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We study the Josephson effect in a triplet superconductor-ferromagnet-singlet superconductor junction. We
show that the interaction of tunneling Cooper pairs with the interface magnetization can permit a Josephson
current at the lowest order of a tunneling Hamiltonian perturbation theory. Two conditions must be satisfied
for this to occur: The magnetization of the ferromagnet has a component parallel to the d vector of the triplet
superconductor, and the gaps of the superconductors have the same parity with respect to the interface momentum.
The resulting charge current displays an unconventional dependence on the orientation of the magnetic moment
and the phase difference. This is accompanied by a phase-dependent spin current in the triplet superconductor,
while a phase-independent spin current is always present. The tunneling perturbation theory predictions are
confirmed using a numerical Green’s function method. An analytical treatment of a one-dimensional junction
demonstrates that our conclusions are robust far away from the tunneling regime and reveals signatures of the
unconventional Josephson effect in the critical currents.
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I. INTRODUCTION

The physics of spin-triplet superconductors (TSs) is much
richer than their spin-singlet superconductor (SS) counterparts
due to the spin degree of freedom of a triplet Cooper pair.
Although a bewildering variety of triplet pairing states are,
in principle, possible for any crystal symmetry,' there are
only a handful of systems where a TS state has been well
established, e.g., UPt; and Sr,RuOs (Refs. 2-5). Even in
these cases, many questions remain about the precise form
of the TS order parameter.>>® Much effort has therefore
been directed at developing experimental tests capable of
unambiguously identifying a TS. A promising route is to
incorporate the candidate TS into a heterostructure device
and search for signatures of the odd-parity orbital state in
tunneling measurements.”$ Alternatively, the spin part of the
Cooper pair wave function can be probed by bringing the TS
into contact with a ferromagnet (FM). This is manifested by
the crucial role of the relative orientation between the vector
order parameters of the TS and the FM, the d vector and
magnetization, respectively, in controlling the physics of the
device.” "3

Theoretical investigations of the Josephson effect between
TSs have revealed many remarkable consequences of their in-
trinsic spin structure. For example, the spin of the Cooper pair
permits the existence of a Josephson spin current between TSs
with misaligned d vectors,'*!3 similar to the spin supercurrent
observed in superfluid *He (Refs. 16 and 17). Another notable
proposal is the TS-FM-TS (TFT) junction, '8! where the cou-
pling of the Cooper pairs’ spin with the exchange field in the
barrier causes a sign reversal of the current as the orientation of
the exchange field with respect to the d vectors is varied. This is
in stark contrast to the well-known O-7 transition in magnetic
junctions between SSs,>>* which is independent of the ori-
entation of the barrier magnetization. Such an anomalous 0-7
transition would therefore be extremely strong evidence of the
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triplet state of the superconductors. On the other hand, creating
a TFT junction from any of the TS candidate materials is
experimentally challenging due to the high purity requirements
needed for the TS. Even with recent success in growing
superconducting thin films of Sr,RuO, (Ref. 25), such devices
will likely remain hypothetical for some time, due to the greater
challenges posed by growing a layered heterostructure. More
immediately plausible is to create a TS-FM-SS (TFS) junction
by coating the Srp,RuOy thin film with a ferromagnetic layer
and then contacting to a conventional superconductor.

For junctions between superconductors of like parity, the
lowest harmonic in the Josephson current vs phase difference
¢ relation is usually sin(¢), which originates from tunneling
processes involving only a single Cooper pair. This term
is necessarily absent in a nonmagnetic Josephson junction
between an SS and a TS, however, due to the orthogonal
spin pairing states.?® Instead, the singlet-triplet conversion can
occur only in processes involving the coherent tunneling of
even numbers of Cooper pairs, and so sin(2¢) is the leading
harmonic in the current vs phase relation.?’~2° The coupling
between a single tunneling Cooper pair and the magnetic
degrees of freedom in a magnetically active barrier, on the
other hand, can accomplish the conversion between singlet and
triplet spin states,” hence generating a lowest-order Josephson
coupling in the sense discussed above. An example of such
a magnetic interaction is the intrinsic spin-orbit coupling
expected to occur at the junction interface.’*=34 This has been
proposed as the origin of the unexpectedly large Josephson
currents in junctions between single crystals of Sr,RuO,4 and
conventional s-wave SSs, and the pronounced dependence
on the crystal face upon which the Josephson contact is
made.?>3% In contrast, relatively little work has been done
for a ferromagnetic tunneling barrier. Previous studies have
found a highly unconventional Josephson charge current in a
TFES junction which is even in the phase difference and odd in
the component of the magnetization parallel to the d vector of

©2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.88.054509

BRYDON, CHEN, ASANO, AND MANSKE

singlet
superconductor

triplet
superconductor

ferromagnetic
barrier

FIG. 1. (Color online) Schematic diagram of the Josephson
junction considered in this paper. The d vector of the TS defines
the x axis, and we restrict the magnetization to the x-y plane, making
the angle « to the x axis. The phase difference between the TS and
SS is given by ¢.

the TS.3**! The origin of this current and the conditions under
which it occurs nevertheless remain obscure.

It is the purpose of this paper to perform a detailed
theoretical study of the Josephson effect in a TFS junction,
shown schematically in Fig. 1. Similar to the TFT junction,
we find highly unconventional Josephson physics which
originates from the coupling of the barrier moment to the
spin of the tunneling quasiparticles comprising the Cooper
pairs. Using a tunneling Hamiltonian perturbation theory,
we show that there is a lowest-order Josephson charge
current when the orbital pairing states of the superconductors
have the same parity with respect to the interface momentum,
and the magnetization has a component parallel to the d vector
of the TS. There is also a spin current in the TS, which has
both a phase-dependent and a phase-independent contribution.
The latter is a universal spin supercurrent which appears at
TS-FM interfaces and is due to spin-dependent reflection
processes.!! We test the predictions of the perturbation theory
using both lattice and continuum models of the junction. In the
lattice theory we survey a wide selection of different orbital
pairing states in the SS and TS. The focus of the continuum
theory, on the other hand, is to understand the role of resonant
tunneling through the Andreev bound states at the junction
interface. Both approaches yield excellent agreement with
the perturbative analysis at sufficiently high temperatures.
Although deviations from perturbation theory become more
severe as the temperature is lowered, it nevertheless remains
qualitatively correct down to zero temperature.

This paper is organized as follows. In Sec. II we present a
perturbative theory for the Josephson effect in the TFS. The
predictions of this section are confirmed first in Sec. III by
numerically determining the currents in a microscopic lattice
model of the junction, and then by analytical calculation for
a continuum model in Sec. IV. Our concluding discussion is
given in Sec. V.

II. PERTURBATION THEORY

A. Hamiltonian of the junction

The Hamiltonian of the TFS junction is written

H = Hrs + Hss + Hun + Heer- (1)
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Here Hrs and Hss describe the bulk TS and SS on either side
of the barrier. We have

1 4 EtkOA'O idk'é\'é‘y
H :_E ! ’ v, (2
T2l "k((idkﬁ&_\,)T —e,,k(}()) e (2)

1 €y ka'() iAS k€7i¢6y
H :_E wi o ’ v, @3
FT24 s’k<_iAf,ke'¢&y —€5.xk60 e )

where W, = (cv,k.T’Cv,k,i’Clt,fk.T’clt,fk,i)T ande, (Cl,k,o)
are the fermion annihilation (creation) operators for a spin-o
quasiparticle with momentum k in the v =5 (¢) SS (TS).
The bare dispersion in each superconductor is €, x. We only
consider unitary equal-spin-pairing states for the TS. Without
loss of generality, it is convenient to let the vector order
parameter of the TS define the x axis, i.e., dx = A, ke,. Other
orientations of dx can be achieved by spin rotation of the
system and do not result in new physics. The global phase
difference between the TS and the SS is ¢.

The TS and SS are connected by the tunneling Hamiltonian,
which we define

o0 T
Hmﬂ = z : z :z :Tv,k,k’ci,k,acv,k’,a” (4)

v=s,t K.k’ 0,0’

where vV = s(¢) for v = #(s). In order to properly model the
interaction of the tunneling quasiparticles with the magnetic
moment of the barrier we require explicitly spin-dependent
tunneling matrix elements. Following Ref. 20, we also include
a reflection Hamiltonian

7_(ref = Z Z Z Rg,’k_,ﬁ’ci,k,acv,k’,fa’ (5)

v=s,t K,k o

to properly account for the interaction of the quasiparticles
with the FM layer. We only include spin-flip reflection
processes in Hief, since spin-preserving reflection processes
clearly do not contribute to either the charge or the spin
currents.

1. Ansatz for tunneling and reflection matrix elements

Our perturbation analysis crucially relies upon the form of
the tunneling and reflection matrix elements. In particular, it
is necessary to include the phase shift acquired by the quasi-
particles during the various tunneling or reflection processes.>’
Although it is, in principle, possible to determine the tunneling
and reflection matrix elements from a more fundamental
Hamiltonian, here we motivate a phenomenological form by
comparison with an exactly solvable scattering problem.

A common model for the tunneling barrier is a §-function
potential, 82028294042 & © V(r) = Uy6od(z) + Uy - 68(2),
where Uy is the charge scattering potential and Uy =
Up(cos €, + sinaé,) is the magnetic scattering potential.
It is straightforward to evaluate the scattering matrix for this
potential, and hence determine the transmission and reflection
coefficients, t, . (k,kK") and r, ., (K,K'), respectively. The
transmission and spin-flip reflection coefficients are both small
when the magnetic potential is large; i.e., the dimensionless
parameter ¢ = kp|Uy|/2EF is much larger than one, where
kp is the Fermi wave vector and Ef is the Fermi energy.
It is reasonable to expect that in this limit we should have

Tk ~ oo (k) and R7T ~ 1y oo (K K'). By requiring
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that a tunneling or reflected quasiparticle acquires the same
phase as in the exact solution, we hence have an ansatz for the
matrix elements,

0,0 1 s
Tk = g_zT p(kmké)akuak\’\’ (62)
oo IVEY )
T Kw = T (k2 K)dk, e (6b)
o TVE ,
R,k = R (kz.k)dx, ki » (6¢)
where v = —1 (+1) as a factor for v = ¢ (s) as a subscript.

Crucially for our analysis, the phase shift acquired during
spin-flip tunneling or reflection depends on the initial spin o
and the angle « of the magnetic moment in the x-y plane
(see Fig. 1). We assume that the T*7(k.,k.), T*/ (k.,k.), and
RS/ (kz,kg) are real functions, independent of g, and satisfy

T*P(k,k.) = TP (—k, —k.) = T*(k..k.), (7a)
T (k, k) = =T/ (=k,, —=k.) = T*/ (k. ,k;),  (7b)
R (k; k) = —R (—k,, —k]) = —R* (k[ ,k;).  (7c)

These conditions originate from both the comparison to the
scattering coefficients and the requirement that H,, and H,.¢
be Hermitian. Note that the 51{“,1{"‘ in Eq. (6) ensures the con-
servation of momentum parallel to the barrier, a consequence
of the translational invariance along the interface.*’

Although we have motivated our ansatz Eq. (6) by com-
parison with the é-function barrier, we expect our approach to
be of more general validity.?! In particular, the spin-dependent
phase shifts acquired by the tunneling quasiparticles should
be robust to other choices of barrier model, since they are a
consequence of the orientation of the magnetization.

B. Perturbation theory

The number operator for particles in each spin sector of the
two superconductors is givenby N, , = Y, ci k.o Cy k.o FTOM
this we define the associated particle currents 7

Itlyj - _U(atNu,a)- (8)
We proceed by expanding the S matrix to lowest order in
H' = Huun + Hiet, hence treating the tunneling and reflection
processes as a perturbation of the Hamiltonian Hy = Hrs +
Hss (Refs. 20 and 44). This is justified so long as the tunneling
and reflection matrix elements are small, which by our ansatz
[Eq. (6)] holds in the g >> 1 limit. By the Kubo formula, we
then have

1) = —iv f 4t ([0 Novo (0. H (Y], ©)

o]

where the time dependence is given within the interac-
tion picture, ie., O(t) = e Qe M with Hy = Ko +
>, vy, Nuo and Ky is the associated grand canonical
Hamiltonian. Since we are only interested in the dc Josephson
effect, we take the same chemical potential in both the TS and
the SS, i.e., uy = u; = 1. We hence find for the terms in the
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commutator in Eq. (9),
N, (1) = i{B[“’“(t) - BL”*”(I)}
+iYy {AF() — AT (1)}, (10)

S
H@) =YY BE0+ Y Y AST@), (1)
voo¢

LA
where we introduce the operators

ASS (1) = D TS weh i (e, 10 o (0. (12)
k. kK

B (1) = Z Rikg,k/ci,k,g(t)cv-,k’.g/(t)' a3
k.k’

The time dependence of the fermion operators in these

fons is o — piKot —iKyt
expressions is given by ¢, (1) = €'"c | ™'

Following standard arguments, 32044 We write the current
Eq. (9) as
I} = 2vIm{ @} (0 = 0) + VI* (w0 = 0)}, (14)

where the retarded correlation functions d)rftg (w) and ¥} ()
give the contributions from tunneling and reflection processes,
respectively. They are obtained by analytic continuation
iw, — o+ i0" of the corresponding Matsubara functions,

B
q>v,g(iw,,)=f dtel®” Z (T AS7(1)AS S (), (15)
0

[
B .
U, s (fwy) = f dte'™ (T, B, 7 (t)B, " (0)). (16)
0

The Matsubara functions are evaluated by using Wick’s
theorem to expand the two-particle correlators. We hence find
the particle currents in the TS,

1 ’
[é = _? Z[Rsf(kz’kz)]ZBk”’k?\
k. k’

*
Az,kAhk/

X Im{ezm” }Ft.t(kvk/)

1k Er K

2 Ry / S ’
s Z TP (ke sk )T f(stkz)(SkH,kh
kK

. A* VA, K
xRe{e’(¢’+""‘)—S’k Lk }Fm(k,k/), (17

skEr
and the SS,

s 2 cos(a) P Lo ,

I = = D TP e KT (ke KB, i
k. kK’
NIV

x Re{eWL""}Fw(k,k’). (18)
sk Er K

Here we utilize the convenient shorthand notation'?

f(Ev,k) - f(Ev/,k’)

Fv v/(kak,) =
’ Ev,k - EU’,k’
1— f(Esx)— f(E x
n f(Esx) — f( t,k)’ (19)
Es,k + Ez,k’
where
Evie = (eok— 2 + 18,42 (20)
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is the dispersion in the v superconductor and f(E) is the
Fermi distribution function. Equations (17) and (18) are the
central results of our perturbation theory analysis, as they give
all lowest-order contributions to the particle current in each
superconductor. Note that in the TS we have a contribution
from reflection processes, whereas in the SS only tunneling
processes contribute to the current. The lowest-order (i.e.,
single-Cooper-pair) tunneling processes involve both a spin-
preserving and a spin-flip tunneling event, which is necessary
to transform the spin-singlet Cooper pairs of the SS into the
S, = &h triplet Cooper pairs of the TS and vice versa. The
particle current in the TS [Eq. (17)] depends on the spin o
through the spin-dependent phase shifts acquired during the
scattering; in contrast, the particle current in the SS [Eq. (18)]
is the same for each spin orientation, as required by the singlet
pairing state.

The important role of spin-flip tunneling implies a transfer
of spin to the FM tunneling barrier. In our calculation, however,
we regard the magnetic moment of the FM barrier to have fixed
magnitude and direction. Including the response of the FM to
the injected spin current is a challenging problem, requiring
a nonequilibrium treatment that is beyond the scope of the
current paper.

C. Charge and spin currents

We can use either Eq. (17) or Eq. (18) to calculate the
Josephson charge current I, = —e(Iy + 1)), as by charge
conservation this is the same in each superconductor. We hence
find

cos(a) . .
Y TPk kDT (ke kL),

kK

I. = 4e

. Aﬂf A !
x Re {ML""} Fy (k,K). Q1)

s,kEt,k’
The charge current depends strongly upon the orientation
of the magnetic moment through the cos(«) factor. This implies
that reversing the direction of the barrier moment also reverses
the sign of the current, as was previously observed in Ref. 40.
The origin of this factor is the interference of the particle
currents in each spin sector of the TS, which are phase-shifted
with respect to one another by +2« as a consequence of the
spin-flip tunneling; see the second term in Eq. (17).

We extract the current vs phase relationship by ex-
amining the summand in Eq. (21). In order to have a
lowest-order Josephson effect, we require that the product
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T‘”’(kz,k;)T“f(kZ,k;)Aj’kA,,kr(SkH,kh not be odd in any com-
ponent of k or k'. From Eq. (7) we hence deduce that the
gaps A7, and A, have opposite parity with respect to the
z component of the wave vector; equivalently, the gaps must
have the same parity with respect to the interface momentum.
For an s-wave SS, therefore, there is a Josephson current,

I. x % cos(a) cos(¢), (22)
8

when the TS has p.-wave symmetry. The proportionality
constant is determined by the details of the junction, such
as the normal-state dispersion or the structure of the interface.
On the other hand, Eq. (21) is vanishing for a p,-wave TS,
and so a Josephson current appears only in the next order
of perturbation theory. The current vs phase relation is then
I. o sin(2¢), as for the nonmagnetic barrier.’® A list of the
Josephson charge current vs phase relationships predicted by
Eq. (21) for different combinations of orbital pairing states is
given in Table L.

The spin current is present only in the TS, as the singlet
Cooper pairs do not carry spin. The spin current is polarized
along the z axis and is given by

Ivz = TZ(I[ _It)
52T oM U

sin(2a) s /
= —h—— > [RY (ke k)8,
8 kK
AF A
xRe{ X "4 F (kK
{EWEM}LA )
2SiH(Ol) s / S /
_ET D TP (ke kDT (ke k)b i
kK
AT A K
x Im 61¢Lt’k Fs t(kvk/)' (23)
s,kEt,k’ '

The first term in Eq. (23) is the spin current due to spin-flip
reflection from the interface, where a spin S, = +i Cooper
pair is reflected as a S. = i Cooper pair.'"?>?! As this
involves two spin-flip reflection events, the Cooper pair
acquires a phase shift of £2¢ and the magnitude of this term is
~g~2. Furthermore, due to its origin in the reflection processes,
it is sensitive to the orbital structure of the triplet gap; e.g.,
the sign reversal of the p,-wave gap upon specular reflection
gives the Cooper pairs an additional 7 phase shift relative to
the p,-wave case, and there is hence a sign difference in the
respective reflection spin currents. In contrast, the second term

TABLE I. Table showing the Josephson charge and spin currents appearing in the lowest order of our perturbation theory for different
combinations of TS and SS gap symmetries. In the interest of brevity we restrict ourselves to gaps lying in the y-z plane. The Josephson current
amplitudes are expected to satisty I, ~ g3, I, ~ g2, I, ~ g3 in the tunneling limit g >> 1. The numerical values of these terms depend
upon the details of the junction, e.g., the normal-state dispersion, the structure factor of the gaps, the properties of the tunneling region, etc.

TS gap symmetry SS gap symmetry

Charge current [Eq. (21)]

Spin current [Eq. (23)]

Dzs Pz +ipy s,dp_2
Py s, d;.z_zz
pl dyz
p)’ dVZ
p.+ipy dy,

1. cos(a) cos(¢p) I, sin(2ar) 4 I, sin(e) sin(¢p)
0 I, sin(2a)
0 I, sin(a)
1. cos(a) cos(¢p) I, sin(2ar) 4 I, sin(e) sin(¢p)
1, cos(a) sin(¢) I, , sin(2a) + I, sin(a) cos(¢)
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in Eq. (23) originates from the interference of the spin-1 and - |,
tunneling particle currents, similar to the charge current, and
is ~g~3. We therefore expect that the reflection spin current
dominates the tunneling spin current in the tunneling limit
g > 1. Whereas the reflection spin current is always present,
the condition for the tunneling term in Eq. (23) to be nonzero
is the same as for a finite lowest-order charge current. Again
considering the case of an s-wave SS, we thus find that for a
p.-wave TS there is the spin current

1
I, x 12 sin(2a) + —= sin() sin(¢), 24)
8 8

where y is a numerical constant; for a p,-wave TS, in contrast,
only the first term is present, and has opposite sign. The
Josephson spin currents are given in Table I for various
combinations of orbital pairing states.

III. LATTICE MODEL OF THE JUNCTION

In this section we test the predictions of the perturbation
theory by calculating the charge and spin Josephson currents
in the tunneling regime of a two-dimensional microscopic
lattice model of the TFS junction. Using the recursive Green’s
function method,**¢ we examine representative examples of
the different orbital combinations listed in Table I.

Ae 5, 16y,

(Aeiw/z)i&y[_sr,ﬂ-ﬁ-u—y - 8r,r’—z—y + 6r,r’+z—y + 8r,r’—z+y]’

i(A /2)61 [(Sr,r/-i-z - Sr,r’—z],
i(A/2)6z [(Sr,r’+y - ‘Sr,r’—y]:

(A/2)6z[i8r,r’+z - i(sr,r’fz - 8r,r’+y + ar,r’fy]y

The pairing potentials for the TS assume that d is directed
along the x axis in spin space.

The charge and the spin densities in the nth column along
the z direction are defined, respectively, by

M
p(n)=e Y ) Ylr)e(r), (28)
m=1 «
sty = 1 % D Y06 pYp(r) (29)
2 = o a,BVB .

From the equations of motion,

3 p(n) = ;;[H,pm)], (30)

i
d:s(n) = ;;[H,S(n)], (3D
we derive the current conservation laws,

dp(n) = —lee(n) + lee(n — 1) — Sca(n), (32)

as(n) = —Le(n) + Le(n — 1) — S5a(n) — Sy(n).  (33)

PHYSICAL REVIEW B 88, 054509 (2013)

A. Formulation

We write the Hamiltonian describing the TFS junction in
real space as

H= %Z\w(r)

r,r

T / A /
(HOA(r,r) AA(r,r) ) ), (25)
—A*r,r) —Hj(r,r)
where W(r) = (Y, (1), (1), ¥1(0),y[(r))7 is the vector of
field operators and the sum in Eq. (25) is over the lattice
sites. For the normal-state Hamiltonian I:IO(r,r’) we assume a
two-dimensional square lattice tight-binding model in the y-z
plane,

ﬁo(l’,l'/) = [_t{ar,r/ 4zt Sr,r’—z + 8r,r’ +y + Sr,r’—y} + ﬂar,r’]a—()

+Up(r) 66 r. (26)
The vectors are represented as r = nz + my, where z and y
are the unit vectors of the tight-binding lattice in the z and
y directions, respectively. In the y direction, we apply the
periodic boundary condition. The exchange potential Uy, (r)
is only nonzero in the ferromagnetic barrier region of the
junction. A sketch of the lattice model is shown in Fig. 2. The
pair potentials for the different pairing symmetries considered
here have the following real-space forms:

s wave,

d,, wave,

p, wave, 27)
Dy wave,

p; +ip, wave.

On the right-hand side of these equations we have terms
that can be interpreted as the divergence of a current. The

FIG. 2. (Color online) Schematic diagram of the two-dimensional
lattice model of the TFS junction. The length of the ferromagnetic
layer and the junction width are L and M unit cells, respectively.
The on-site magnetic potential Uy (r) in the ferromagnetic layer is
oriented in the x-y plane.
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first of these terms are the familiar kinetic currents which
originate from the commutator of the densities with the
hopping Hamiltonian:

Lee(n) = lhit f D W + DY) — Y Va(r + 2)],
e s
it &
L) = 5 ; %wlu + )64, Yp(r)
— Y (060 pV(r + 2)]. (35)

The remaining terms in Eqs. (32) and (33) are the source terms.
Specifically, S.4(n) is the source term for the electric current
due to the pair potential, S;4(n) is the source term for the spin
current due to the pair potential, and S, (n) is the source term
for the spin current due to the exchange potential. They are
represented by

. M
Seam) = == 32 3 Y WA )

m=1 o, 1

+ Y (OYp)AS (1)), (36)

. M
Sulm) = 5= 37 3 YW )A, (e,

m=la,pr 1
+ Ya (O (AT (K )0 0], 37
M
Su(m) ==Y D WUy x olapyp®].  (38)
m=1 a,B

The magnetic source term S, (n) has a straightforward physical
interpretation as the torque exerted by the fixed magnetic
potential in the FM layers. The pairing source terms, S.;(n)
and S;4(n), have a more subtle origin: They account for the
discrepancy between the fixed pairing potentials [Eq. (27)]
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in the superconducting regions and the value of these pairing
potentials under a self-consistent mean-field treatment.*’ This
discrepancy acts like a source or sink of Cooper pairs,
which must be accounted for when calculating the current.
The expectation values of these terms hence vanish under a
self-consistent treatment. Currents due to the source terms in
the TS are defined

La)=— > Seali), (39)
n+1<i<ng

La)=— Y S0, (40)
n+1<i<ng

Limy=— > 8,3 (41)
n+1<i<L

where n( should be in the ferromagnetic layer. We are therefore
able to rewrite the continuity equations Eqs. (32) and (33) as

o,p(n) =—I.(n)+ I.(n — 1), 42)
ds(n) = —1%(m) + 1°%n — 1), (43)
where
1(n) = Lee(n) + Lea(n), (44)
I°(n) = L(n) + L(n), (45)
L(n) = L(n) + La(n). (46)

The averages of the currents are expressed in terms of the
Matsubara Green’s function G defined by

Gor,r',t — 1) = —(T,¥@Wwir))
-7 Z G, ,w,)e T (47)

where w, = (2n + 1) T are the Matsubara frequencies at
temperature 7. Specifically, we write!*

. M
—1et v v
Le(n) = % ST S TG + 2,0, — G + 2,0,)], (48)
m=1

Wy

.M ) 0 NG
Seeln) = lh—eZTZZTr[G(r,r’,w,J(A*(r/’r) (:) r)>], (49)

m=1 Wy

. M . . 0
L, (n) = T” ST ZTr[(G(r fzrw,) - GEr+ z,w,,))(S . )} (50)
m=1 Wy

i & . 0  AX.)\/o O
Ssd(n)zEmZ_:]TZZ:Tr[G(r,r,w,,)(A*(r,’r) 0 )(0 G*)] 51)

wy r

M

S,(n) = _71 Sor ZTr[é(r,r,w,,)(UM(rO) e _UM(S) § U*ﬂ (52)

m=1
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The recursive Green’s function method enables us to numer-
ically calculate the Green’s function and hence evaluate the
above equations.*>40

The charge current I.(n) in Eq. (44) is independent of n,
as required by the charge conservation law. Spin must also
be conserved, and so we find that I'°!(n) is vanishing for all
n because the spin current cannot flow in the SS. This result
contradicts the prediction of Sec. II that there is a Josephson
spin current in the TS. The paradox can be resolved by noting
that neither the perturbation theory nor the Green’s function
method can properly account for the transfer of spin to the
ferromagnetic barrier, as in both theories the magnetic moment
is assumed fixed by the constant exchange potential U, (r).
Rigorously accounting for the conservation of spin in such a
situation naturally leads to the conclusion of vanishing spin
current. It is nevertheless reasonable to identify the Josephson
spin current with the current I;(n), which produces a torque
on the ferromagnetic barrier, and to hence regard I,(n) as
a compensating current necessary to maintain the constant
exchange potential. Although I;(n) depends on n in the FM,
it is independent of n in the TS. In the following we only
consider this spin current in the TS in order to make contact
with the perturbation theory.

In the following we present results for a junction of width
M = 10 and ferromagnetic barrier length L = 10. In units of
the transfer integral ¢+ we take |Up| = 0.1 for the exchange
potential, and p = 2 for the chemical potential. The pairing
potential has weak-coupling temperature dependence, with
zero-temperature magnitude Ay = 0.01. We have confirmed
that the transport properties are qualitatively insensitive to
choices of these parameters. Since Uy x d || z, as shown in
Fig. 2, the x and y components of the spin current are zero. To
compare with the analytical predictions of Sec. II, we fix the
temperature at 7 = 0.57, in the tunneling regime.

B. s-wave singlet superconductor

In this section we present results for the Josephson currents
in a TFS junction between an s-wave SS and each of the three
different TS states listed in Eq. (27). Commencing with the
p.-wave TS (the p.- F-s junction), in Fig. 3 we plot the charge
and spin currents as functions of the phase ¢ and angle «. As
can be seen in panels (a) and (c), the dominant term in the
charge current is

1. = I cos(¢) cos(a), (53)

with a much weaker contribution osin(2¢) visible ata = 0.5
in panel (a). This is clearly consistent with the perturbation
theory predictions. The spin current also agrees with the per-
turbative analysis, with the numerical results well described by

I, = I, sinQa) + I sin(¢) sin(a), (54)

where Z > ’I:’ Indeed, in panel (d) the spin current vs «
curves at different ¢ almost overlap due to the very weak ¢
dependence. The much smaller coefficient of the ¢-dependent
term was anticipated in our tunneling Hamiltonian analysis.
We now consider the results for the p,-wave TS, which are
shown in Fig. 4. In contrast to the p,-wave TS, the dominant
contribution to the charge current is sin(2¢), there is only
very weak dependence upon «, and the maximum critical
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FIG. 3. (Color online) Josephson currents in the p,- F-s junction.
(a) Charge and (b) z-component spin currents as a function of ¢ for
fixed «. (c) Charge and (d) z-component spin currents as a function
of « for fixed ¢. We choose the parameters as M = L = 10, u = 2t,
[Uy| =0.1¢, Ag = 0.01¢, and T = 0.5T..

current is much smaller. Since the osin(2¢) term originates
from coherent tunneling of two Cooper pairs,’® these results
are consistent with our prediction of vanishing charge current
due to single-Cooper-pair tunneling processes. For the spin

py-F-s
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v 0.1%5
41 o 02
= 205 M, 0.125
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FIG. 4. (Color online) Josephson currents in the p,-F-s junction.
(a) Charge and (b) z-component spin currents as a function of ¢ for
fixed «. (c) Charge and (d) z-component spin currents as a function
of « for fixed ¢. The parameter values are fixed as in Fig. 3.
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FIG. 5. (Color online) Josephson currents in the (p, + ip,)-F-s
junction. (a) Charge and (b) z-component spin currents as a function
of ¢ for fixed «. (c) Charge and (d) z-component spin currents as
a function of « for fixed ¢. The parameter values are fixed as in
Fig. 3.

current we find I, ; = i; sin(2«) to excellent approximation,
in perfect agreement with the perturbation theory predictions.
Note that the spin current has opposite sign compared to the
p.-wave junction as expected.

In Fig. 5 we present the currents for the (p, + ip,)-wave TS
state. As predicted in Sec. II, the results for this junction are
very similar to those for the p,-wave TS, as the lowest-order
Josephson coupling proceeds through the p, component of the
chiral p-wave gap. The results are therefore summarized by
Egs. (53) and (54).

C. d,.-wave singlet superconductor

The parity requirement for the superconducting gaps leads
us to expect qualitatively different behavior upon replacing the
s-wave superconductor with a d,.-wave superconductor due to
the even and odd dependence on k,, respectively. To test this,
we repeat the above analysis for a d,.-wave pairing symmetry
in the SS. Starting with the p,-wave TS, in Fig. 6 we find that
the charge current is approximately given by

I. = I.sin(2¢) + I’ sin(2¢) cos(2r), (55)

with I, and INC’ of comparable magnitude. This is clearly
consistent with the predicted absence of single-Cooper-pair
tunneling processes when only one of the order parameters
is odd in k,. The spin current is independent of ¢ and has
the approximate form /g, = I~S sin(2«), characteristic of the
contribution due to spin-flip reflection.

In Fig. 7 we show the charge and spin currents for the
py-wave TS pairing symmetry. Since both the singlet and the
triplet gaps are odd in k,, we expect that a charge current is
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FIG. 6. (Color online) Josephson currents in the p.-F-d, junc-
tion. (a) Charge and (b) z-component spin currents as a function
of ¢ for fixed «. (c) Charge and (d) z-component spin currents as
a function of « for fixed ¢. The parameter values are fixed as in
Fig. 3.

realized at the lowest order of perturbation theory. Indeed, as
can be seen in panels (a) and (c), the numerical results for
the charge current are well approximated by Eq. (53), and

(a) charge

B o/ =0
2x10°F

IC [er/h]

FIG. 7. (Color online) Josephson currents in the p,-F-d,. junc-
tion. (a) Charge and (b) z-component spin currents as a function
of ¢ for fixed «. (c) Charge and (d) z-component spin currents as
a function of o for fixed ¢. The parameter values are fixed as in
Fig. 3.
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FIG. 8. (Color online) Josephson currents in the (p, + ipy)-F-d,,
junction. (a) Charge and (b) z-component spin currents as a function
of ¢ for fixed «. (c) Charge and (d) z-component spin currents as
a function of o for fixed ¢. The parameter values are fixed as in
Fig. 3.

the charge current is an order of magnitude larger than for the
p;-wave junction. As expected, there is also a ¢-dependent
contribution to the spin current, which is again of the form
Eq. (54).

To conclude our survey, in Fig. 8 we plot the charge
and spin currents for the chiral p-wave TS state. In this
junction the d,, symmetry couples to the ip, component of
the (p; + ipy)-wave symmetry, and so the factor of i gives an
additional /2 phase shift. Therefore, the lowest-order cur-
rents in this junction should be approximately obtained from
the pure p,-wave case with the replacement ¢ — ¢ + 7 /2.
Indeed the numerical results in Fig. 8 are consistent with the
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relations
(56)
(57)

I, = I, sin(¢) cos(a),
I,.. = I, sinQa) + I cos(¢) sin(a).

This agrees with the predicted currents in Table I.

In contrast to the charge current, the spin current hardly
changes upon replacing the s-wave SS with the d,,-wave
SS. This reflects the dominance of reflection processes, which
are insensitive to the superconductor on the other side of the
junction.

IV. ROLE OF ANDREEYV BOUND STATES

The perturbation theory of Sec. II gives a good descrip-
tion of the transport when multiple-Cooper-pair tunneling
processes make an insignificant contribution to the current,
i.e., when higher-order terms in the perturbation expansion
can be neglected. Although this is always the case sufficiently
close to the transition temperature of the superconductors,
resonant tunneling through Andreev bound states can cause
large deviations from perturbation theory predictions at zero
temperature. This is often particularly pronounced in junctions
where the gap of the superconductors is odd in the momentum
component perpendicular to the interface.?®*8 It is therefore
likely that in some of the junctions studied above, e.g., the
junction between a p.-wave TS and an s-wave SS, there will
be strong contributions to the current from higher harmonics
in ¢ and o at low temperatures. In order to estimate the
importance of this effect, here we consider an analytically
tractable model of the TFS junction where the current is due
entirely to tunneling through Andreev bound states.

A. One-dimensional model junction

We study a one-dimensional continuum model of the TFS
junction with p.- and s-wave orbital symmetries for the TS
and SS, respectively. Our analysis here closely follows that of
Refs. 18 and 19 for a TFT junction. The energies of the Andreev
bound states are obtained by means of solving the Bogoliubov—
de Gennes equation HW(z) = EW(z), with Hamiltonian

B U@ - e U —iO(-2)A O@)As e
S| U SRR el iO(=2)A5 (58)
—iO(—2)A, L —O(2)A,e® L —Upd(x) + 1 e“Und(z)
O@)A,e® i®(—z)Az§—Z e Uy8(2) %% —Uod(2) +

For simplicity, we assume that the effective mass m and
chemical potential p are the same on either side of the junction,
and hence the Fermi wave vectors kr , in each superconductor
are also the same; i.e., kp,, = kr. The TS and SS are described
by the pairing potentials A, and A;, respectively. The barrier is
modeled as a § function with charge scattering potential Uy and
magnetic scattering potential Uyy = Up(cos o€y + sinaé,).
The Andreev bound states have energy lying within the bulk
gap of the two superconductors, i.e., |E| < min{kr|A;|,| A},

and are hence exponentially localized at the interface. Within
the Andreev approximation, where the superconducting gap
is assumed to be negligible compared to the Fermi energy, an
appropriate ansatz for the wave function of these states is

Wy (2) = e (W, et 4 W, e HO(z).  (59)
Following the notation of Sec. I, v = s () denotes the singlet
(triplet) side, and as a factor v = 1 (—1). «, is the inverse decay
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length in the v superconductor. The spinors W, 1+ are defined
Wi = (e, bs, Tea, o, Fe b, 1) (60a)
(60b)

where the subscript {+,—} indicates the direction of
propagation and the phases y, are given by

. . T
qjs,i = (as,j:a bs,:i:’ _el(¢$%)b&i’ el(qb;ys)as.:t) s

2

h
cosy; = ——, siny; = i, (61a)
kr|A m|A;|
. Wik
cos Yy = m sin y; = m|SA F| (61b)
N s

The a, + and b, 1 appearing in Eq. (60) are constants to be
determined by the boundary conditions obeyed by the wave
function at the interface. In addition to continuity of the wave
function across the junction,

Wi(z=07) =W, (z =07, (62)
we require that the derivative obeys

0. Vs (2)|z=0+ — ;W (2)];=0-

Z —ge i@ 0 0
—gel® Z 0
—op | 8 Nwz =0,
0 0 Z —ge'®
0 0 —ge7i* 7
(63)

in order to conserve probability. Here we use the dimensionless
parameters

7 — kFU() _ kFUM
2  2u

to characterize the strength of barrier potentials. The boundary
conditions give eight equations for the coefficients a, + and
b, + and have nontrivial solution when the energy of the
bound state satisfies the equation

0=2+ 8g2 + 8g2 cos(2a) — 2cos(2¢p) — W cosz(y,)
—[4+8g>+ ng cos(2a)] cosz(ys)
+ 1[4+ W 4 16g%] cos(y;) cos?(y)
—2[2g% +2Z* 4 1]sin(2y,) sin(2y;)
+ 16g cos(x) sin(¢) cos(y;) cos(ys)
— 16g cos(a) sin(¢) sin(y;) sin(yy), (65)

; (64)

’

where

W =422Z% 4+ 1)+ 16(g* — Z*)>. (66)

B. Analytical solution at kr A, = A

The parameters that characterize triplet and singlet su-
perconductors are, of course, independent from each other,
as the two superconductors cannot be made from the same
material. Therefore, there are numerous choices to realize the
parameters in Eq. (64), according to the materials from which
the junction is made. Nevertheless, in the limit when the pairing
potentials of the singlet and triplet superconductor are the
same, i.e., kp A, = Ay, it is possible to express the Josephson
charge and spin currents entirely in terms of the Andreev
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bound-state energies. Although this is a highly idealized
situation, it clearly reveals the influence of resonant tunneling
on the currents, which we expect to remain qualitatively valid
for a more realistic model of the junction.

When krA; = Ay, the bound state energy parameters are
equal y; = yg, and Eq. (65) is drastically simplified,

4 2
T EN _ya( B sap—o, 67)
D2\ |A] [A]
where
D=[g*+2g°(1—ZH+ 1+ Z>1""%,  (68a)
17 1
A= Z[ﬁ — g?sin?(a) — 2g cos(a) sin(¢):|, (68b)

g8 . 68
=3 cos(a) — 1 sin(¢). (68c)

The positive Andreev bound-state energies are hence found to
be

Ea,b
[Asl

=+/D|vVDA+ B ++DA - B|. (69)

The Josephson charge and z-spin currents are defined!!'*”

e 8E1 El

c= —7 - s
h = ¢ 2kpT
1 oE E
I, = - “~' tanh —_.
’ 4 = da 2kpT

I=a,

(70a)

(70b)

Inserting Eq. (69) into Eq. (70) we hence obtain

e|Aq| D
I = N
8h UZ DA +o0B

=+
X [2Dg cos(a) cos(¢p) + o cos(¢p)]

Ea Eb
x | tanh ,
2kpgT 2kpgT

+ osign(B) tanh

(71a)

B
A, D
A PN e
’ 16 ~VDA+oB

X [ggz sin(2a) — Dg sin(«) sin(¢p) + o g sin(a)i|

E
+ osign(B) tanh 2kaT ) (71b)

E,
x | tanh
( 2kpT

We plot the Josephson currents at zero and finite temperature
in the upper and lower panels of Fig. 9, respectively. To obtain
the finite temperature results we assume that both gaps display
BCS weak-coupling temperature dependence with critical
temperature 7,. We find that the barrier potential Z mainly
affects the amplitude but not the form of the current-phase
relation, so hereafter we present only results for Z = 0.

The zero-temperature results for the charge and spin
currents at « = 0 are in good agreement with the perturbation
theory predictions. Rotating the magnetic moment towards
the y-z plane, however, we observe that the current-phase
relations display sharp jumps at the zero-energy crossings
of the Andreev bound states. The Fourier decomposition
with respect to the phase difference hence contains a large
contribution from higher harmonics, and thus multiple Cooper
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FIG. 9. (a) Josephson charge and (b) spin current for the case
g =1,Z =0, at zero temperature 7' = 0. (c) Josephson charge and
(d) spin current for the same parameter set at finite temperature
T/T.=0.5.

pair tunneling processes are important in the zero-temperature
limit. Indeed, we see in Fig. 9(a) that the maximum current
at « = 0.57 is comparable to that at « = 0, whereas in the
tunneling regime we expect that the latter should be much
larger than the former. In contrast, the currents at half the
critical temperature [panels (c) and (d)] are in much better
agreement with the perturbation theory predictions and the
lattice model calculations. In particular, the amplitude of the
charge current-phase relation at @ = 0.5 is now much smaller
than that at ¢ = 0.

The greatest deviations between the exact and perturbative
results for the current at zero temperature occurs for angles
near ¢ = 0.5, where we find jump discontinuities in the
current due to zero-energy crossings of the Andreev bound
states which are present for ||o| — 0.57| < arcsin(1/2g). For
g > 1, the zero-temperature current is well approximated by

I = €A0 1 7
.= E?sgn(cos(a)) cos(¢). (72)

Note that the amplitude of the current is g2, instead of g,
as predicted in Eq. (22): Enhancement of the low-temperature
current above the perturbation theory predictions is a well-
known consequence of the presence of zero-energy Andreev
states.”® We now turn to the spin current: In the large-g limit
the phase-dependent component becomes negligible, and we
find

Agl . .
I, = —Tgsugn(cos(a)) sin(). (73)
Although the current is again enhanced beyond the per-
turbation theory predictions, the two approaches agree that
reflection processes dominate in the limit of a strong magnetic
barrier.
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FIG. 10. (a) Critical Josephson charge and (b) spin current as a
function of temperature at several different values of «. (c) Critical
Josephson charge and (d) spin current as a function of « at several
different temperatures. In all panels we take g = 1 and Z = 0.

The critical charge current, defined as the maximum current
with respect to ¢, is a readily-accessible experimental quantity.
We plot this alongside the critical spin current in Fig. 10 as
a function of the temperature and the angle «. As can be
seen in panel (a), the temperature dependence of the critical
charge current qualitatively changes with the orientation of
the magnetization: For @ = 0 it grows linearly with decreasing
temperature immediately below T, and saturates at 7 ~ 0.27,.
In contrast, when o = 0.5, it grows superlinearly with
decreasing 7, but remains much smaller than the o =0
current until 7' =~ 0.2T,, below which it displays a rapid
increase. This “low-temperature anomaly” in the o = 0.57
critical charge current reflects the importance of resonant
tunneling through the zero-energy Andreev bound states far
below 7..°° Similarly, in panel (c) we observe that near 7, the
critical current as a function of « follows the perturbation
predictions of max{|l.|} o |cos()|; as the temperature is
decreased towards 7 = 0, however, the critical current at
a = £0.57 increases due to the resonant tunneling, and there
is hence overall relatively weak dependence of the critical
current on the magnetization orientation. The critical spin
current [Figs. 10(b) and 10(d)] also shows strong temperature
and o dependence.

V. CONCLUSIONS

In this paper we have studied the unconventional Josephson
charge and spin currents in a TFS junction. Using com-
plementary theoretical methods, we have established that
single-Cooper-pair tunneling currents are possible when the
magnetization of the FM has a component parallel to the
d vector of the TS, and when the orbital pairing states of
the superconductors have the same parity with respect to
the interface momentum. We hence see that spin and orbital
degrees of freedom both play a critical role in this junction;
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this is also the case when a lowest-order Josephson effect
between a TS and an SS is mediated by spin-orbit coupling
at the barrier.’*3 At a microscopic level, the perturbation
theory analysis reveals that the spin-dependent phase shifts
of the tunneling Cooper pairs are responsible for the charge
and spin Josephson currents, due to the interference of the
spin-1 and spin-|, particle currents in the TS. Surprisingly,
the interference of the particle currents is also responsible for
a phase-dependent spin current in the TS, even though spin
currents are forbidden in the SS. Similar interference effects
occur in the TFT junction?® and junctions between TSs with
misaligned d vectors.'*!

Our analysis has confirmed previous observations of a
highly unusual charge current in the TFS junction.***! Not
only is it linearly proportional to the magnetization of the FM
as «M - d, but it also has unconventional cos ¢ dependence on
the phase difference (if time-reversal symmetry is not broken
in one of the superconductors). This implies a contribution to
the junction free energy,

oM - dA A, sin¢. (74)

In this expression we can regard dAgA; sin¢ as an intrinsic
interface spin which appears at junctions between a TS and
an SS, even when the barrier is nonmagnetic. If the barrier
is ferromagnetic, the coupling of its magnetic moment to this
intrinsic spin therefore generates the lowest-order Josephson
effect. Remarkably, such an intrinsic interface spin is indeed
known to exist in nonmagnetic TS-SS junctions.?®?%423! For
an s-wave SS, this spin only appears for exactly the same
p-wave TS orbital configurations which would allow a lowest-
order Josephson current in the corresponding TFS junction.
The unusual form of the Josephson current in the TFES offers
strong tests for a triplet state. For instance, the observation of
the linear dependence of the current on M would be clear
evidence of triplet pairing. On the other hand, a domain
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structure in the FM could significantly reduce the Josephson
current, as the currents across domains with opposite mag-
netization would have opposite sign. This can be turned to
our advantage, however, as a magnetic flux line trapped at
the boundary between two such domains would be quantized
in half-integer multiples of ®. This is a key signature of
the lowest-order Josephson coupling in the TFS junction, and
could be directly imaged with SQUID microscopy, or deduced
from the Fraunhofer pattern. More speculatively, the coupling
Eq. (74) could spontaneously induce a magnetization in a
barrier sufficiently close to a magnetic instability, if the free
energy gain due to the Josephson coupling can offset the cost
of magnetic energy.’>>?

In our study we have neglected the likely variation of
the superconducting order parameter close to the junction
interface. Since our results depend only on the bulk properties
of the superconductors, however, we do not expect qualitative
modification of our results. A more serious limitation of our
calculation is that we have not accounted for the torque exerted
by the spin current on the barrier’s magnetic moment. Regard-
ing the d vector as fixed, we anticipate that the polarization
of the spin current ocd x M would cause a precession of the
magnetization about the d vector, with eventual decay into the
stable configuration.!! If the d vector is only weakly pinned, on
the other hand, there may be a significant reconstruction of the
TS pairing state close to the interface. Although this is a very
interesting problem, it is beyond the scope of the current paper.
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