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The dynamics of BCS (Bardeen-Cooper-Schrieffer) superconductors is fairly well understood due to the
availability of a mean-field solution for the pairing Hamiltonian, a solution which gives the quantum state of
a superconductor as a state of almost-free fermions interacting only with a condensate. As a result, transition
probabilities may be computed, and expressed in terms of matrix elements of electron creation and annihilation
operators between approximate eigenstates. These matrix elements are also called “coherence factors.” Mean-field
theory is however not sufficient to describe all eigenstates of a superconductor, a deficiency which is hardly
important in (or very close to) equilibrium, but one that becomes relevant in certain out-of-equilibrium situations.
We report here on a computation of matrix elements (coherence factors) for the pairing Hamiltonian between any
“two-arc” eigenstates in the thermodynamic limit.
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Introduction. A host of phenomena within the classical the-
ory of Bardeen, Cooper, and Schrieffer (BCS) of superconduc-
tivity may be explained within the mean-field theory that BCS
have put forth.1 The success of BCS theory relies on the ability
of mean-field theory to provide an approximation to a set of
eigenstates and eigenvalues of a Hamiltonian that includes the
pairing interaction responsible for superconductivity. Never-
theless, some out-of-equilibrium phenomena require a fuller
set of eigenstates than those that the mean-field theory can
provide. Such out-of-equilibrium situations include quantum
quenches2,3 (where the pairing interaction strength is suddenly
changed making use, e.g., of the Feshbach resonance), but
also problems related to nonequilibrium steady state.4 As an
alternative approach to mean field, one may solve the pairing
Hamiltonian, Eq. (1), exactly, as Richardson did many years
ago.5 We apply the solution here to large systems having
in mind applications to nonequilibrium macroscopic super-
conductivity, probing a different set of problems than those
which are addressed by a perhaps more popular application of
Richardson’s solution, namely the study of small supercon-
ducting systems.6,7

Although Richardson did not refer to the Bethe ansatz,
his solution of the pairing Hamiltonian may be phrased in
the language of the algebraic Bethe ansatz.8,9 The problem
of finding matrix elements of physical operators between
exact eigenstates of a Hamiltonian within the Bethe ansatz
approach is known to be a difficult problem. Nevertheless,
recent progress in different models has been made10–16

based mainly on Slavnov’s determinant representation of
overlaps.17

In this Rapid Communication we report on analytical
expressions for properly coarse-grained matrix elements be-
tween exact eigenstates of the pairing Hamiltonian, Eq. (1),
in the thermodynamic limit. The derivation of the result
will be published elsewhere,18 while here we only compare
the result to numerics. The matrix elements we report on
can be used to study the dynamics of superconductors in
far-from-equilibrium situations, in which the superconductor
cannot be assumed to be in a state well described by a BCS
eigenstate. The matrix elements we compute feature in the
Fermi golden rule transition rates, which in turn find their

way into a quantum Boltzmann equation formalism, and as
such, our results may be applied, for example, to study, using
a Boltzmann equation approach, the long-time evolution after
a quantum quench.

Model and results. It is well established that a supercon-
ductor may be described by the following effective pairing
Hamiltonian:

H =
∑
j,σj

εj c
†
j,σj

cj,σj
− G

∑
j,l

c
†
j,+c

†
j,−cl,+cl,−. (1)

Here (j,+) and (j,−) denote the quantum numbers of time-
reversed pairs. For example, if (j,+) denotes a state with
wave number �k and spin up, then (j,−) denotes a state with
wave number −�k and spin down. We make the following
assumptions with no loss of generality and for the sake of
simplicity. Namely, we assume that each level j is only doubly
degenerate, where σ indexes the two degenerate states, σ

taking + and − as values. Furthermore, we assume uniform
level spacing εj − εj−1 = ι.

We will briefly review Richardson’s solution and then give
our expressions for matrix elements between exact eigenstates
of the Hamiltonian. To describe an exact eigenstate, first
note that only pairs of electrons are dynamical, while single
electrons decouple. Indeed, suppose a single-particle level at
energy εm is occupied with a single electron with either + or
− spin; then the Hamiltonian H prescribes no dynamics for
this electron. This means that a good quantum number M is
given by the number of single-particle levels which are singly
occupied. In addition to this, the nondynamical nature of singly
occupied levels means that for a given eigenstate |v〉, we may
also associate a set of singly occupied levels, εij , and the spin
of the electron at the level, σj .

Given the single-occupancy data, one must further classify
all eigenstates with a given single-particle occupation. This
may be done by specifying a set of rapidities, namely, a
set of P complex numbers. We denote this set by V , where
V = {vμ}Pμ=1. The number P is related to the total number
of electrons, N , in the system and M, the number of singly
occupied levels, as follows: P = N−M

2 . The number P may
then be considered as the number of Cooper pairs in the system.
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FIG. 1. (Color online) A typical configuration of rapidities. The
I’s denote rapidities, while the X’s denote unoccupied single-particle
levels and the O’s denote singly occupied levels. The mapping ξ → uξ

maps the energy plane onto a cylinder of circumference π and height
|τ |. The left arc is mapped to the base and the right arc to the top. The
parts of the real axis outside and between the arcs are mapped onto
the orange and brown lines, respectively.

The rapidities must satisfy Richardson’s equations;5,19,20

namely, for every μ, the following must be satisfied:

∑
ν

′ 2

vμ − vν

−
∑

i

1

vμ − εi

+
∑

j

1

vμ − εij

= 2

G
. (2)

The end result is that, for a given single-electron occupancy
and a set of rapidities V, one has an eigenstate of H with
energy E = ∑

μ vμ + ∑
j εij . We may think of the rapidities

as living in complexified energy space. The single-particle
spectrum εi constitutes a discrete set on the real axis in this
space, while the v′s can, in principle, be found anywhere in this
two-dimensional space. The Richardson equations, Eq. (2),
constraining the v’s lend themselves to a typical form of
the solution. Namely, some of the v’s are found on the real
axis in more-or-less arbitrary positions dispersed between the
single-particle levels, while other v’s arrange themselves in
arcs in the complex plane. There may be any number of arcs,
while in the present paper we restrict ourselves to the case
where there is either 1 or 2 arcs. The number of arcs will be
denoted by k, and the end points of the arcs by {μi ± 	i}ki=1.
Figure 1 displays such a typical configuration with two
arcs.

The number of arcs encodes the nature of the quantum
state. When there are no arcs, the material is in a normal
(non-superconducting) state. One arc signifies that the material
is superconducting, with order parameter given by 	1. Two
arcs signifies a state with oscillating order parameter,4 such as
the state which appears after a quench.2,3

In the thermodynamic limit we describe the distribution of
single-particle levels, singly occupied states, and the rapidities
by coarse-grained densities. We multiply all densities by
the level spacing to obtain “occupancy numbers.” While the
density of the v’s on the real axis is largely arbitrary, the density
on the arcs may be found given the real-axis density of vμ’s
and εij ’s and the arc end points {μi ± 	i}ki=1. We may then
compute the matrix elements between two Richardson states
each described by its real-axis density and its arc end point. We
denote such a state by |n+,n−,nV ,{μi,	i}ki=1〉. Here and below
nα , where α can take the “values” +,−, or V , are given in the
following: nα(ε) = ι

δε
�α(ε), where �V (ε), �+(ε), and �−(ε)

are respectively the number of rapidities, singly occupied
levels with spin +, and singly occupied levels with spin −
in the segment [ε − δε

2 ,ε + δε
2 ] and δε is a coarse-graining

scale defined such that it is much larger than ι, the level

spacing, and much smaller than the scale at which densities
change. We define an excitation occupation number, n(ε), as
follows:

n(ε) = n+(ε) + n−(ε) + 2nV (ε). (3)

To see that n is indeed an occupation number, note that,
due to the relation between energy and the rapidities, E =∑

μ vμ + ∑
j εij . Therefore, we may regard both the rapidities

and the singly occupied levels of both spins as excitations.
It is only the real rapidities which are counted in n, since
only the real rapidities have an arbitrary density, and thus
can be regarded as excitations. Since the number of rapidities
corresponds to the number of Cooper pairs in the system
the charge associated with them is double the charge of the
singly occupied levels, and hence the factor 2 in front of nV

in Eq. (3).
The state c

†
mσ |n+,n−,nV ,{μi,	i}ki=1〉 will generally have

little overlap with states with significantly different occupation
numbers, nα , and arc end points. Thus denoting the in-state,
|in〉, by |n+,n−,nV ,{μi,	i}ki=1〉, we compute the matrix ele-
ment 〈out|c†m,σ |in〉, where the state |out〉 may be considered to
have the same density and arc end points as |in〉. Nevertheless,
the object, 〈out|c†m,σ |in〉, is not a diagonal matrix element since
|out〉 may be different from the in state on a microscopic
scale.

We describe the difference between |in〉 and 〈out| states by
two variables, p and l. We claim that all order 1 overlaps are
covered by the following values of p and l. The number p is
any integer much smaller than N counting how many more
rapidities are on the left arc in the |out〉 state as compared to
the |in〉 state. The number l is defined to be 1 (−1) if the |out〉
state has one excitation more (less) next to εm as compared to
|in〉. Note that c† ostensibly creates an excitation, so naively
l = 1; however, a well-known feature of superconductivity is
that a condensation of a pair may accompany the creation of
an excitation. The latter corresponds here to a rapidity leaving
the vicinity of εm and joining an arc—a process which brings
down l to −1.

To write the main result of this communication, we define
Nl,σ = δl,1 − l (nlσ + nV ), which allows us to write

〈in; l,p|c†mσ |in〉2 = π2lNl,σ sin−2[uεm
+ l(pτ − u∞)]

2ω2R4(εm)
, (4)

where

R4(ξ ) =
2∏

j=1

√
(ξ − μj )2 + 	2

j , ω =
∫ μ1+i	1

μ1−i	1

1

R4(ξ ′)
dξ,

uξ = π

2ω

∫ ξ

μ1+i	1

1

R4(ξ ′)
dξ,

τ

2
= uμ2+i	2 , u∞ = lim

ξ→∞
uξ .

All expressions must be taken by drawing branch cuts for the
function R4(ε) such as to coincide with the arcs (the shape of
the arcs is given by the solution to the Richardson equations,
which are tractable in the thermodynamic limit).19,20 The path
of integration in the definition of uξ should not cross the branch
cuts, but may wind around it. The path of integration in the
definition of ω is drawn slightly to the right of the branch cut.
A graphical depiction of the our main result, Eq. (4), is shown
in Fig. 3.
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FIG. 2. (Color online) The ratio |τ | as a function of the modulus m̂.

Note that the mapping ξ → uξ is ambiguous because the
path of integration in the definition of uξ may wind around
the arcs. As a result, uξ is defined modulo addition of mπ ,
where m is an integer. We denote the Abelian group of integer
translations by π as Zπ and the set of points on the branch
cuts as C. Due to the ambiguity, the mapping ξ → uξ must be
understood as taking C \ C to C/Zπ . The function sin−2 is
well defined on C/Zπ due to its π periodicity. The quotient
C/Zπ has the topology of an infinite cylinder. The image
of the mapping is actually a finite portion of this cylinder
extending over 0 < Im(uξ ) < |τ |. The portions of the real axis
between and outside the arcs are mapped onto Re(uξ ) = ±π

4 ,
respectively; see Fig. (2).

We note that the result, Eq. (4), is to be understood as
being coarse grained in the following sense. We average the
left-hand side of (4) over all in and out states with the same
coarse-grained occupation numbers Nl,σ .

Properties of the result. We describe now a few properties
of the solution. The matrix element square decays as e−|pτ | as
p → ±∞. The ratio τ becomes larger as the distance between
the arcs becomes larger as compared to the size of the arcs.
In fact τ is a function, τ (m̂), of the cross ratio of the end
points, m̂ = (	1+	2)2−(	1−	2)2

(	1+	2)2+(μ1−μ2)2 < 1. The variable m̂ is called
the elliptic modulus and ranges from 0 when either one of
the arcs vanishes (	i = 0) or when the distance between the
arc tends to infinity (|μ1 − μ2| � 	i) to 1 when both arcs
coincide (	1 = 	2 and μ1 = μ2). The ratio τ goes to zero as
m̂ approaches zero and diverges as m̂ approaches 1. The cross
ratio is invariant to translations and dilations of the set of arc
end points. Figure 2 gives a plot of |τ | as a function of m̂. The
explicit functional dependence may be written through elliptic
integrals, τ (m̂) = i K(1−m̂)

K(m̂) , where K is the complete elliptic
integral of the first kind.

As the arcs draw far apart from each other, or when one of
the arcs becomes very small, the problem is effectively that
of one arc; namely, the BCS expressions should hold. In this
limit m̂ goes to 1, the imaginary number τ goes to infinity, and
the result indeed converges to the usual BCS expression. To
see this, first consider that all p 	= 0 are suppressed by factors
of e−|pτ |. We need then only to consider the case p = 0. Next
assume without loss of generality that εm close to μ1. In the
limit τ → ∞ we have, for ξ close to the first arc, the estimate

i	1e
−i2uξ 
 μ1 − μ2 + R2(μ2)[R2(μ2) − R2(ξ )]

μ2 − ξ
, (5)

where R2(ξ ) =
√

(ξ − μ1)2 + 	2
1. Additionally, making use of

the estimate ω 
 πi
R2(μ2) , we obtain

〈in; l,0|c†ε,σ |in〉2 = Nl,σ

⎡
⎣1 − l

ε − μ1√
(ε − μ1)2 + 	2

1

⎤
⎦ .

The latter expression is the BCS result.
We denote four points on the real axis εA± , εB± , where A and

B denote the points at which the right and the left arcs meet the
real axis, respectively, and the ± superscript denote approach-
ing those points from the left and the right, respectively. We
have the following relation for matrix elements evaluated at
these points:

N−1
l,σ 〈in; l,p|c†A±,σ |in〉 = N−1

−l,σ 〈in; −l,p|c†A∓,σ |in〉,
(6)

N−1
l,σ 〈in; l,p|c†B±,σ |in〉 = N−1

−l,σ 〈in; −l,p + l|c†B∓,σ |in〉.
The equality follows formally from (4), but may also be
intuitively understood by noting the fact that the out states
described on the left- and right-hand sides in Eqs. (6) are in
fact indistinguishable.

Comparison with numerics. In Fig. 3 the matrix element
square is drawn for a few values of l and p. One can see
curves corresponding to different p and l joining up at the
points at which the arcs cross the real axis, corresponding to
relations (6).

Figure 3 depicts also a comparison with numerical re-
sults, where, first, Richardson’s equations (2) were solved
numerically, and, second, the matrix elements were computed
using Slanvnov’s formula, which requires computing a large
determinant.11,21

The numerics correspond to the following distributions:
n+(ξ ) = 1, if ξ /∈ I , where I is the set I = [2,4] ∪ [−4,−2] ∪

FIG. 3. (Color online) Matrix element square divided by Nl,σ .
Colors correspond to out states as follows. A: l = 1, p = 0; B: l =
−1, p = 1; C: l = −1, p = 0; D: l = 1, p = −1; E: l = 1, p = 1; F:
l = −1, p = −1. Arc end points are given by 	1 = 2.25, μ1 = 0.82,

	2 = 1.06, and μ2 = −0.05. P rapidities are situated entirely on
two arcs. Single-particle levels have been distributed on the set I

(see text) with level spacing ι. Circles: P = 385, ι = 1
348 . Triangles:

P = 577, ι = 1
522 . To obtain μi and 	i Richardson’s equations were

solved numerically with P = 641, ι = 1
580 . In all cases, the coupling

constant g was given by g = 6ι.
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[−0.5,0.5]. For ξ ∈ I we set n+(ξ ) = 0. In addition, we
take nV (ξ ) = n−(ξ ) = 0 for all ξ . We thus have spin +
electrons distributed across a uniformly spaced single-particle
spectrum. Since these spin + electrons are nondynamical,
those single-particle levels occupied by them drop out of all
the calculations, and may be effectively “erased.” Thus, in
practice, the numerics were done by taking a single-particle
spectrum evenly distributed only in I . Note also that the
fact that spin + electrons were taken is irrelevant due to the
symmetry to interchanging spins.

Relation to expectation values. Equation (4) allows us to
compute expectation values. Consider then computing the
expectation value 〈in|N̂m|in〉, where N̂m ≡ ∑

σ c
†
m,σ cm,σ . We

perform the calculation by introducing a complete set of states
between c

†
m,σ and cm,σ . As mentioned above, our claim is that

within this sum only states of the form |in; l,p〉 will contribute
in the thermodynamic limit. Applying the formula for matrix
elements, Eq. (4), yields, then,

〈N̂m〉 =
∑
l,σ

π2lNl,σ (εm)

2ω2R4(εm)

∑
p

sin−2
[
uεm

+ l(pτ − u∞)
]
.

The sum over p may be taken explicitly by considering the
right-hand side as a function in the complex uεm

plane. For
a given value of p the sum on the right-hand side has double
poles at −l(pτ − u∞) + πj for any integer j . Summing over p

yields a function which has double poles at a two-dimensional
lattice of points, −lu∞ + πZ + τZ. This largely fixes the sum
to be given by the Weierstrass ℘ function. In fact applying the
standard lore of elliptic functions yields the following formula
for 〈N̂m〉:
〈N̂m − 1〉 = ℘

(
u∞ − uεm

)+ ℘
(
u∞ +uεm

) + 2 η

ω

2R4(εm)
[n(εm) − 1],

where ℘ is the Weierstrass ℘ function with period π and τ ,
while the constant η is a standard notation in the theory of
Weierstrass elliptic functions.22

The result given here for 〈N̂m〉 agrees with the result
obtained in Ref. 16. This agreement serves to support our
formula for the matrix elements, as well as the claim that

no states other than those characterized by p and l have a
contribution of order 1 to the matrix elements.

Summary. In conclusion we note that, in principle, one
can find the matrix elements of bilinear operators in fermions
by a semiclassical method. Namely, the time dependence of
such bilinear operators may be found in the semiclassical
limit invoking the methods developed in Refs. 2, 3, 23, and
24. After these are obtained, one may Fourier-transform the
time-dependent expressions to obtain matrix elements. The
method does not lend itself, however, to the computation of
the matrix elements of single fermionic operators, such as
the ones reported on here, which prompts us to resort to an
approach based on an exact diagonalization of H .

The results we presented here are applicable to the treatment
of the dynamics of out-of-equilibrium superconductors. The
importance of coherence factors in the theory of nonequi-
librium BCS superconductivity is well recognized. Here we
find such coherence factors for a broader set of eigenstates,
including such eigenstates which have special relevance to
nonequilibrium superconductors.4

The methods used to compute matrix elements, which will
be detailed in a forthcoming publication,18 bear importance
more generally as an example of an analytical computation of
matrix elements in systems with a Bethe ansatz solution in the
thermodynamic limit. Such computations are rare, but recent
progress has seen some success in finding such expectation
values in different contexts.10,11 Here we provide completely
analytical computations (as opposed to a seminumerical
approach11,15) in a model which contains a macroscopic string
of rapidities (the arcs). Such models were discussed in the
condensed matter theory context by Sutherland25 and have
received renewed interest within the context of integrability in
the AdS/CFT correspondence.14,26,27
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