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Multiferroicity in the generic easy-plane triangular lattice antiferromagnet RbFe(MoO4)2
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RbFe(MoO4)2 is a quasi-two-dimensional (quasi-2D) triangular lattice antiferromagnet (TLA) that displays
a zero-field magnetically driven multiferroic phase with a chiral spin structure. By inelastic neutron scattering,
we determine quantitatively the spin Hamiltonian. We show that the easy-plane anisotropy is nearly 1/3 of the
dominant spin exchange, making RbFe(MoO4)2 an excellent system for studying the physics of the model 2D
easy-plane TLA. Our measurements demonstrate magnetic-field-induced fluctuations in this material to stabilize
the generic finite-field phases of the 2D XY TLA. We further explain how Dzyaloshinskii-Moriya interactions
can generate ferroelectricity only in the zero-field phase. Our conclusion is that multiferroicity in RbFe(MoO4)2,
and its absence at high fields, results from the generic properties of the 2D XY TLA.
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The two-dimensional (2D) triangular lattice antiferromag-
net (TLA) is a prototypical model in which to study frustrated
magnetic interactions. For easy-plane magnetic anisotropy,
the 120◦ structure forms the zero-field ground state. How
the system evolves under an in-plane magnetic field has
long been a subject of investigation since the equilibrium
spin structures are expected to depend sensitively on both
thermal1–3 and quantum fluctuations.4 Consequently, similar
magnetic structure phase diagrams are expected within both
XY and Heisenberg models.1–9 Furthermore, a number of TLAs
have multiferroic ground states, but the role of the triangular
magnetic topology in the emergence of ferroelectricity is not
well understood.

While experimental realizations with which to test the
predictions of the 2D TLA models are rare, RbFe(MoO4)2

(RFMO) stands out as an excellent example of a quasi-2D
easy-plane TLA.10–14 In addition, the zero-field magnetically
ordered phase of RFMO is ferroelectric,14,15 so the material
provides a unique opportunity to study how multiferroicity is
related to the generic fluctuations of the easy-plane TLA.

In RFMO, magnetic Fe3+ ions (S = 5/2) form equilateral
triangular lattice planes stacked along the c axis [Fig. 1(a)]. In
zero field, for T < TN ∼ 3.8 K the system displays incommen-
surate (IC) proper screw order with a 120◦ structure in plane.
The corresponding wave vector Q = (1/3,1/3,qz), where qz ∼
0.46.14 The 120◦ structure is chiral, since for any spin triangle
there are two equivalent, yet distinct, ways to arrange the spins
[see Figs. 1(b) and 1(c)]. These chiral 120◦ structures break
the crystal inversion symmetry I, and generate a spontaneous
ferroelectric polarization along the c axis, Pc, the direction
of which (±Pc) depends on the sense of chirality.14,15 Here
we parametrize spin chirality locally for any spin triangle
by K = (2/3

√
3)(S1 × S2 + S2 × S3 + S3 × S1) · ẑ/S2. With

this definition, K = ±1 for spin triangles of the 120◦ structure.
Recently, it was identified that the crystal distortion which sets

FIG. 1. (Color online) (a) The low temperature P 3 structure of
RbFe(MoO4)2. O2− mediated superexchange interaction paths are
indicated, and the exchange hierarchy is J � J ′ > J ′′ ∼ J ′′′. (b)–(e)
Magnetic structures within a single triangular lattice layer for fields
up to 10 T (Ref. 14). (b) and (c) show degenerate zero-field 120◦

spin structures of antiphase chirality. Each can be described by a
single phenomenological order parameter (b) σ (1) or (c) σ (2) (Refs. 14
and 16). The magnetic structures under μ0 �H ‖ [1 − 10] of (d) 6 T and
(e) 10 T are each described by a combination of σ (1) and σ (2).
Green circles show inversion centers, and red spin triangles are
representative for each magnetic structure.

in for T ∗ � 190 K (Ref. 17) is “ferroaxial,”15,18 and enables a
symmetric-exchange coupling between the magnetic helicity
(sign of qz) and the sense of triangular chirality.15 While
the sign of the crystal distortion in each ferroaxial domain
fixes the possible relationships between magnetic helicity
and triangular chirality,15,16 the direction of Pc is always
determined by the sense of chirality. Figures 1(b) and 1(c)
show single 120◦ spin structure planes of antiphase chirality
that will generate a P along the opposing directions ±Pc.14,15

For easy-plane magnetic fields μ0 �H ‖ [1 − 10], the chiral-
ordered multiferroic phase is replaced by a paraelectric (PE)
and commensurate (C) phase with Q = (1/3,1/3,1/3). The
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magnetic structure at μ0H = 6 T is collinear [Fig. 1(d)]
with two spins on each spin triangle parallel to μ0 �H , and
the remaining spin antiparallel. This structure is expected
for the classical TLA in applied fields close to 1/3Hs,
where Hs is the saturation field.2–5 Close to the upper field
limit of the C phase at μ0H = 10 T, the refined structure
[Fig. 1(e)] is the expected “two-up one-down” arrangement,
with just two parallel spins on each spin triangle. Since all C
magnetic structures display two parallel spins on each spin
triangle, K = 0 everywhere. Above 10 T, the C phase is
replaced by a high-field incommensurate (HFI) phase with
Q = (1/3,1/3,qz) the microscopic properties of which still
need to be reported. Since such a high-field phase is unexpected
theoretically, open questions persist regarding both the origin
of the phase transition, and the relation between the magnetic
and electric properties.

Here we report neutron scattering studies of the microscopic
magnetism in RFMO. The spin-wave dispersion is measured
and used to extract a spin Hamiltonian that quantifies both
the magnetic interactions and a large XY anisotropy. Elastic
measurements reveal field-induced fluctuations to cause both
the high-field transitions, and the suppression of ferroelectric-
ity. Our refinement of the HFI magnetic structure shows that
it is not chiral, which is consistent with a bulk paraelectric
state. We also show that the high-field C-IC transition is not a
generic property of the XY TLA. Finally, we discuss the origin
of multiferroicity in this system.

Inelastic neutron scattering measurements were performed
using the SPINS instrument at NIST, USA. Single crystals
of RFMO were synthesized using a flux method,19 and a
mosaic with mass 80 mg was coaligned and mounted with
a (h,h,l) horizontal scattering plane. Figures 2(a) and 2(b)
show typical energy scans measured at T = 1.8 K in the
multiferroic phase, and with a constant (h,h,0) wave vector.
To extract the spin-wave mode energies from the scans, we
numerically convoluted Lorentzian energy profiles with the
spectrometer resolution function. The computed lines shown
in Figs. 2(a) and 2(b) reveal each scan to display two spin-wave
modes. By determining the peak positions in all energy scans,
the in-plane dispersion relation along (h,h,0) was obtained
[Fig. 2(c)]. Similar scans also allowed the determination of
the interplane dispersion along (1/3,1/3,l) [Fig. 2(d)]. Here,
two weakly dispersive modes indicate the 2D nature of the
system. The dispersion of the low energy mode evidences
interplane interactions that stabilize three-dimensional (3D)
magnetic order. Furthermore, its wave-vector dependence is
consistent with a Goldstone mode emerging from the magnetic
Bragg wave vector (1/3,1/3,qz), as expected for a magnetic
state that breaks the in-plane rotational symmetry.

Using linear spin-wave theory, the in-plane dispersion was
calculated using the following Hamiltonian relation:

H = J
∑

〈i,j〉
Si · Sj + D

∑

i

Sz
i S

z
i + Jp

∑

〈i,k〉
Si · Sk. (1)

Here, J is the nearest-neighbor antiferromagnetic Heisenberg
exchange, the sum is over all in-plane nearest-neighbor pairs,
and D is the single ion anisotropy. Since there are at least
three interplane interactions that cannot all be determined
individually from our experiments, we approximate these by
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FIG. 2. (Color online) Constant wave-vector scans of the spin-
wave excitations at zero field, and T = 1.8 K at (a) Q = (0.22,0.22,0)
and (b) Q = (0.16,0.16,0). The fit lines result from a numerical
convolution of Lorentzian energy profiles with the spectrometer
resolution function. (c) The in-plane dispersion constructed from
the analysis of the constant (h,h,0) wave-vector scans. The lines
in (c) show the dispersion of the three modes described by the
spin Hamiltonian given in the text. (d) The interplane dispersion
determined along (1/3,1/3,l) with lines as guides for the eye.

an “effective” nearest-neighbor interplane interaction Jp.20

Following the approach of Refs. 21 and 22, after a standard
diagonalization of the linearized form of H, three modes
are expected in the spin-wave dispersion.23 In Fig. 2(c) we
show that this is consistent with the data for RFMO, and that
the simple model describes the in-plane dispersion extremely
well, with J = 0.086(2) meV, D = 0.027(1) meV, and Jp =
0.0007(1) meV. These results establish that RFMO is an XY-
like [D/J = 0.31(1)] and 2D [Jp/J = 0.008(1)] TLA. The
relatively large value for D in the proposed Hamiltonian en-
sures that the magnetic moments remain in the plane, and avoid
a spin flop transition to a state where magnetic moments are
both perpendicular to the μ0 �H , and point along the c axis. This
is a crucial property of the XY TLA under high in-plane fields.

Elastic neutron diffraction experiments were performed
using the RITA-II instrument, at PSI, Switzerland. A single
6.5 mg crystal from the inelastic measurements was mounted
with an (h,h,l) horizontal scattering plane, and installed inside
a 14.9 T vertical field cryomagnet with a dilution refrigerator.
Measurements of the μ0H and T dependence of the magnetic
order are consistent with previous work.14 Figures 3(a) and
3(b) show the μ0H dependence of magnetic order in the
portion of the phase diagram for 6 T < μ0H < 14.9 T, and
at T = 100 mK. A discontinuous transition clearly separates
the intermediate field C and HFI phases. For the latter phase,
the values of qz are similar to those reported previously at
2.8 K,14 and no significant μ0H dependence is observed.
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FIG. 3. (Color online) The μ0H dependence at T = 100 mK of
(a) the neutron integrated intensity recorded at the Q = (1/3,1/3,qz)
position, and (b) the qz component. Dashed lines mark the transition
fields between different phases, with the uncertainties indicated by the
shaded regions. At (c) T = 1.6 K and (d) T = 100 mK we show the
μ0H dependence of the square root of the magnetic neutron intensity√

Im measured at the (002) position. Red arrows indicate the field
range of the intensity plateaus.

The fluctuations for easy-plane magnetic fields are further
characterized by measurements of the μ0H -dependent mag-
netic neutron intensity Im at the (002) nuclear position. At both
T = 1.6 K and T = 100 mK [Figs. 3(c) and 3(d)] we show
the μ0H dependence of

√
Im, since this quantity provides a

direct measure of the field-induced bulk magnetization. At
both temperatures

√
Im depends linearly on μ0H over most

of the field range. At intermediate fields, however, intensity
plateaus are observed that correspond to the hallmark 1/3
magnetization plateaus expected when the collinear structure
is stabilized close to 1/3Hs,3,4,11 where Hs ∼ 19 T.11–13 In
particular, the plateau at T = 100 mK is observed to occupy the
finite-field range 5.7–6.7 T. This is much narrower than similar
plateaus measured at higher temperature, such as that shown in
Fig. 3(c), or by superconducting quantum interference device
(SQUID) magnetometry.11–13 These observations confirm the
expectation that increased thermal fluctuations stabilize the
collinear structure [Fig. 1(d)] over a wider field range.3,4 Using
the data shown in Figs. 3(a)–3(d), in Fig. 4(a) we present an
updated version of the phase diagram first presented in Ref. 14.

Next we discuss the refinement of the magnetic structure
within the HFI phase. The results are analyzed within the
phenomenological framework developed in Refs. 14 and 16,
and we note that a similar approach was recently proposed.24

In RFMO, all easy-plane spin structures can be described in
terms of two complex-valued scalar order parameters σ (1) and
σ (2) that correspond to amplitudes for 120◦ spin structures of
opposite chirality as depicted in Figs. 1(a) and 1(b). The order
parameters enter directly into the part of the free energy F that
successfully describes the magnetoelectric coupling:

F ∝ K[|σ (1)(qz)|2 − |σ (2)(qz)|2]Pc. (2)

Here K is a symmetry-independent coupling constant. A
120◦ spin structure is described by either σ (1)(qz) = 0 and
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FIG. 4. (Color online) (a) An updated schematic of the μ0 �H ‖
[1 − 10] vs reduced temperature (T/TN) phase diagram of RFMO
first shown in Ref. 14. Open circles show the end of the magnetization
plateaus determined in Ref. 11, and stars show the start and end of
similar plateaus determined using neutrons [Figs. 3(c) and 3(d)].
Ferroelectric (FE) and paraelectric (PE) phases are indicated. The
solid (dashed) lines indicate magnetic phase boundaries consistent
(inconsistent) with those calculated for a model 2D XY TLA shown in
(b) (Ref. 5). Phase diagrams similar to that shown in (b) were obtained
from other XY (Refs. 3, 4, and 6) and Heisenberg (Refs. 1, 2, 4, 8,
and 9) model calculations.

σ (2)(qz) = 0, or σ (1)(qz) = 0 and σ (2)(qz) = 0. In these cases,
the observed Pc is expected in accord with Eq. (2). In
contrast, the C magnetic structures are each described by
|σ (1)|2 = |σ (2)|2, which, according to Eq. (2), is consistent with
a bulk PE state.

The magnetic structure in the HFI phase was determined
at μ0H = 14.9 T and T = 100 mK. The integrated intensities
of 36 magnetic peaks were collected and found to be best
described by σ (1) = 0.94(4) and σ (2) = −0.94(4) − i0.00(20)
with χ2 = 2.97 and R = 0.33.23 Since within uncertainty
|σ (1)|2 = |σ (2)|2, a Pc is not expected according to Eq. (2).
The refined magnetic structure is shown in Figs. 5(a)–5(c) for
adjacent layers along the c axis. Unlike all lower-field phases,
the moments are weakly amplitude modulated and, while they
tend to order collinearly along [110] in the plane orthogonal
to μ0H , they are strongly canted along the field direction.
The moment magnitude determined from the refinement is
4.0(5) + 0.2(3) sin(qznc + φ)μB, where the integer n indexes
spin planes displaced along c, and the modulation period is

a

a

( )a

H
=
14
.9
T

µ

( )b ( )cn = -1 n = 0 n = 1

FIG. 5. (Color online) (a)–(c) show the refined incommensurate
magnetic structure at μ0H ‖ [1 − 10] = 14.9 T and T = 100 mK for
adjacent layers along the c axis, when σ (1) = −σ (2) = 0.94. In (b),
the red spin triangle is representative for the magnetic structure, and
the green circle indicates an inversion center.
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∼65 Å (∼9c). Importantly, the refined HFI magnetic structure
both preserves I and displays K = 0 for every spin triangle.
Indeed, for any spin of the refined structure, the modul-
ation phases of the other two spins on the spin triangle exhibit
relative values φ, of +2π/3 and −2π/3. These phase differ-
ences perfectly preserve K = 0 everywhere since, unlike the
unmodulated C structures, this condition can be satisfied with-
out requiring at least two parallel spins [Figs. 5(a) and 5(c)].

Using Fig. 4 we compare between the experimental phase
diagram for RFMO [Fig. 4(a)] and the expected phase diagram
for a model XY TLA [Fig. 4(b)].5 For purely classical spins,
in both XY4,5 and Heisenberg1,2 models the magnetization
plateau is expected to collapse to the singular field 1/3Hs in the
T → 0 limit2,3,5 [see Fig. 4(b)]. As indicated in Fig. 4(a), our
observation of a finite ∼1 T plateau at T = 100 mK strongly
suggests that the plateau occupies a finite-field range as T →
0. These measurements could indicate quantum fluctuations4

to take the place of thermal fluctuations in stabilizing the 1/3
magnetization plateau. However, since RFMO is an S = 5/2,
strictly quasi-2D system, biquadratic interactions likely play
an important role in stabilizing the plateau.25 Nonetheless, by
combining our observations across the phase diagram with
the description of the spin dynamics that evidence the large
XY anisotropy, we confirm the properties of quasi-2D RFMO
to display remarkable agreement with the predictions of the
model 2D XY TLA.

To unravel the relationship between multiferroicity in
RFMO and the generic properties of the 2D XY TLA,
we see from Fig. 4(a) that the low-field IC-C transition
essentially separates the multiferroic chiral and PE collinear
phases (notwithstanding subtle phase modifications within the
vicinity of the transition11). Therefore, the field-driven collapse
of ferroelectricity occurs as a consequence of the field-induced
fluctuations expected for the generic 2D XY TLA, and is
understood in terms of a suppressed chiral symmetry.2,4 In
the high-field half of the phase diagram, the in-plane physics
and symmetry remain dominated by properties expected for
the model 2D XY TLA. This is evidenced by the observation
that all magnetic structures in the C and HFI phases preserve I
and display the expected property thatK = 0 everywhere.2–5 It
therefore follows that the high-field C-IC transition observed
in RFMO is not a generic property of the 2D XY TLA, but

instead occurs as a consequence of weaker interactions in the
full quasi-2D Hamiltonian.

Finally, we discuss the multiferroic mechanism in RFMO.
Symmetry-based phenomenological approaches successfully
explain the emergence of Pc,14–16,24 yet the definitive mi-
croscopic origin remains to be clarified. Here, we consider
the role of the Dzyaloshinskii-Moriya interaction (DMI)
which can exist between noncollinear magnetic moments on
nearest in-plane neighbors that locally break I. According to
the well-known inverse DMI/spin current model Pij ∝ eij ×
(Si × Sj ),26,27 the P is expected in the triangular lattice plane,
and so cannot explain the origin of Pc. However, since in
RFMO the unit vector between nearest in-plane neighbors
i and j neither includes a mirror plane, nor is ⊥ to a
twofold rotation axis, an additional polarization component
⊥ to the triangular lattice plane, pc ∝ (Si × Sj ), is allowed by
symmetry.28 By evaluating the products between all nearest
in-plane neighbours, we find that the sum of pc terms to be
finite only for the chiral 120◦ structure, and otherwise vanish
for every 2D plane of the experimentally observed magnetic
structures at higher field. This strongly suggests that the DMI
between in-plane neighbors is crucial for the emergence of
ferroelectricity.

In summary, our neutron scattering experiments estab-
lish the quasi-2D triangular lattice antiferromagnet (TLA)
RbFe(MoO4)2 to display many properties in remarkable
agreement with those of the model 2D XY TLA. We
demonstrate the magnetic phase diagram to be dominated
by field-induced fluctuations, and that the bulk multiferroic
state arises as a consequence of the generic properties of
the model 2D XY TLA. We further identify a possible
Dzyaloshinskii-Moriya interaction in the chiral-ordered mul-
tiferroic phase that may give rise to multiferroicity in this
system.

Experiments were performed at the Swiss spallation
neutron source SINQ, Paul Scherrer Institut, Switzerland.
Financial support from the Swiss NCCR program MaNEP is
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US Department of Energy, Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering, under award
DE-FG02-08ER46544.
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