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Temperature-dependent electron-phonon coupling in La2−xSrxCuO4 probed
by femtosecond x-ray diffraction
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The strength of the electron-phonon coupling parameter and its evolution throughout a solid’s phase diagram
often determines phenomena such as superconductivity, charge- and spin-density waves. Its experimental
determination relies on the ability to distinguish thermally activated phonons from those emitted by conduction
band electrons, which can be achieved in an elegant way by ultrafast techniques. Separating the electronic from
the out-of-equilibrium lattice subsystems, we probed their reequilibration by monitoring the transient lattice
temperature through femtosecond x-ray diffraction in La2−xSrxCuO4 single crystals with x = 0.1 and 0.21. The
temperature dependence of the electron-phonon coupling is obtained experimentally and shows similar trends to
what is expected from the ab initio calculated shape of the electronic density of states near the Fermi energy.
This study evidences the important role of band effects in the electron-lattice interaction in solids, in particular,
in superconductors.
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I. INTRODUCTION

Electron-phonon (e-ph) coupling is a key parameter for
describing the properties of solids. It is particularly important
for superconductors, since it mediates the electron pairing
in its conventional form, described by the Bardeen-Cooper-
Schrieffer theory.1 On the other hand, even though many
attempts have been made to account for the high critical
temperatures observed in cuprates, e-ph coupling seems unable
to provide the unconventional superconductivity mechanism
even in the strong coupling regime.2 Nevertheless, the peculiar
density of states (DOS) and Fermi surface of the cuprates
reveal interesting properties related to e-ph coupling,3,4 which
undoubtedly play a role in the evolution of their electronic
properties throughout the phase diagram.

In pump-probe experiments, intense fs light pulses induce
a rapid jump in the electronic temperature of the material (the
out-of-equilibrium electron distribution typically thermalizing
within a few tens of fs), followed by a slower (∼ps)
reequilibration with the lattice temperature through energy
transfer via e-ph coupling.5,6

The transient electronic temperature can be directly mea-
sured by photoelectron spectroscopy7 and optics,8 while the
transient lattice temperature can be obtained via diffraction.4,9

The relaxation of these observables can be described by
a multi-temperature model which in turns yields the e-ph
coupling parameter,4,6,8,10–12 and in the case of k-sensitive
probes such as diffraction4 and Angle-Resolved PhotoElectron
Spectroscopy (ARPES),12,13 its symmetry as well.

In this paper, we present a combined theoretical and
experimental study of the e-ph coupling in La2−xSrxCuO4

(LSCO). Calculating the energy distribution of the DOS
for different electronic temperatures T , we demonstrate that
the e-ph coupling can depend on T , even when the latter
reaches very high values. This effect is verified by means
of time-resolved x-ray diffraction for different Sr dopings,
showing the evolution of the e-ph interactions in the phase
diagram of a cuprate superconductor.

Time-resolved x-ray diffraction experiments were per-
formed using the FEMTO slicing source located at the
MicroXAS beamline of the Swiss Light Source (Paul Scherrer
Institute). After excitation with 1.55 eV photons, we probed the
transient lattice temperature by measuring (in an asymmetric
scattering geometry14) the (400) Bragg peak, corresponding
to the antinodal direction, of two La2−xSrxCuO4 single
crystals (x = 0.1 and 0.21). In cuprate systems, the latter
corresponds to the strongest e-ph coupling coming from the
interaction between antinodal carriers and specific in-plane
lattice modes.3,4 The x-ray source delivers 200 photons per
pulse at a 2 kHz repetition rate; its energy was varied between
7.5 and 8 keV, and its incidence angle was chosen to be
0.87◦ for both samples in order for the pump and the probe
penetration depths to coincide. The overall time resolution
was 200 fs.15 The pump beam had a duration of 100 fs and
fluences ranging from 5 to 27.2 mJ/cm2; all measurements
were performed at room temperature. A schematic of the
experimental setup can be found in Refs. 15 and 16.
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FIG. 1. Rocking curves obtained for the La2−xSrxCuO4 samples
with the core beam of the Micro-XAS-FEMTO beamline.

II. TIME-RESOLVED X-RAY DIFFRACTION DATA

The first step before measuring a pump-probe signal on a
diffraction peak is to find its position in asymmetric geometry,
since the x-ray incidence angle has to be kept grazing. The
rocking curves corresponding to the (400) peak are shown in
Fig. 1. The sample orientations were (230) for x = 0.1 and
(211) for x = 0.21.

We checked carefully the behavior of these rocking curves
as a function of the time delay. Indeed, a transient temperature
analysis can be performed only if the structural properties
remain the same as the unperturbed compound, meaning that
the lattice is not thermally distorted. After a thermal dilatation,
the system is too different from the initial state to obtain
meaningful information about the compound at equilibrium.

This dilatation is evidenced by the Bragg peak shifting
towards larger diffraction angles. The rocking curves of excited
and nonexcited systems are presented in Figs. 2 (x = 0.1) and
3 (x = 0.21) for a pump fluence of 20.5 mJ/cm2, from which
we can see a peak shift occurring between 5 and 10 ps after
excitation. The system can therefore be considered as being
slightly perturbed only during the first 5 ps.

This thermal dilatation is due to the heat transport by
acoustic waves after photoexcitation towards the bulk of the
material. Indeed, the time needed for the longitudinal acoustic
phonons of speed vs ≈ 4000 cm/s (Ref. 17) to propagate
across the penetration depth distance of l = 60 nm (Ref. 18)
is t = l/vs ≈ 15 ps, close to the value experimentally found.

There is a striking difference in the peak line shape for the
two studied dopings, particularly visible for delays in the 20–
50 ps range. In the overdoped sample, the Bragg peak seems to
be formed by two different peaks, as expected in a compound
containing phase separation between two domains having
slightly different lattice parameters. This behavior is possibly
reminiscent of what is observed in La2CuO4+δ thin films by
ultrafast electron diffraction,9 but it could also be due to a slight
misalignment of the detector on the diffraction peak. This
possibility does not spoil the data analysis and interpretation.

In order to follow the time dependence of the Bragg peak
intensity over a time range of several hundred picoseconds,
long delay scans have been performed for three different
diffraction angles. The latter correspond to the center of the
unperturbed peak, and one larger and one smaller diffraction
angle. These long delay scans are shown in Figs. 4 and 5.
From these results, one can conclude that in the first 5 ps after
excitation, no lattice dilatation occurs; indeed, the diffraction
intensity does not depend on the angle, which indicates that
the peak shift towards larger angles is negligible.

FIG. 2. (Color online) Rocking curve of the (400) peak in
La2−xSrxCuO4, x = 0.1, for different time delays after excitation.
Light blue triangles are the unpumped curve, dark blue circles the
pumped one, and the difference between them is shown as red crosses.

The peak shift starts around 5 ps, where the time-dependent
diffraction intensity behavior changes between lower and
larger angles. We deduced from this observation that per-
forming a transient temperature analysis was correct if one
considers only the first 5 ps of the measurement.

III. TRANSIENT LATTICE TEMPERATURE

The temporal evolution of the normalized diffraction
intensities of the (400) Bragg diffraction peak, measured as the
ratio between the pumped and unpumped signals, is presented
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FIG. 3. (Color online) Rocking curve of the (400) peak in
La2−xSrxCuO4, x = 0.21, for different time delays after excita-
tion. Light blue triangles are the unpumped curve, dark blue the
pumped one, and the difference between them is shown as red
crosses.

in Fig. 6 for the two different dopings studied. The Bragg peak
intensity was checked not to change significantly before and
after the pump pulse impinged on the sample, indicating that
no significant average heating took place at this repetition rate.
Also, the flatness of the baseline before time zero indicates that
the system fully recovers its equilibrium condition between
pulses (see Fig. 6).

We assume that the lattice can be described as an ensemble
of different sets of phonons, each of them separately in thermal
equilibrium, in which the effective average temperature of

FIG. 4. (Color online) Delay scans at different angles of the
rocking curve of the (400) peak in La2−xSrxCuO4, x = 0.1.

the lattice increases due to the energy exchange with heated
electrons. The diffraction intensity is then directly related to the
effective average lattice temperature through the Debye model
for a nondistorted lattice. A decrease of the initial (equilib-
rium) Bragg diffraction intensity indicates the population of
phonons which spoil the diffraction condition by disordering
the interatomic distances. The average atomic displacements
induced by such phonons can be evaluated by comparing the
perturbed and unperturbed diffraction intensities denoted by
I (t) and I0, respectively. The latter is the diffraction intensity
at the initial temperature, in our case at T0 = 295 K.

We consider the following expression for diffracted inten-
sity in the presence of atomic disorder:

I (q) = N2|〈Fn(q)|〉2 = N2f 2 exp(−2W ), (1)

where Fn is the structure factor, and N the number of unit cells;
q is the reciprocal lattice vector corresponding to the measured
Bragg peak, so for (400) in La2−xSrxCuO4, q = 6.65 Å

−1
.

The term exp(−2W ) is the Debye-Waller factor defined in the
presence of an atomic displacement un as

W = 1
2 〈(q · un)2〉. (2)

The atomic motions considered in this formula are due to the
finite lattice temperature. Therefore, considering an isotropic

FIG. 5. (Color online) Delay scans at different angles of the
rocking curve of the (400) peak in La2−xSrxCuO4, x = 0.21.
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FIG. 6. (Color online) Diffraction intensity as a function of time
delay for the (400) peak in La2−xSrxCuO4: (a) x = 0.1 and (b) x =
0.21. The diffraction angles are set at −26.35◦ (x = 0.1) and 56.21◦

(x = 0.21), i.e., in the center of the Bragg peak.

average for these displacements, one can relate 〈u2〉 to the
lattice temperature by the Debye formula

〈u2〉 = 9h̄2TL

MkB�2
D

, (3)

with TL the lattice temperature, M the mass of one unit cell,
and �D the Debye temperature.

In the case of a time-dependent experiment, one needs
to consider an increase in the lattice temperature, inducing
(as a function of time) an increase in thermal agitation
which reduces the diffraction intensity. Then one compares
the perturbed and the unperturbed values for diffracted
intensity. The expression for calculating the transient lattice
temperature is

TL(t) = T0 − MkB�2
D

3h̄2q2
ln

(
I (t)

I0

)
. (4)

To obtain the Debye temperature accurately, we measured
the high-temperature specific heat of LSCO as a function of
temperature, from which we obtained a value of �D = 377 K
(see the following section). The transient effective average
lattice temperatures extracted from this analysis are shown in
Fig. 7.

FIG. 7. (Color online) Transient lattice temperature obtained
from the (400) diffraction peak intensity of LSCO: (a) x = 0.1
and (b) x = 0.21. Markers represent experimental data and solid
lines the corresponding three-temperature model (3TM) simulations,
from which we plot the effective average lattice temperature as
TL = αTh + (1 − α)Tc.

IV. HIGH-TEMPERATURE SPECIFIC HEAT
MEASUREMENTS

In order to calculate the lattice temperatures and to perform
three-temperature model simulations, we needed the lattice
part of the specific heat up to the Debye temperature �D . We
performed therefore measurements of the heat capacity for our
samples at the Paul Scherrer Institute (Villigen, Switzerland).
We measured small samples of the same batch as those used
for time-dependent x-ray diffraction, having masses of 17.3
mg for x = 0.1 and 19.1 mg for x = 0.21.

The Cp(T ) measurements started with measuring the
contribution of the small amount of H grease (used to provide
thermal contact with the samples) in the range 50–380 K.
After rescaling the results in order to take into account the
H-grease contribution, we obtained the specific heat shown
in Fig. 8, together with a polynomial fit used to extract the
lattice specific heat at all temperatures above T0. The Debye
temperature obtained from these data is �D = 377 K, and we
verified that at these high temperatures, with respect to Tc,
both dopings presented an identical behavior (the noise in the
x = 0.1 sample data is an experimental artifact). This value
is in reasonable agreement with previously reported values,
�D ≈ 420–450 K,19 leading to a maximum error of 19%.
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FIG. 8. (Color online) Specific heat measurements in
La2−xSrxCuO4, x = 0.1 and 0.21.

Such an uncertainty has a very weak influence on our results,
as well as on our qualitative conclusions.

In the following, we use the specific heat values in volume
units rather than molar ones, in order to perform simulations
with a depth-dependent model such as the three-temperature
model described in the next section.

V. THREE-TEMPERATURE MODEL SIMULATIONS

From the transient effective average lattice temperatures
one can access the e-ph coupling constant through Three-
Temperature Model (3TM) simulations. Indeed, while the
two-temperature model was first introduced6,11 in order to
describe the energy transfer between the electron and lattice
subsystems, its validity relies on the electronic temperature
being larger than the Debye temperature and on the isotropy
of the e-ph coupling function. For anisotropic materials such as
cuprates,12 iron pnictides,10 or charge-density wave systems,8

or in the case when only one diffraction peak is measured, a
selective coupling between electrons and a subset of the total
phonon modes may be taken into account using the 3TM,
governed by the following equations:

2Ce

∂Te

∂t
= 2(1 − R)

ls
IL(t) − g(Te − Th),

(5)

αCL

∂Th

∂t
= g(Te − Th) − gc(Th − Tc),

(1 − α)CL

∂Tc

∂t
= gc(Th − Tc), (6)

where Te, Th, and Tc are the temperatures of the electrons, the
efficiently coupled (hot) phonons, and the remaining modes,
respectively. Ce = γ Te is the electronic specific heat [γ = 158
J m−3 K−2 (Ref. 20)], and CL is that of the lattice (taken
from our own measurements). The calculated γ from the bare
(low-temperature) DOS is about 70 J m−3 K−2, which leaves
room for a large e-ph coupling constant from phonons and/or
spin fluctuations.21 α is the fraction of efficiently coupled
modes, R the static reflectivity (R = 0.22 for 1.55 eV in
p polarization arriving at 10◦ from the surface) and ls the
penetration depth (ls = 206 nm at 1.55 eV), both taken at the

pump energy, and IL(t) is the pump intensity. The constant g

governs the energy transfer rate from electrons to hot phonons,
and is related to the second moment of the Eliashberg function
λ〈ω2〉 through g = 6h̄γ

πkB
λ〈ω2〉,6 λ being the dimensionless

e-ph coupling constant, whose strength averages over the
interactions between many different electronic and phonon
states. gc is the anharmonic coupling parameter which controls
the energy relaxation from coupled phonons to the rest of the
lattice. Noteworthy, those parameters are rather independent
from each other, which enhance our confidence in the results
of these simulations.

We performed 3TM simulations assuming temperature-
independent parameters; indeed, even though γ , �D , and λ

may depend on temperature,22,23 calculating their anharmonic-
ities would be speculative in the case of room-temperature
LSCO. Therefore we used the experimental values determined
at equilibrium for γ and �D and assumed a constant λ

parameter over time (and therefore over temperature) for each
excitation fluence. We used an iterative procedure, calculating
at each time step the depth-dependent temperature profiles.
At each depth and time step, we iterate the electronic and
lattice part of the specific heat. This procedure is detailed
in the Supporting Information of Ref. 8. The depth used to
calculate the temperatures is the x-ray penetration depth (since
we calculate the measured temperatures), l = 60 nm.18

Coupling between electrons and electronic excitations
(such as spin fluctuations) are excluded from our 3TM
simulations, as well as coupling between phonons and
such excitations which might be important for underdoped
LSCO.21,24,25 We point out that these kinds of relaxation
processes may exist, but are not reachable by diffraction
techniques which allow access only to the lattice temperature,
and not the electronic one. The importance of spin fluctuations
in the bosonic glue function has been determined by static
optical spectroscopy,26 which found them to be relevant in
the high-energy excitation region (up to 300 meV), whereas
phonons are limited to a lower-energy range (around 50–60
meV). As far as the time scale is concerned, it would suggest
that coupling between electrons and spin fluctuations is faster
than that between electrons and phonons, as found by time-
resolved spectroscopy.27

Neglecting the possibility that spin fluctuations could be
preferentially excited by hot electrons rather than phonons
implies that we overestimated the number and temperature of
electrons in our model, since the latter take only into account
electrons thermalizing with phonons. Therefore, this omission
would result in the absolute strength of electron-phonon
coupling being somewhat underestimated, without affecting
the trends or our conclusions.

On the other hand, there may be couplings between phonons
and spin fluctuations, especially in the underdoped part of
the phase diagram (see, for example, Refs. 21,24, and 25).
This would imply that our 3TM simulations overestimated
the anharmonic coupling parameter of our model (gc), and it
would not affect our main conclusions either.

The simulations corresponding to the transient effective
average lattice temperature are shown in Fig. 7. The model
is found to reproduce the experimentally derived lattice
temperature very well for both doping levels and every
pumping fluence.
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TABLE I. Maximum electronic temperature, fraction of coupled
modes, and electron-phonon coupling constants extracted from 3TM
simulations.

F Te g (×1017) λ〈ω2〉
x (mJ/cm2) (K) α (J/m3/s/K) (meV2) λ

5 1430 0.05 0.7 13.1 0.043
10.3 2030 0.085 1.0 18.8 0.063

0.1 15.9 2513 0.14 1.3 24.4 0.082
20.5 2849 0.15 1.6 30.0 0.101
27.2 3278 0.08 3.0 56.3 0.187
15.9 2513 0.1 1.6 30.0 0.094

0.21 20.5 2849 0.065 2.7 50.7 0.158
27.2 3278 0.065 3.35 62.9 0.196

The e-ph coupling constant λ was obtained via these
simulations, given average phonon energies 〈ω〉 of 17.32 meV
for x = 0.1 and 17.89 meV for x = 0.21. This average takes
into account only the modes involving atomic motion along
the a axis,28 which are mainly influencing the intensity of the
(400) diffraction peak, and having finite 
-point e-ph coupling
constants as calculated at T = 0 K in the QUANTUM ESPRESSO

code.29 It is noteworthy that these calculations provide a value
of λ = 0.031 (x = 0.1) and 0.029 (x = 0.21), in reasonable
agreement with the 3TM results at the lowest fluences (see
below).

The results of the 3TM simulations are given in Table I.
We obtained the e-ph coupling constant λ and the fraction
of efficiently coupled modes α. The values obtained for λ are
smaller than those found by means of k-integrated probes such
as optics,8,10 and this may be because our experiments only
probe a fraction of the whole phonon bath.

For each excitation fluence, the system reaches a given
electronic temperature in the skin depth at initial time. This
electronic temperature may be calculated through the formula

Te =
〈√

T 2
0 + 2(1 − R)F

lsγ
e−z/ls

〉
, (7)

where the average is taken over the penetration depth of the
pump pulses (ls), and F is the pumping fluence. The values of
Te are also reported in Table I.

VI. TEMPERATURE DEPENDENCE OF THE DENSITY OF
STATES

The temperature dependence of the electron-phonon cou-
pling constant in La2CuO4 is calculated from the elec-
tronic structure determined using the Linear Muffin-Tin
Orbital (LMTO) method in the Local Density Approximation
(LDA).30 The band structure agrees well with other band
structures calculated with other methods.31 A single band
crosses EF , becomes very flat near the X point in the Brillouin
zone, and makes a van Hove singularity peak in the DOS
near the position of EF in undoped La2CuO4.24,25 LDA and
other forms of density-functional calculations do not get the
antiferromagnetic gap for zero doping, but the bands describe
well the electronic structure for doped cuprates, as has been
verified from ARPES.32 Doping (x, in holes per Cu) is
here included in a rigid-band manner to account for La/Sr

substitutions. Spin fluctuations are neglected, and although
they are certainly important for superconductivity and the
low-T properties of cuprates, they are quenched at the high
temperatures of the experiments presented here.30

A simple form33 for the e-ph coupling constant is

λ = N (EF )B2/Mω2. (8)

Here, N (EF ) is the DOS at EF , M is an atomic mass, and ω a
weighted average of the phonon frequency. The denominator
is a force constant, K = d2E/du2, where E is the total
energy and u an atomic displacement. The matrix element
B = 〈�∗(EF ,r) dV (r)

du
�(EF ,r)〉 can be evaluated from the band

structure.30,34,35

The temperature dependence of λ is mainly due to the
variations of the DOS at the Fermi energy (EF ) produced by the
T dependence of the Fermi-Dirac occupation, f (ε,EF ,T ) =
1/{exp[(ε − μ)/(kBT )] + 1}, where μ = EF (T ). Indeed, one
could imagine that the electronic temperature could influence
the DOS results if the partial DOS functions (Cu-d vs O-p
ratios, for example) vary very much within kBT around μ.
However, the partial DOS ratios of this system are fairly stable
within 0.7 eV from EF . For energies lower than 0.7 eV below
EF (at the DOS edge) there are some changes, but this is too
far from the Fermi level to be probed by temperatures of the
order 3500 K. Indeed, two sets of self-consistent calculations,
one at 150 K and one at 3500 K, produces almost identical
results for the DOS (see Fig. 9).

Other contributions, such as disorder from thermal atomic
vibrations36,37 and from lattice imperfections which also
broaden the DOS, are neglected in the calculation of the
T -dependent DOS NT :38

NT (μ) = −
∫ ∞

−∞
Neff(ε)

∂f (ε,μ,T )

∂ε
dε, (9)

where the effective DOS, Neff, can be either the bare DOS or
the one calculated for a lattice with thermal disorder, or for the
structure with defects. The chemical potential μ is determined
from the condition of having a constant number of electrons n

FIG. 9. (Color online) Density of states for La2CuO4 self-
consistently calculated at two different electronic temperatures.
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FIG. 10. (Color online) The T dependence of the effective DOS
at the chemical potential, NT , in LSCO owing to the effect of
Fermi-Dirac occupation for dopings x indicated in the frame. Thermal
disorder or disorder from lattice defects are neglected. Inset: The bare
DOS of La2CuO4 near EF . The vertical dashed lines indicate the
rigid-band positions of EF for hole dopings 0.1 (red) and 0.21 (light
blue).

at each T :

n =
∫ ∞

−∞
Neff(ε)f (ε,μ,T )dε. (10)

The T variation of NT , and hence the scaling of λ(T ), is
shown in Fig. 10 as a function of the doping. At first there
is a decreasing trend of NT (and hence λ) for increasing T

since EF is close to the small van Hove peak in the DOS (the
inset of Fig. 10). However, the trend is reversed when T is
larger than ∼2000 K and above, because of the beginning of
high DOS feature at about 0.7 eV below EF . This edge of
the high DOS is due to the hybridized Cu-d O-p bands below
EF .25 This increase of NT will start at a lower temperature and
will be stronger if structural disorders are taken into account,

since the edge of the high DOS feature below EF would be
smeared. Note, however, that the short pulse cannot heat the
lattice during the pumping time of the experiment. When the
doping level increases, the position of EF moves to lower
energy, i.e., the band edge will be closer to EF . This explains
why the T dependence of λ is stronger at large hole doping.

VII. PARTIAL ELECTRON-PHONON COUPLING
CALCULATIONS

The partial electron-phonon couplings for each of the 21
modes of La2−xSrxCuO4 have been calculated using pseu-
dopotentials, as implemented within the QUANTUM ESPRESSO

code.29 The results of these calculations are presented in
Table II, and the histogram of partial electron-phonon coupling
constants in Fig. 11. Note that the three acoustic modes are not
represented in Table II; their λ constants are null.

The total λ constant, defined as the sum of all partial
couplings, is λ = 1.416 for x = 0.1 and 1.308 for x = 0.21.
As expected from the density-of-states calculations at zero
temperature, it is larger in the underdoped sample than in
the overdoped one (see Fig. 10). Interestingly, the two fully
symmetric A1g modes are contributing for more than 97% of
the total λ; they are schematically shown in Fig. 12. Since they
both involve only atomic displacements along the c axis, they
do not influence the diffraction intensity of in-plane Bragg
peaks which were detected in our time-resolved diffraction
measurements. This explains why the λ constants determined
through 3TM simulations of our data are far smaller than
usually predicted and measured by k-integrated techniques
in cuprates.

Two doubly degenerate Eg modes also present a finite
partial λ constant. The atomic motions involved in these modes
are a translation of La/Sr and apical O atoms along the a or b

axis (see Fig. 12), therefore affecting the (400) peak intensity
upon excitation. As a consequence, we used the average value
of their energy in order to extract λ from λ〈ω2〉, the latter being

TABLE II. Symmetry, energy, and partial electron-phonon coupling constant for each of the 21 modes of La2−xSrxCuO4, at the 
 point.

Mode No. Symmetry E (meV) (x = 0.1) λ (x = 0.1) E (meV) (x = 0.21) λ (x = 0.21)

4 Eu 4.60 0 8.98 0
5 Eu 4.60 0 8.98 0
6 Eg 7.07 0.0131 8.95 0.0106
7 Eg 7.07 0.0132 8.95 0.0102
8 A2u 16.27 0 17.62 0
9 Eu 20.41 0 21.53 0
10 Eu 20.41 0 21.53 0
11 B2u 21.36 0 23.91 0
12 A2u 23.08 0 26.00 0
13 A1g 26.86 0.3263 27.26 0.2398
14 Eg 26.93 0.0021 26.83 0.0042
15 Eg 26.93 0.0021 26.83 0.0040
16 Eu 40.89 0 42.21 0
17 Eu 40.89 0 42.21 0
18 A1g 49.94 1.0587 50.61 1.0391
19 A2u 57.37 0 57.76 0
20 Eu 92.36 0 94.84 0
21 Eu 92.36 0 94.84 0
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FIG. 11. (Color online) Electron-phonon coupling constant his-
tograms for the 21 modes at the 
 point of La2−xSrxCuO4, x = 0.1
and x = 0.21.

FIG. 12. (Color online) Atomic motions corresponding to the
most coupled modes in La2−xSrxCuO4, from Ref. 28. Displacements
smaller than 25% of the maximum are not shown.

obtained from the transient lattice temperature along (400), so
〈ω〉 = 17.32 meV for x = 0.1 and 17.89 meV for x = 0.21.
The sum of electron-phonon coupling constants for these four
modes gives λ = 0.031 (x = 0.1) and 0.029 (x = 0.21), in
good agreement with the 3TM results at the lowest fluences,
where the transient electronic temperatures are the smallest.

The “breathing” mode, with inward-outward movements of
the O cage surrounding a Cu, is not included within a single
unit cell. Approximate results for electron-phonon coupling
matrix elements in supercells extended along x using the
LMTO method, and using experimental information for the
phonon energies, give λ = 1.1 for planar O (displacement
along x) and 0.13 for apical O (along z) when the phonon
energies are 48 and 58 meV, respectively. For La along z

the values are 0.02 and 17 meV, and the averaged λ for the
strongest modes is 0.36.21 These estimates are of the same
order as shown in Table I, but they suggest also that the in-plane
movements of the O’s can have larger λ.

VIII. DISCUSSION AND CONCLUSION

In Fig. 13, the experimentally obtained e-ph coupling
constants as a function of the different electronic temperatures,
photoinduced in our experiments, are reported together with
the values derived from the electronic structure calculations.
As is clear, there is a similar trend in the temperature depen-
dence between the experimental and calculated behavior of the
e-ph coupling constant, even though we find experimentally
a much stronger T dependence than we do theoretically. This
may be an effect of neglecting thermal disorder and spin
fluctuations (the latter may reappear at large T in case they
present a significant coupling with lattice distortions) in the
calculations. Without optimized and well-tested methods for
including contributions to λ from spin fluctuations (which can
have its own T dependence) in our model, we point out that
one could expect a stronger T dependence upon adding these
excitations. Moreover, we cannot exclude the possibility that
the measured peak probes a particular phonon sensitive to a
part of the λ function (the calculated DOS being a k average).

The behavior of the LSCO DOS as a function of electronic
temperature induces a temperature-dependent λ constant.
Such a nonmonotonic dependence had been predicted in

FIG. 13. (Color online) Electron-phonon coupling constant ob-
tained from 3TM simulations of time-resolved x-ray diffraction of
the (400) peak in LSCO (solid symbols, left), and density of states at
the Fermi level obtained by LDA calculations (open symbols, right).
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metals,22 even though this would occur at much higher
temperature than for LSCO. Some experimental suggestion
for a T -dependent λ constant was proposed in metals,7 as
well as in cuprates,4,39 without a clear determination of the
DOS effect. In this respect, cuprates are shown to have an
anomalous behavior, originated by their peculiar electronic
structure. These results suggest that band effects play an
important role in the electron-lattice interaction in solids,
in particular, for cuprate superconductors. Unveiling the
evolution of these interactions throughout a larger part of the
phase diagram may provide a useful feedback for the theo-

retical understanding of the unconventional superconductivity
mechanism.
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