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Impact of strong disorder on the static magnetic properties of the spin-chain
compound BaCu2SiGeO7
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The disordered quasi-one-dimensional magnet BaCu2SiGeO7 is considered as one of the best physical
realizations of the random Heisenberg chain model, which features an irregular distribution of the exchange
parameters and whose ground state is predicted to be the scarcely investigated random-singlet state (RSS).
Based on extensive 29Si NMR and magnetization studies of BaCu2SiGeO7, combined with numerical quantum
Monte Carlo simulations, we obtain remarkable quantitative agreement with theoretical predictions of the
random Heisenberg chain model and strong indications for the formation of a random-singlet state at low
temperatures in this compound. As a local probe, NMR is a well-adapted technique for studying the magnetism
of disordered systems. In this case, it also reveals an additional local transverse staggered field, which affects
the low-temperature properties of the RSS. The proposed model Hamiltonian satisfactorily accounts for the
temperature dependence of the NMR line shapes.
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I. INTRODUCTION

Spin- 1
2 Heisenberg chains adopt a nonmagnetic ground

state, which qualitatively can be seen as a linear superposition
of states representing all the possible ways of forming singlets
in the system.1 With quantum fluctuations suppressing any
long-range order, the translational symmetry is preserved. At
large length scales (low energies), any amount of disorder in
the exchange parameters is predicted to dominate over the
quantum or thermal fluctuations2–4 and the resulting system
is known as “random Heisenberg chain” (RHC). In practice,
the disorder leads to an inhomogeneous ground state by
associating to every random configuration of exchange paths
a unique way of forming singlets, regardless of the distance
between the involved spins and of their interactions. This new
type of ground state, specific to random Heisenberg chains, is
called random-singlet state (RSS).3

It is widely accepted4 that the interest in RHCs originally
arose from a novel approach to deal with random exchanges in
the isotropic spin- 1

2 Heisenberg model, introduced in 1979 by
Dasgupta and Ma.2 Their new physical insight into the effects
of disorder was later developed into a formal theory by Fisher3

and, subsequently, applied to a large variety of problems
involving magnets with quenched disorder.4–7 However, it is
only the recent combined availability of materials representing
physical realizations of disordered quasi-one-dimensional
(quasi-1D) quantum magnets8–10 and of novel stochastic
numerical methods11 that made possible the first quantitative
studies concerning the impact of disorder on materials whose
magnetic properties are well described by an antiferromagnetic
Heisenberg-chain Hamiltonian [see Eq. (1)].

The aim of this work is to identify a model material
featuring the properties of a RHC and, through experimental
and numerical methods, to demonstrate that the chosen RHC
Hamiltonian describes its physical behavior. Here, we present
a set of field- and temperature-dependent magnetization and
29Si nuclear magnetic resonance (NMR) data of the insulating

material BaCu2SiGeO7.12 Its relevant structural unit is shown
in Fig. 1 and its physical properties can be discussed in terms
of the one-dimensional Hamiltonian

H =
∑

i

[
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y

i S
y

i+1
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z
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]

− gμB

∑
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HSz
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∑

i

(−1)iSx
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Here, Jxy(i) = Jz(i) = Ji > 0 represent the random exchange
couplings along the spin-chain sites i, μB is the Bohr
magneton, H the uniform applied magnetic field, H⊥ = cH

a locally induced transverse staggered field,13 and the spin
operators refer to a spin S = 1

2 .
In order to achieve a description of the large length

scale/low-energy physics contained in Eq. (1) with H = 0,
Dasgupta and Ma developed a real-space renormalization
procedure. They started from the local bonds rather than from
the large spatial blocks, as is usually done for homogeneous
systems.14 Starting from the distribution of unrenormalized
exchange couplings P (Ji,J ), where J is the energy cutoff,
an effective low-energy theory is constructed by tracking,
via flow equations, the behavior of P (Ji,J ) as the cutoff
J ∼ kBT is progressively reduced. In the RSS theory, the
flow of the distribution of unrenormalized bond energies P (Ji)
depends on the considered energy scale and temperature.2,3

As a result, the static magnetic properties are dominated
by a temperature-dependent population of effectively param-
agnetic moments n(T ). Their characteristic energy (ω) and
temperature-dependent average spatial separation ξ (T ,ω =
0) ∼ n−1(T ) = ln2(J0/kBT ) diverges as T → 0, leading to
a quasi-long-range ordered ground state.3 In the expression
for n−1(T ), J0 is the largest exchange coupling in the chain
prior to the renormalization.15 Due to weak residual interchain
interactions, a magnetic order at a Néel temperature TN > 0 K
is established also in the random Heisenberg chains, albeit
with a lower ordering temperature in comparison with the
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FIG. 1. (Color online) Sketch of the relevant structural unit
in BaCu2SiGeO7 highlighting the different J1 and J2 exchange
couplings. Spin chains run along the crystallographic c axis.

disorder-free case.16,17 In this work, we focus our attention on
the local and bulk static magnetic properties of BaCu2SiGeO7

for T > TN and H �= 0.

II. BaCu2SiGeO7: SUMMARY OF PREVIOUS RESEARCH

The experimental work on BaCu2SiGeO7 began with
studies on tunable superexchange interactions in spin-chain
systems by Yamada et al.12 Across the series from BaCu2Si2O7

to BaCu2Ge2O7, the BaCu2(Si1−xGex)2O7 compounds (0 <

x < 1) crystallize with a Pnma space group. For x = 0.5, cor-
responding to maximum disorder in the exchange couplings,
the values of the lattice parameters are a = 6.917(7) Å, b =
13.28 Å, and c = 6.944(7) Å,18 in-between the parameters of
the two end members of the series. The spin chains run along
the crystallographic c axis, as shown in Fig. 1.

Early magnetization measurements of polycrystalline sam-
ples revealed the often-observed broad maximum of χ (T ),
also known as the Bonner-Fisher peak.19 This maximum
shifts linearly with x towards higher temperatures as the Ge
concentration is enhanced. From this feature it was initially
deduced that the high-temperature properties of BaCu2SiGeO7

effectively reflect those of a standard spin- 1
2 Heisenberg chain

with Jeff = (JSi + JGe)/2 ≈ 37 meV, where JSi = 24.1 meV
and JGe = 50 meV represent the intrachain exchange interac-
tions for no and for complete Ge substitution, respectively. The
enhancement of the AFM exchange, resulting from a higher
Ge content, was explained in terms of a change of the Cu-O-Cu
bonding angle, from φ = 124◦ in BaCu2Si2O7 to 135◦ in the
Ge parent compound.20

Earlier bulk measurements already revealed two distinct
features:12 (i) a low-temperature divergence of the spin sus-
ceptibility in BaCu2SiGeO7, interpreted as a simple Curie-type
behavior due to uncompensated magnetic moments,21 and
(ii) a low-temperature magnetic order, expected even in the
case of random Heisenberg chains (RHCs),17 with an onset at
TN = 0.7 K in BaCu2SiGeO7.18

In zero magnetic field, BaCu2Si2O7 is known to order
antiferromagnetically at TN = 9.2 K.22 The more than tenfold
reduction of TN in BaCu2SiGeO7 may be related to the fact that
the introduction of Ge modifies not only the intrachain, but also
the interchain coupling which, along the a axis, changes from
ferromagnetic (FM) to antiferromagnetic (AFM) type.12 The
latter implies that for BaCu2SiGeO7 the interchain coupling
alternates in sign and, therefore, it averages out to a mean-field
value.23

The interest in BaCu2SiGeO7 grew significantly as soon
as results of magnetic-susceptibility measurements on single
crystals appeared in the literature.21 They suggested a logarith-
mic dependence of the low-temperature spin susceptibility,21

consistent with predictions of the RHC model.2 Subsequent
inelastic neutron-scattering (INS) studies focused on the
measurement of the energy dependence of the correlation
length ξ (T = 0,ω), which at zero temperature is inversely pro-
portional to the free-spin concentration ξ (h̄ω) ∼ n−1(h̄ω) =
ln2(J0/h̄ω), with h̄ω the energy of the probing neutrons. In INS,
ξ is extracted from the inverse width of the energy-integrated
scattering intensity S(q) which, in case of a disordered phase,
is typically of Lorentzian shape.24 Following some earlier
misinterpretation of the data due to problems with background
subtraction,21,25 the INS results were found to be quantitatively
consistent with a Luttinger-liquid (LL) behavior reflecting
a disorder-free spin chain with a single effective coupling
Jeff ≈ 37 meV.18 It was concluded that the expected RHC-
related physics must manifest itself at energies much lower
than those accessible by neutron experiments. In a previous
NMR study,15 we already pointed out how the spin dynamics
of BaCu2SiGeO7, probed at the characteristic Larmor energy
h̄ωL ∼ 1 μeV (with ωL/2π the NMR resonance frequency),
turns out to be notably different with respect to that of the
regular Heisenberg chain BaCu2Si2O7. On the other hand,
considering existing data on BaCu2Si2O7 and BaCu2Ge2O7,
a low-temperature divergence of the magnetic susceptibility
also in BaCu2SiGeO7 is not really surprising.13 In addition,
since INS failed to detect any sort of disorder-induced spin
dynamics in this compound, the existence of a random-singlet
state (RSS, the ground state of the isotropic RHC Hamiltonian)
was considered questionable. In this work, we show how
the effect of disorder on the static magnetic properties can
be quantitatively modeled and compared with experiments,
thereby supporting the RHC scenario.

III. MAGNETIC SUSCEPTIBILITY OF BaCu2SiGeO7

A. Experimental results

As a first step, we extended the measurements of the
magnetic susceptibility χ (T ,H ) to wider temperature and field
ranges than those covered in previous studies. Single crystals
of BaCu2SiGeO7 were grown by the floating-zone technique.
One of them was cut and the smaller 6.5-mg part was used in
magnetometry measurements; the remaining 20-mg piece was
used for the NMR investigations.

The magnetization of the chosen sample was measured
by applying a magnetic field H ‖ b. Magnetic susceptibility
data χ = M/H are displayed as bold solid lines in Fig. 2.
For μ0H = 0.1 T, and at temperatures T � 1.8 K, the
measurements were performed using a standard dc SQUID
magnetometer, whereas to cover temperatures down to 0.5 K
we employed a SQUID device with a 3He insert. For all
the other fields and for temperatures T � 1.8 K, we used
a vibrating-sample magnetometer (VSM). Since in the latter
case data are collected “on the fly,” i.e., while the temperature
is being swept at 0.25 K/min, this causes a small (known)
temperature difference between sample and thermometer
position. In addition, a certain dispersion in the magnetization
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FIG. 2. (Color online) Field and temperature dependencies of the
magnetic susceptibility χ (T ,H ) per Cu ion in BaCu2SiGeO7 (and in
BaCu2Si2O7, at 1 T) with H ‖ b in normalized units, assuming g = 2
(Ref. 13). The fit of χ (T ,0.1 T) with a RHC model was adopted
from Ref. 3, while the χ (T ) curves for chains with a single isotropic
exchange value were calculated as in Ref. 26. QMC simulations of
the susceptibility χ (T ,H ) at μ0H = 0.1 and 14 T for a simple J1-J2

RHC model is also shown (see text for details).

values was reduced by applying a moving-average filter with
a 200-mK width to the raw experimental data. Magnetic
hysteresis, defined as the difference between the zero-field-
cooled and field-cooled magnetization data, was observed for
T < 800 mK. The hysteretic behavior is probably related
to ferromagnetic domains with a rather small net magnetic
moment present in the ordered low-temperature phase. Since
only the zero-field-cooled scans are relevant for our discussion,
the field-cooled data are not shown.

B. Data analysis

As shown in Fig. 2, for temperatures above 30 K the
χ (T ,H ) curves are field independent and, for T > 200 K, they
approach the theoretical prediction for an isotropic Heisenberg
chain26 with an exchange parameter Jeff = (JSi + JGe)/2 ≈
37 meV (see the green dashed line in Fig. 2). For comparison,
the red dashed line indicates the calculated χ (T ) for an
isotropic chain with JSi ≈ 24 meV, corresponding to the x = 0
case.

We first discuss two major differences between the
magnetic susceptibilities of BaCu2Si2O7 (x = 0) and
BaCu2SiGeO7 (x = 0.5): (i) Our previous successful attempt
to interpret the low-temperature increase/divergence of χ (T )
in BaCu2Si2O7 and BaCu2Ge2O7 as simply being caused
by a local transverse staggered field [LTSF (Ref. 13), see

Sec. IV B] is inadequate for treating the more complex case
of BaCu2SiGeO7. First of all, the magnetic susceptibility
χ (T < 10 K,H ) is strongly reduced even by moderate fields.
As a result, the magnetization deviates from the linear response
with respect to H (see Fig. 7 and Ref. 26), expected either for
an isotropic chain in the LL regime, or for the sine-Gordon
(SG) model in the high-temperature limit, the latter describing
the physics when an LTSF is present.13

The SG model, even at intermediate temperatures, is
inadequate to describe the physics of BaCu2SiGeO7. Indeed, in
this case χ (T ) is known to exhibit a symmetric peak centered
at a temperature Tm, roughly corresponding to half of the
field-induced gap �SG.27 To exemplify this fact, we consider
the Hamiltonian in Eq. (1) with Ji = J and H �= 0. In the
reduced units h∗

i,⊥ = μBHi,⊥/Jeff , with Hi,⊥ = (−1)icH , this
model features a gap �SG in the spin-excitation spectrum
which, for h∗

⊥ 
 1, scales as28

�SG

J
= 1.78 × (h∗

⊥)
2
3 (− ln h∗

⊥)
1
6 . (2)

Equation (2) implies that for c = 0.092 [the value estimated
for BaCu2Si2O7(Ref. 13) if H ‖ b], the LTSF yields �SG �
1.42 meV at H = 14 T, corresponding to Tm � 8.2 K. On
the other hand, as can be seen in Fig. 2, the susceptibility
recorded at 14 T tends to saturate at low temperatures, rather
than display a peak at Tm.

(ii) The inadequacy of the SG model in interpreting the
χ (T ,H ) data of BaCu2SiGeO7 is particularly evident from
the (T ,H ) dependence of Ti , the inflection point which marks
the start of saturation [corresponding to the maximum of
|∂M/∂T | in a fixed field H (see Fig. 3)]. To overcome
noise problems in the calculation of |∂M/∂T | from raw
magnetization data, the experimental points were linearly
interpolated using a 200-mK binning and the resulting line
slope was taken as the derivative with respect to temperature.

2 5 10 20 30
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

Temperature [K]

(1
/g

) 
⋅ |

dM
 / 

dT
|  

[μ
B
T

−
1 K

−
1 ]

 

 

QMC, H = 7 T
H = 7 T
QMC, H = 10 T
H = 10 T
QMC, H = 12 T
H = 12 T
QMC, H = 14 T
H = 14 T

FIG. 3. (Color online) First derivative of the sample magnetiza-
tion vs temperature, |∂M(T ,H )/∂T |, in BaCu2SiGeO7 for H ‖ b.
The graphic compares several cross sections of the color map shown
in Fig. 4. The assigned errors reflect the line-slope uncertainty for
fits within the binning range (see text for details). The shown QMC
simulation results were obtained without using any free parameters.
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FIG. 4. (Color online) (a) First derivative of the sample magneti-
zation vs temperature, |∂M(T ,H )/∂T |, in BaCu2SiGeO7 for H ‖ b

(data scaled using g = 2) (Ref. 13). The open circles represent
crossover temperatures. For details on data treatment and for a
description of the plotted lines, see text. (b) QMC simulation of the
J1-J2 RHC model for a system of 6000 spins, using 20 realizations
of disorder for each (T ,H ) point. The color map was generated using
the same data treatment as in panel (a).

The results of this procedure are shown as colored circles
in Fig. 3 for four selected fields. A (T ,H ) color map of the
|∂M/∂T | values is shown in Fig. 4(a). Here, the inflection
points (assigned with an error corresponding to the peak
width at 95% of the peak height in Fig. 3) are shown as
open circles. The resulting Ti(H ) values follow a linear
field dependence, such that kBTi = 0.744(7)μBH . Aside from
requiring a nonuniversal dimensionless prefactor,29 the field
dependence of Ti does not follow the H 2/3 power law that the
small h∗

i,⊥ value would imply for �(H )/2.27 The calculated
dependencies of �/2 for H⊥ = (−1)icH with c = 0.092 or
0.052 are both also shown in Fig. 4(a). The first c value
represents the LTSF proportionality constant in BaCu2Si2O7.13

Because of the similar local environments, it seems reasonable

to use the same value also for BaCu2SiGeO7. The reason for
choosing c = 0.052 instead will be clarified in Sec. IV.

In view of these two inadequacies, we modified our previous
approach to the experimental data analysis13 and instead chose
to compare the experimental results with the predictions of the
RHC model Hamiltonian in Eq. (1).3 A first comparison is
carried out by fixing c = 0 and by assuming the Ji values to
be uniformly distributed between the two limits JSi and JGe.

In case of nonzero temperatures and magnetic fields,
the renormalization flow of the decimation procedure is
interrupted either at the thermal energy kBT , or at the magnetic
energy gμB〈S〉H .29 In the first case, the resulting susceptibility
is3

χ (T )RHC ∼ T −1 ln−2(J0/kBT ). (3)

In the second case, the system is driven away from the zero-
field fixed point into a regime with field-aligned undecimated
spins, a saturated magnetization, and zero entropy.29 In spin-
1
2 AFM RHCs, the decimation procedure involving the total
set of spins leaves the renormalized magnetization magnitude
at 〈S〉 = 1

2 , unlike, for example, in a RHC with FM-AFM
coupling.29 For this reason, the onset of saturation of the low-
temperature magnetization occurs at kBTi ≈ μBH .29 A fit to
the susceptibility data at the smallest applied field, using the
theoretical random-singlet expression for χ (T )RHC, is shown
in Fig. 2 as a black dashed line. A rather good match is found
above 4 K with a cutoff J0 � 66.3 ± 0.7 meV.

To achieve a more quantitative comparison, we carried
out a series of quantum Monte Carlo (QMC) simulations
based on Eq. (1), where Ji couplings alternate randomly
from J1 = JSi = 24.1 meV to J2 = JGe = 50 meV (we call
this a J1-J2 model), mimicking the situation expected for
BaCu2SiGeO7. We chose 6000 spin sites with randomly
distributed but equally probable J1 and J2 couplings. The
simulations for χ (T ,H ) were averaged over at least 25 random
realizations of disorder, as obtained from a directed-loop
algorithm30 within the ALPS 2.0 package.11 Technical details
related to the QMC simulations are discussed in the Appendix.
Disorder in the exchange couplings was imposed by assuming
an equal number (L/2, with L as the chain length) of J1 and
J2 values, randomly permuted to construct the RHC chain that
was to be simulated.

Selected results of these simulations are shown as red
and yellow circles in Fig. 2, as interconnected diamonds
in Fig. 3, and as a color map in Fig. 4(b). In view of
the simplicity of the model, the qualitative and quantitative
agreement of our parameter-free QMC simulations with the
data is remarkable. Incidentally, the best fit of the RS prediction
to the low-T QMC results in an applied field μ0H = 0.1 T
requires J0 ≈ J2. This corresponds to the largest energy scale
in the system before the decimation starts, thus reinforcing
the pertinence of the theory used to capture the magnetic
properties of the system. As may be seen in Figs. 3 and 4(b),
by applying the moving-average procedure described above
also to the QMC results, numerical calculations predict
the same free-spin-like linear field dependence for Ti as
observed experimentally. This is an important result because
the existence of paramagnetic entities at T = 10 K in a
strongly correlated system, with a characteristic energy scale
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corresponding to a temperature exceeding 200 K, is highly
counterintuitive.

IV. NUCLEAR MAGNETIC RESONANCE IN
A RANDOM HEISENBERG CHAIN

Although the measurements of χ (T ,H ) and the comparison
with QMC calculations already provide a strong indication
for the formation of a RS phase in BaCu2SiGeO7 at low
temperatures, it is tempting to directly verify the presence
of a random-singlet state on a local scale. With decreasing
temperature, an increasing number of spins form pairs by
adopting a nonmagnetic singlet ground state. The divergent
low-temperature tail of χ (T ,H ) is due to the residual unpaired
spins. The tendency to form a random-singlet ground state
should be directly manifest in NMR data, reflecting a growing
number of 29Si sites which experience a zero net transferred
local field.

A. Experimental results

Height-normalized 29Si NMR lines, as recorded in a 7-T
external field applied along the crystallographic b axis, are
plotted in Fig. 5. The spectra were obtained by superposing
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FIG. 5. (Color online) Temperature dependence of the 29Si NMR
lines of the disordered Heisenberg chain compound BaCu2SiGeO7

in a magnetic field of 7.05 T applied along the b axis. The zero
frequency marks the resonance of 29Si nuclear spins in a standard
reference sample such as Si(CH3)4 (Ref. 32). The white dashed line
marks the position of the resonance at room temperature, while the
yellow points represent the position of the maxima, displaying a shift
towards higher frequencies at low temperatures. The inset compares
the cases of maximum and no disorder at high temperature. The green
dashed line marks the orbital shift as obtained from Ref. 13 (see text
for details).

several acquisitions in the frequency-sweep mode, as described
in Ref. 31.

The effects of disorder are evident already by compar-
ing the high-temperature line shapes of BaCu2SiGeO7 and
BaCu2Si2O7 (see inset of Fig. 5). We note that the 29Si
resonance of BaCu2SiGeO7, apart from being broader than
that of its pristine counterpart, is also shifted to higher
frequencies. We recall that NMR data of BaCu2Si2O7 (taken
at μ0H = 7 T, with H ‖ b) exhibit a positive orbital shift of
σb � 0.018 MHz, with a negative hyperfine coupling to the
longitudinal magnetization.13 As shown in Fig. 2, the high-
temperature magnetization of BaCu2SiGeO7 is equivalent to
that of an isotropic chain with J = 37 meV and is distinctly
smaller than that of BaCu2Si2O7, well modeled by choosing
J = 24.1 meV. Consequently, the negative hyperfine shift in
case of a sample with disorder is smaller and, hence, the
resonance is located closer to σb (see inset of Fig. 5). This
result is ultimately an independent confirmation of the validity
of the model which allowed us to extract the parameter σb

in Ref. 13. We emphasize that, due to a random variation
of the hyperfine interactions, a broadening of the resonance
in the x = 0.5 case may well be of structural origin, rather
than due to magnetic disorder. Realistically, both structural
and magnetic disorder have to be taken into account and one
of the aims of the analysis outlined below is to disentangle
them. Another striking feature of the NMR signals is the
temperature-dependent shift of the line maxima. In Fig. 5,
this shift is evidenced by comparing the sequence of yellow
points, marking the maxima, with the vertical dashed line,
representing the peak position of the 300-K line. It indicates a
growing nonzero uniform magnetization as the temperature is
lowered, in obvious contradiction to the RS-phase hypothesis,
where the formation of singlets would imply the absence of a
local magnetization. As expected, unlike what is observed in
BaCu2Si2O7,13,22 the NMR data show no indications of a phase
transition around T = 10 K for the disordered compound.

B. Data analysis

In order to interpret the recorded NMR line shapes
and positions, we compare the experimental data with the
results of QMC simulations of the J1-J2 model, addressed
in Sec. III. In Fig. 6(a), we show the temperature-dependent,
height-normalized histograms, which reflect the occurrences
of longitudinal local magnetization values Sz

i in 10−3 μB

intervals for μ0H = 7 T (z is the spin quantization axis along
which the external field was applied). The histograms were
obtained by using a single configuration of disorder in a
system of L = 6000 spins. We note that at T = 300 K the Sz

i

values are distributed around a nonzero, albeit small, uniform
magnetization. In this regime, the details of disorder are not
essential for describing the physics. At low temperatures,
however, a broadened magnetization peak appears, centered
at zero local moment, as expected in the case of a continuous
formation of singlets. At the same time, we observe weak but
extremely broad tails [see top histogram in Fig. 6(a)], indicat-
ing the presence of incompletely compensated spins, which
are progressively polarized as the temperature is reduced.

As shown in Fig. 6(b), the local-moment distribution
obtained from these simulations (which do not include a LTSF)
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FIG. 6. (Color online) (a) QMC simulation of the local magnetization of a J1-J2 model of a spin chain with 6000 sites placed in an external
field of 7 T. The number of occurrences of the magnitude of a certain local moment is plotted, with each occurrence calculated in equidistant
intervals of 10−3μB and normalized to the most frequent one. The red dashed line marks the zero. (b) Simulated NMR line shapes (blue) using
the results obtained from (a) and compared with the experimental data (orange). The black dashed line at fixed frequency marks the position
of the peak of the BaCu2SiGeO7 line at 300 K. No LTSF is present in this case. (c) Same as in (a), but with the uniform field replaced by a
staggered field Hi,⊥ = (−1)icH , with c = 0.092 and μ0H = 7 T. (d) Same as in (b), but including a LTSF in the model (see text for details).

does not match the experimental NMR data. The formation
of random singlets implies that at a significant number of
sites, the moments of the Cu atoms are quenched at low
temperatures, corresponding to a zero shift of the simulated
NMR line, in disagreement with observations. It turns out
that it is essential to consider the combined effect of random
exchange interactions and a LTSF, namely, to set c �= 0 in
the Hamiltonian (1). To include a LTSF, we use the same
approximation made in the case of no disorder,13,27 i.e., we
assume the total local magnetization mi to be the sum of a
nonuniform longitudinal and a transverse contribution, in the
form

mi = 〈S‖
i 〉 + 〈S⊥

i 〉, (4)

where for the magnitude of the local transverse magnetization
we write 〈S⊥

i 〉(H,Hi,⊥) ≈ 〈S⊥
i 〉(0,Hi,⊥), and analogously for

the longitudinal component, with Hi,⊥ = ciH .13 Because of

this particular approximation, two QMC simulations, one
for S⊥

i and another for S
‖
i , can be carried out separately

on a diagonal basis. With H �= 0, an LTSF acts on paired
spins by mixing the nonmagnetic singlet states |s〉 with the
magnetic triplet states |t+1〉 = |↑1 ↑2〉 and |t−1〉 = |↓1 ↓2〉,
thereby inducing a nonzero magnetization also in the ground
state of the spin pair.33 If both the uniform field and the LTSF
are considered, in a first-order perturbation approximation, the
new ground state can be written as33

|s ′〉 ≈ |s〉 + α+|t+1〉 − α−|t−1〉, where

α± ∝ cHμB

J ∓ gμBH
.

The uniform field appearing in the denominator can be
neglected if J � gμBH , which is the case for the strongest
coupled singlets in the RS phase. Therefore, at temperatures
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kBT ≈ min(J ) � gμBH the longitudinal local magnetization
varies linearly with the applied field. Here, min(J ) refers to
the minimum exchange coupling value of the already formed
singlets.

The distribution of local-magnetization values in a J1-J2

RHC model which includes a LTSF is shown in Fig. 6(c).
Clearly, the presence of a LTSF substantially modifies the
magnetization profiles shown in Fig. 6(a). By assuming that
the local symmetry of the oxygen atoms surrounding a Cu2+
ion is largely unaffected by the Si-to-Ge substitution, the same
value of c = 0.092 obtained for BaCu2Si2O7 ought to be valid
also in our case. As seen in Fig. 6(c), at T = 300 K and
μ0H = 7 T, the chosen LTSF is too weak to induce a nonzero
magnetization. However, as the temperature is progressively
lowered, singlets with a distribution of effective exchange
couplings are formed and a staggered field Hi,⊥ acting on
them creates a distributed local magnetization of the form
〈S⊥

i 〉 ∝ μBHi,⊥/Ji . Therefore, the histograms in Fig. 6(c) split
and broaden with decreasing temperature. The symmetrical
splitting reflects the alternating sign of the LTSF from site to
site, with a mean absolute value of the local moment which
progressively shifts away from |〈S⊥

i 〉| = 0.
In order to compare the simulated local-magnetization

profiles with the NMR line shapes, structural details have to be
considered. Eight configurations of disorder in systems with
L = 6000 sites were simulated. In order to reproduce 6000
unit cells, the local moments were then arranged into four
different chains, with two inequivalent copper atoms each.
At this first stage, the dipolar coupling was neglected, but
we considered the hyperfine coupling to both the longitudinal
and the transverse magnetization. Following the notation of
Ref. 13, for H ‖ b, the local hyperfine field hloc at a general
29Si nuclear site can be written as

hloc =
4∑

i=1

(ai〈S‖
i 〉 + bi〈S⊥

i 〉), (5)

where the index i runs over the four nearest-neighbor copper
sites. With this notation, the relative NMR resonance fre-
quency 29ω can be written as 29ω ≈ γ hloc + σb, with γ as the
29Si nuclear gyromagnetic ratio. From our previous study13 of
BaCu2Si2O7 we can fix the parameters

∑
i ai � −0.16 T/μB,∑

i(−1)ibi � 0.128 T/μB, whereas σb � 0.018 MHz at 7 T.
Each of the above hyperfine parameters, which couple the
silicon nuclear magnetism to the longitudinal and transverse
electronic magnetization of copper, represents the sum of
four individual copper-to-silicon couplings. Given the broken
translational symmetry due to disorder, the individual Cu-Si
couplings are essential for a quantitative comparison between
data and theory. Unfortunately, these cannot be evaluated
by experiment, leaving six unknown free parameters in the
model.

For a comparison of the simulated NMR lines with data
recorded at 5 K, we used the following parameters (in T/μB

units): b1 = b3 = −0.24, b2 = −0.07 for the coupling to the
transverse magnetization, and a1 = −0.16, a2 = 0.08, a3 =
−0.015 for the coupling to the longitudinal one. The sign of the
parameters bi changes according to the considered Si nucleus.
By making use of them and with no other free parameters, we
succeeded in simulating the complete temperature dependence

of the NMR lines, which account for the simultaneous presence
of both an LTSF and a uniform magnetic field. The result is
shown in Fig. 6(d), where the agreement between data and the
theoretical model is again remarkable.

To be more specific, for a comparison with the experiment,
we calculated the line shapes by convoluting the distribution
of local fields at the 29Si sites with a 2-kHz-wide Gaussian,
which is equivalent to the width of the line profile of pure
BaCu2Si2O7, shown in the inset of Fig. 5. The choice of
the optimal binning range, which strongly affects the shape
of the tails of the Sz

i histograms in Fig. 6, was done by
employing the algorithms proposed in Refs. 34 and 35. Note
that the lines displayed in Fig. 6(d) show that the averaging
process over four Cu sites removes the splitting in the original
histograms in Fig. 6(c). In addition, the simulated lines shift
with temperature, as indeed observed in the experiment. The
minimally shifted line shape at T = 300 K reflects magnetic
disorder. By comparing Figs. 6(b) and 6(d), it may be seen
that the inclusion of a LTSF in the simulations significantly
improves the agreement between theory and experiment.
Therefore, from both a macroscopic and a local point of
view, NMR data confirm that the static magnetic properties
of BaCu2SiGeO7 are those of a RHC, with the addition of a
residual LTSF.

To cross-check the consistency of the proposed model,
it seems natural to consider the LTSF-induced effects also
in the magnetometry data. Since the influence of the LTSF
grows with the applied field H , we consider the calculated
M(H ) curves (shown by dotted lines in Fig. 7) at two
representative temperatures: T = 2 and 10 K. The calculation
of M(H ) at T = 2 K, using the average exchange coupling J =
37 meV, reflects the linear behavior expected for an isotropic
Heisenberg chain in its LL regime26 and differs substantially
from the experimental data. In fact, this oversimplified model
completely neglects the field-induced alignment of the still
uncompensated spins that, in a random Heisenberg chain,
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FIG. 7. (Color online) Field dependence of the magnetization
of BaCu2SiGeO7 at 2 and 10 K (dots) and comparison with
QMC simulations of the J1-J2 RHC model without (c = 0) and
with (c �= 0) LTSF. The c coefficient refers to the staggered field
value Hi,⊥ = (−1)icH , with H the uniform field. Also shown is
the field dependence of the ground-state magnetization (T = 0 K)
of an isotropic Heisenberg spin- 1

2 chain, as from Ref. 26. The
magnetization is expressed in normalized units (N is the total number
of copper sites and μB is the Bohr magneton), assuming g = 2.
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survive even at the lowest temperatures. On the other hand,
QMC simulations using the J1-J2 model discussed in Sec. III
and in Ref. 15 show significant improvements over the
simplified “average-J ” model (solid blue and red lines in Fig. 7
for T = 2 and 10 K, respectively).

The next refinement was to include both a uniform and
a staggered magnetization in the J1-J2 model and combine
them27 to obtain

M(H,T ) =
∑

i

[〈S‖
i 〉(H,T ) + (−1)ic〈S⊥

i 〉(Hi,⊥,T )], (6)

with
∑

i〈S‖
i 〉(H,T ) the RHC magnetization in a uniform

field. As can be seen in Fig. 7, the QMC calculation for
M(H,T ) with c = 0.092 unexpectedly fails to reproduce the
data. A good agreement with the magnetization scans at both
temperatures was, however, obtained using c � 0.052. The
discrepancy in the prefactor is most probably due to the
fact that the current model neglects the effects of structural
disorder in BaCu2SiGeO7. A more refined model taking into
account such subtleties, by including a site-dependent c value,
was not implemented in the present analysis. Nonetheless,
the essence of RHC physics, which dominates the magnetic
properties of the probed system, is borne out by the combined
investigation of bulk magnetometry, NMR measurements,
and QMC simulations. Taken together, they strongly suggest
that BaCu2SiGeO7 is an excellent realization of a random
Heisenberg chain model, as originally claimed in Ref. 15,
thus providing the ideal testing ground for analytic theories
modeling a random-singlet ground state.

V. SUMMARY AND CONCLUSIONS

In conclusion, we considered the BaCu2SiGeO7 compound,
where spin- 1

2 Cu2+ ions interact via random exchange cou-
plings, as a representative of RHC systems with bond disorder.
We demonstrate that this spin-chain material has a ground
state which is very well described on the basis of the RHC
Hamiltonian in Eq. (1).

By using temperature- and magnetic field-dependent micro-
scopic 29Si NMR measurements, combined with macroscopic
magnetic-susceptibility data and results of detailed numerical
quantum Monte Carlo simulations, we find a coherent descrip-
tion of the physical properties of the system, compatible with
that of a RS phase. In particular, the considerable broadening
of the NMR lines and the divergent magnetic response at
low temperatures, combined with a nonlinear increase of the
magnetization as a function of field at low T , all reflect the
presence of unpaired spins with arbitrary small couplings even
at temperatures close to zero.

Specific refinements in the simulations of J1-J2 model
have shown that the addition of a local transverse staggered
field LTSF (similar to that present in the parent compound

BaCu2Si2O7) (Ref. 13) is essential also for reproducing the
observed NMR line shifts.

Since the magnetization of a singlet in a LTSF is propor-
tional to the local field, the detection of the field distribution
by future 63Cu NMR measurements may provide a direct way
to explore the J distribution in a RHC. In addition, aside from
the existing stretched-exponential NMR relaxation data,15 the
spectral properties of random Heisenberg chains would be
more directly accessible if neutron-scattering experiments in
a lower-energy range would be possible.
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APPENDIX: ERROR EVALUATION
IN THE QMC SIMULATIONS

In order to correctly interpret the numerical results, it is
necessary to mention the theoretical expectations for the error
bars in QMC simulations (i.e., specific to this method), in
relation to the self-averaging induced errors (i.e., specific to
disorder).36 For a spin chain of length L, one can define the

ratio RX(L) = (X2 − X
2
)/X

2
, where X is any macroscopic

variable subject to self-averaging and X denotes the same
quantity averaged over the realizations of disorder.36 By using
104 “Monte Carlo updates” (the number of random updates
of the system performed by the algorithm before a new
configuration is generated) and 105 independent Monte Carlo
measurements in a system of 6000 spins, the relative error
for M(T ,H ) in low-temperature QMC simulations was found
to be 10 times lower than

√
RX(L), the error due to the

average on all the realizations of disorder. Therefore, in our
case

√
RX(L) is the dominant simulation error. Whenever the

correlation length is ξ ∼ ln2(J0/T ) 
 L, self-averaging can
be justified based on the central-limit theorem.36 In case of
critical systems, where the correlation length tends to diverge
(ξ � L), the only way to obtain meaningful results in the
presence of disorder consists in increasing the system size
L. By simulating systems with different spin-chain lengths
L, we find that

√
RX(L → ∞) = σχ/(X

√
L), with σχ the

standard deviation of the local spin susceptibility. This implies
the correct evaluation of the thermodynamic limit even in
the problematic ξ � 1 case. Incidentally, since σχ is smaller
at higher temperatures and magnetic fields, this justifies the
smaller error bars in these regions.
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