBO energy exhibits unphysically
high jumps upon height increase of the central atom, whereas,
the SED-REBO energy follows the DFT energy, which does
not have such large jumps. A careful examination of the
evolution of the GNR geometry, simulated by the REBO
potential, shown in Fig. 8, reveals the formation of a chain
of atoms out of the GNR edge. As the central atom moves
up, the energy increases until the next atom from the GNR is
extracted from the bulk. The formation of the new bond within
the chain is accompanied by a substantial drop in energy.

FIG. 7. (Color online) Graphene nanoribbon pull-out experiment:
energy of the system as a function of the vertical displacement of the
central atom. The red-colored atoms are at the fixed bottom edge,
and the blue-colored atom is the atom being pulled up. The periodic
boundary condition is applied in the lateral direction. Letters A–F
label special events displayed in Figs. 8 and 9.

The appearance of chains in MD simulations of fracture in
carbon materials is a characteristic feature of the REBO bond-
breaking processes.17,49 This artifact of the REBO potential is
entirely due to the application of the switching function to turn
off the interactions at the cutoff distance rc. As seen in Fig. 3,
a pair of atoms experiences a substantial increase in mutually
attractive forces, resulting in artificial strengthening of the
C-C bond for large interatomic distances within the switching
region. At the end of the process, the chain of carbon atoms
is formed out of the GNR edge, whereas, the sample exhibits
a substantial remnant plasticity; see Fig. 8. In particular, large
unbroken hexagons are formed within the graphene lattice as
seen in snapshots (d) and (e) of Fig. 8.

The chain formation, obtained using the REBO potential,
is in contradiction with DFT simulations, which demonstrate
a monotonic decrease in mutual attraction as the two atoms
are pulled apart. Both the increase in the cutoff distance
from rc = 2.0 to rc = 3.3 Å and the complete elimination
of the switching function in the SED-REBO potential solve
this critical deficiency of the REBO potential and provide

(a) (b) (c)

(d) (e) (f)

FIG. 8. Evolution of the graphene nanoribbon atomic structure
during the pull-out experiment obtained by the REBO potential.
Snapshots (a)–(f) correspond to events A–F in Fig. 7.
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(a) (b) (c)

FIG. 9. Evolution of the graphene nanoribbon atomic structure
during the pull-out experiment obtained by the SED-REBO potential.
Snapshots (a)–(c) correspond to events A–C in Fig. 7.

a physically viable mechanism of bond breaking in close
agreement with DFT. Instead of chain formation, the two bonds
between the pulled atom and its first neighbors break, followed
by a relaxation of the free boundary of graphene containing a
single vacancy defect; see Fig. 9.

D. Graphene membrane “pull-down” experiment

This computational test was designed to simulate the
bond-breaking phenomenon that occurs during the indentation
of a circular graphene membrane by a pointlike indenter. The
zigzag edge of the membrane is fixed, and the central carbon
atom of the membrane is pulled down in a succession of
incremental indentation depths δ. At each δ, all the atoms,
other than the central atom, are relaxed using the conjugate
gradient algorithm; see Fig. 10. The relatively small size of the
system (∼10 Å in diameter) makes it possible to perform DFT
calculations, thus, allowing a direct comparison of SED-REBO
and REBO results with first-principles data.

The REBO potential produces a markedly different picture
of membrane indentation compared to both DFT and the SED-
REBO potential: the energy per atom versus indentation depth
δ curve, shown in Fig. 11, displays an increase in the energy
before the membrane breaks five times larger (0.6 eV/atom)
than that predicted by both the SED-REBO potential and the
DFT (0.12 eV/atom). This enormous energy increase is the

a

(a) (b) REBO

(c) SED-REBO

(d)  DFT

FIG. 10. (Color online) Graphene membrane pull-down compu-
tational experiment. (a) Top view of the system in the initial state.
Red-colored atoms are in the fixed edge of the membrane, and the
central blue-colored atom is the atom being pulled down. (b)–(d)
Side views of the membrane at the moment before failure obtained
by REBO, SED-REBO, and DFT, respectively.
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FIG. 11. (Color online) Energy of the system as a function of
the vertical displacement of the central atom during the pull-down
computational experiment performed using REBO, SED-REBO, and
DFT.

consequence of the strengthening of the C-C bonds upon the
increase in bond lengths in the cutoff region; see discussion
above. As the central atom is pulled down, the artificially large
forces in the cutoff region pull its first neighbors, they, in turn,
pull their neighbors, etc. In fact, due to the collective effect
of the strengthening of the C-C bonds in the cutoff region,
the pulling down of the central atom causes a large number of
atoms in the central region of the membrane to respond; see
Fig. 10(b).

In contrast, the SED-REBO potential displays a behavior
which closely resembles that of DFT. As the central atom is
pulled down, the bond lengths to its first-nearest neighbors
increase as the corresponding forces decrease until a critical
bond-breaking length is reached, resulting in the failure of
the membrane. The further-nearest-neighbor atoms located
away from the central atom are affected insignificantly; see
Fig. 10(c) for a picture of the membrane’s geometry right
before the failure. The DFT calculations produce almost
identical results; see Figs. 10(d) and 11. As mentioned in
Sec. II, parameters n [strength of screening, Eq. (2)] and m

[rate of divergence of the renormalized distance, Eq. (4)] of the
screening function were checked to produce good agreement
with DFT in the graphene pull-down experiment. It was found
that the specific values of parameters n and m hardly affect the
results, which is not surprising. The role of the screening is
to select first-nearest-neighbor interactions and to discard all
the further neighbors, which is not so sensitive to the values of
n and m. The actual behavior upon bond breaking is defined
by the dependence of energy and forces upon distance in the
vicinity of the spinodal point, which was carefully fitted during
the SED-REBO potential development, see Sec. II.

IV. APPLICATION TO NANOINDENTATION
OF GRAPHENE MEMBRANES

Two previous small-scale pull-out and pull-down tests
revealed markedly different behaviors of the REBO and
SED-REBO potentials: the REBO potential displaying plastic
deformations characteristic of a ductile response to the ten-
sile load and the SED-REBO potential displaying a brittle
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(a) (b) 

(c) (d) 

REBO 

SED-REBO 

a c 

b d 

FIG. 12. (Color online) Left panel: REBO and SED-REBO indentation curves (load versus indentation depth) obtained from the
nanoindentation of a circular graphene membrane with a diameter of D = 800 Å by a spherical indenter with a radius of R = 30 Å. Solid
symbols represent the first instance of defect appearance. Right panels: central part of the membrane (about 120 × 100 Å

2
). Panels (a) and (b)

display the atomic structure obtained using the REBO potential at indentation depths of 110 and 120 Å, respectively. Panels (c) and (d) display
atomic structure obtained using the SED-REBO potential at indentation depths of δ = 100 and 105 Å, respectively.

fracture initiated by a single bond-breaking event. The ductile
behavior of the REBO potential, observed during large-scale
MD simulations of the nanoindentation of circular graphene
membranes,69,70 was the major motivation to address its
failures by developing the SED-REBO potential.

MD simulations of graphene nanoindentation were per-
formed to investigate, in detail, the performance of the new
SED-REBO potential in real situations. The graphene sample
was a 800 Å diameter circular membrane (∼200 000 atoms),
the outer edge being fixed. The indenter was represented by
a spherical repulsive potential of a radius of 30 Å. For a
given indentation depth, the initial shape of the membrane
was prepared by imposing the profile of the membrane under
a point load obtained analytically from nonlinear elasticity
theory.71 Then, the system was relaxed using the CG algorithm.
To activate possible bond-breaking events, the membrane was
subjected to elevated temperatures up to 1000 K and, then,
was cooled down to 0 K, followed by the final CG relaxation
step. Finally, the load was determined by calculating the force
exerted by the spherical tip.

The indentation curve, load F versus indentation depth
δ, calculated by both REBO and SED-REBO, is shown in
Fig. 12. Both potentials display similar behavior at moder-
ate indentation depths in agreement with experiment:64 F

increases linearly with δ at small indentation depths, then,
F ∼ δ3 at large δ. The differences between the REBO and
the SED-REBO potentials appear at large indentation depths
of δ > 100 Å: the membrane simulated by REBO displays
plastic deformations due to the appearance of defects resulting
in a deviation from the δ3 behavior. The defects consist of voids
and long linear chains of carbon atoms as seen from point (a) in
the left panel of Fig. 12 and the corresponding frame (a) in the
right panel. These defects are very similar to those observed
in previous MD simulations of CNT under a tensile load using
the REBO potential.17,49 Further increase in the load results
in breaking of the carbon chains and the appearance of a hole
roughly the size of the contact area with the indenter; see
frame (b) in Fig. 12. The SED-REBO potential displays a very
different failure mode: no defects appear until a critical load
is reached as seen from point (c) in the left panel of Fig. 12,

and the corresponding frame (c) in the right panel. Above the
critical load, large cracks are opened up and propagate deeply
into the membrane, causing a catastrophic failure, as seen in
frame (d) in Fig. 12 in agreement with experiment.64 The
markedly different failure modes exhibited by the REBO and
SED-REBO potentials were also observed during large-scale
MD simulations of the dynamical indentation of membranes
of large diameters.

V. SED-REBO POTENTIAL FOR SHOCK
COMPRESSION OF DIAMOND

The environment-dependent screening is also important
for a proper description of compressed carbon materials. As
discussed earlier, the compression reduces first-, second-, and
further-nearest-neighbor distances so that, within the fixed
cutoff scheme employed within the REBO potential, these
further-nearest-neighbor atoms start to contribute to the energy
and forces, resulting in an unphysically large increase in
total energy. In fact, the unphysically abrupt increase in the
total energy upon uniaxial compression of diamond crystal
along the 〈110〉 crystallographic direction at interatomic
distances of rcc < 1.2 Å results in the numerical overflow of
the calculations for compressions V/V0 < 0.75; see Fig. 13.
The screening function employed in SED-REBO avoids the
inclusion of further-nearest neighbors, thus, limiting contri-
butions to first-nearest neighbors only. This key improvement
is of critical importance for robust MD simulations of shock
compression in diamond.

In principle, the SED-REBO potential presented above can
be directly used in MD simulations of compressed carbon
materials. However, due to SED-REBO’s large cutoff of
rc = 3.3 Å, which was absolutely necessary to describe the
bond-breaking processes in the case of the tensile loads,
the MD simulation of compressed carbon materials would
involve unnecessary calculations for further-nearest-neighbor
interactions, which are eventually discarded because the cor-
responding screening functions are equal to zero. In contrast
to REBO, which uses a fixed functional form of switching
function, the switching off of the interatomic interactions
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FIG. 13. (Color online) Uniaxial compression of diamond crystal
along the 〈110〉 direction: relative energy (top panel) and longitudinal
stress σxx (bottom panel) as a function of the compression ratio V/V0.

is embedded in SED-REBO’s pairwise repulsive VR and
attractive VA functions. Because the cutoff radius rc is a
parameter of the pairwise functions [see Eq. (9)], its change
requires refitting of the SED-REBO potential.

A version of the SED-REBO potential, referred to as
SED-REBO-S, which utilizes a shorter cutoff of rc = 2.0 Å,
was specifically developed for MD simulations of compressed
carbon materials. The same functional form for VR and VS as
in Eq. (1) was used with the new cutoff of rc = 2.0 Å. The
SED-REBO-S binding-energy curve for diamond is almost
indistinguishable from that calculated using either the SED-
REBO potential or the DFT for interatomic distances rCC <

1.65 Å; whereas, the REBO binding-energy curve displays a
markedly different behavior including a vertical asymptote
at rCC ≈ 1.2 Å; see Fig. 14. Although the binding energy
dependence of SED-REBO-S deviates substantially from both
SED-REBO and DFT at distances of rCC > 1.7 Å, this is of
no importance as these C-C nearest-neighbor distances are
not encountered within the compressed material, whereas,
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FIG. 14. (Color online) Diamond binding-energy curves obtained
using REBO, SED-REBO, SED-REBO-S, and DFT.

all further-nearest neighbors are screened out and do not
contribute to the energy and forces.

Because the diamond binding-energy curve was included
in the SED-REBO-S fitting database, the potential describes
diamond under large hydrostatic compressions well. However,
the shock compression of diamond72,73 involves uniaxial
compressions. Therefore, the performance of the SED-REBO-
S and REBO potentials upon uniaxial compression of diamond
along the 〈110〉 crystallographic direction was evaluated and
was compared with corresponding DFT data (see Fig. 13),
which displays the energy and longitudinal stress dependence
as a function of compression ratio. The behavior of the
SED-REBO-S potential is substantially improved compared
to that of the REBO potential. As seen from Fig. 13, the
REBO energy and longitudinal stress σxx exhibit a sudden
jump at a relatively moderate compression ratio of V/V0 ≈
0.8 due to the appearance of second-nearest-neighbor atoms
within the fixed cutoff distance of rc = 2.0 Å. In contrast, the
SED-REBO potential displays a much smoother response up
to very high compressions.

Although the SED-REBO-S potential removes the unphys-
ical behavior of the REBO potential at uniaxial compression,
it exhibits some deviations from DFT at large uniaxial
compressions; see Fig. 13. This is due to the fact that uniaxial
compressions involve local atomic structures significantly
different from those observed in uncompressed diamond and
graphene, which were used in the fitting of the angular function
of the bond-order term in Eq. (6) in Ref. 40, the latter being
used without any substantial changes in this paper. The limited
sampling of the bond angles during the fitting of the original
REBO potential is a probable cause of deviations of both
REBO and SED-REBO from DFT at large compressions. The
improvement of the bond order to properly account for large
uniaxial compressions is the subject of future work.

VI. CONCLUSIONS

A SED-REBO potential has been developed for large-
scale simulations of carbon materials. By increasing the
range of interatomic interactions, eliminating the explicit
switching function, and introducing a simple yet efficient
environment-dependent screening function, the SED-REBO
potential resolves deficiencies of the REBO potential and
provides an accurate description of bond-breaking and bond-
remaking events in carbon systems under extreme tensile and
compressive stresses.

The new SED-REBO potential provides a realistic descrip-
tion of bond-breaking events during the nanoindentation of
graphene. In contrast to the REBO potential, which produces
ductile behavior in contradiction to experiment, the SED-
REBO potential correctly predicts brittle fracture, i.e., opening
up and propagation of large cracks in the graphene membrane
under an indenter load. The SED-REBO-S potential, a com-
putationally efficient version of the SED-REBO potential, has
also been developed for large-scale MD simulations of carbon
materials at large compressions and is being used in large-scale
MD simulations of shock-wave propagation in diamond. See
preliminary results in Ref. 74.

Although the application of the environment-dependent
screening function makes the SED-REBO potential superior
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to the REBO potential in describing compressive and tensile
states of carbon materials, it is of comparable quality as
far as the properties of diamond and graphene near equi-
librium are concerned. The SED-REBO potential uses a
bond-order term practically identical to that of the REBO
potential, but the attractive VA and repulsive VR pairwise
terms were refitted in the current work. This was required
due to the introduction of a novel analytic functional form of
the attractive VA and repulsive VR pairwise terms as well as
the need to cover a much wider range of interatomic distances
corresponding to compressive and tensile states of the material.
In principle, the quality of SED-REBO predictions can be
substantially improved by extensive fitting of the bond-order
term. However, the functional form of REBO, including the
bond-order term, has some limitations, which are reflected in
substantial deviations of REBO and SED-REBO predictions
from DFT upon uniaxial compression; see Fig. 13. Therefore,

future work on improving the SED-REBO potential will
involve the systematic development of a robust analytic
bond-order potential for carbon, which will combine the
ideas of environment-dependent screening and the analytic
bond-order potentials based on the tight-binding description
of the electronic structure.75–79

The SED-REBO potential is implemented as a module in
the Large-Scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS)80 and is freely available.81
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