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The zero and finite temperature spin-Peierls transitions in a quasi-one-dimensional spin- 1
2 Heisenberg model

coupled to adiabatic bond phonons is investigated using the stochastic series expansion (SSE) quantum Monte
Carlo (QMC) method. The quantum phase transition from a gapless Néel state to a spin-gapped Peierls state
is studied in the parameter space spanned by spatial anisotropy, interchain coupling strength, and spin-lattice
coupling strength. It is found that for any finite interchain coupling, the transition to a dimerized Peierls ground
state only occurs when the spin-lattice coupling exceeds a finite, nonzero critical value. This is in contrast to the
pure 1D model (zero interchain coupling), where adiabatic/classical phonons lead to a dimerized ground state for
any nonzero spin-phonon interaction. The phase diagram in the parameter space shows that for a strong interchain
coupling, the relation between the interchain coupling and the critical value of the spin-phonon interaction is
linear whereas for weak interchain coupling, this behavior is found to have a natural logarithmlike relation.
No region was found to have a long range magnetic order and dimerization occurring simultaneously. Instead,
the Néel state order vanishes simultaneously with the setting in of the spin-Peierls state. For the thermal phase
transition, a continuous heat capacity with a peak at the critical temperature Tc shows a second order phase
transition. The variation of the equilibrium bond length distortion δeq with temperature showed a power law
relation which decayed to zero as the temperature was increased to Tc, indicating a continuous transition from
the dimerized phase to a paramagnetic phase with uniform bond length and zero antiferromagnetic susceptibility.
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I. INTRODUCTION

A spin- 1
2 Heisenberg chain coupled to an elastic lattice

is unstable towards dimerization. The cost in elastic energy
due to a distortion δ of the lattice (∼δ2) is smaller than
the accompanying gain in the magnetic energy (∼δ4/3). This
causes the ground state to be stabilized for a lattice with
nonzero dimerization1,2 with a finite spin gap. The transition
to such a dimerized phase is known as the spin-Peierls (SP)
transition, analogous to the conventional Peierls transition
in one-dimensional (1D) metals. In the adiabatic limit, any
arbitrarily small coupling to an elastic lattice leads to a
dimerized ground state in a spin chain. This is contrary to
quantum phonons where quantum lattice fluctuations destroy
the bond distortions for small spin-phonon couplings and/or
large bare phonon frequencies3,4—the transition to a Peierls
state occurs only when the spin-phonon coupling exceeds a
finite, nonzero critical value (that depends on the bare phonon
frequency). The discovery5 of the quasi-1D inorganic spin-
Peierls compound CuGeO3 led to a resurgence in the study
of the spin-Peierls transition in low-dimensional spin models.
The properties of CuGeO3 have been widely studied within
the framework of a 1D spin- 1

2 Heisenberg model coupled to
phonons, with an additional frustrated next-nearest-neighbor
interaction.6

Further studies have shown that interchain coupling in
CuGeO3 is not negligible and is estimated to be J⊥/J ≈ 0.1.7

As such, a more realistic modeling of the real material requires
the study of the spin-Peierls transition in 2D or quasi-1D
systems. In contrast to spin chains, the ground state of the
S = 1/2 Heisenberg model in 2D (in the absence of spin-
phonon coupling) has long range antiferromagnetic (Néel)
order. It is generally believed that even for adiabatic phonons,

the spin-phonon coupling has to exceed some nonzero critical
value for the ground state to develop a dimerized pattern
with a spin gap. What is the nature of the transition? Is
there a region in the phase space where the ground state
has co-existing dimerization and long range antiferromagnetic
order? The existence of several different possible dimerization
patterns in 2D means that, in principle, different dimerization
patterns can be stabilized for different values of the parameters.
Finally, unlike 1D, the Peierls phase in 2D extends to finite
temperatures.

The spatially isotropic 2D spin- 1
2 Heisenberg model with

static dimerization patterns has been studied by several
authors.8–13 In these previous works, the energetically most
favored dimerization pattern was predicted by comparing the
ground state energies for different patterns. Using this same
method, the 2D tight binding model with bond distortions14

and the 2D Peierls-Hubbard model15–17 have also been studied.
In the limit of large on-site repulsion U , the Hubbard model
at half filling reduces to the Heisenberg model, thus, results
from the Peierls-Hubbard model (in the limit of large U )
should be applicable to the present discussion. However,
there is no consensus among the different studies as to the
nature of the dimerization pattern in the ground state. For the
Peierls-Hubbard model at half filling, Tang and Hirsch15 find a
plaquettelike distortion to be energetically favored in the limit
of large U . On the other hand, Mazumdar16 has argued that the
minimum energy ground state has a “stairlike” dimerization
pattern, corresponding to a wave vector Q = (π,π ). Zhang and
Prelovšek17 agree with a dimerization pattern with Q = (π,π ),
but conclude that the ground state has dimerization only
along one of the axes (staggered dimerized chains, similar
to the pattern considered here). For the Heisenberg model
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with static dimerization, Al-Omari12 has concluded that the
ground state energy is minimized for a plaquettelike distortion
of the lattice which agrees with the conclusion of Tang and
Hirsch. On the other hand, Sirker et al.13 find that linear
spin wave theory (LSWT) predicts a stairlike dimerization
pattern to be most favored, in agreement with Mazumdar.
Using LSWT, Sirker et al. also find finite regions in the
parameter space with co-existing long range magnetic order
and nonzero dimerization. However, as pointed out by the
authors, results obtained from LSWT are not reliable at large
values of dimerization. The effects of interchain coupling was
considered early on by Inagaki and Fukuyama8,9 who studied
a quasi-1D system of coupled spin- 1

2 Heisenberg chains with
a fixed dimerization pattern corresponding to a wave vector
Q = (π,0). By treating the interchain coupling in a mean-field
theory, they were able to map out the ground state phase
diagram8 and study the finite temperature transition9. Later,
Katoh and Imada10 studied in detail the nature of the transition.
More recently, the effects of impurities have been studied in
this model (once again with a mean-field treatment of the
interchain coupling) which revealed a region of co-existing
Peierls and antiferromagnetic orders.18–23 In addition to this,
the quasi-1D XY model with a Q = (π,π ) dimerization
pattern has recently been studied24,25 by an extension of
the Jordan-Wigner transformation in 2D.26–28 The effects of
quantum phonons in the isotropic 2D model have also been
studied,29 where the authors find that there is no evidence of a
transition to the Peierls state for a wide range of values of the
bare phonon frequency and the spin-phonon coupling. This is
consistent with a previous finding30 for the same model that
the spin wave spectrum along the Brillouin zone boundary is
qualitatively similar to that for the pure Heisenberg model.

As can be seen from the discussion above, it can be difficult
to uniquely determine the optimal dimerization pattern in a
given model. Further, when comparing to experimental results,
it is not clear whether the optimal dimerization pattern of a
model will be robust to the presence of additional interactions
that may occur in the material. Thus, rather than determining
the optimum dimerization pattern for a system of weakly
coupled Heisenberg chains coupled to bond phonons, we
instead choose a fixed dimerization pattern. A natural choice
is the stairlike Q = (π,π ) dimerization pattern that has been
experimentally observed in CuGeO3.31

In this study, we aim to investigate the SP transition in a
spin- 1

2 quasi-1D Heisenberg antiferromagnet coupled to static
Q = (π,π ) bond phonons. By comparing the elastic energy
cost and magnetic energy gain associated with a finite bond
distortion at fixed interaction strengths, the complete ground
state phase diagram is mapped out in the parameter space of
interchain coupling and the strength of spin-lattice interaction.
The nature of the Néel-SP quantum phase transition and the
evolution of magnetic and Peierls order across the transition are
investigated in detail. In the second part of the study, the nature
of the thermal transition out of the SP state is investigated—
including determination of the universality class—by studying
the variation of bond-length distortion and specific heat across
the transition.

The rest of the paper is organized as follows. In Sec. II, the
model Hamiltonian and the stochastic series expansion (SSE)

QMC method used to study it are introduced. The results of
the simulations are presented in Sec. III. Section IV concludes
with a summary of the results.

II. MODEL AND SIMULATION TECHNIQUES

The stochastic series expansion (SSE) quantum Monte
Carlo (QMC) method was used to study a quasi-1D Heisenberg
model with spin-phonon coupling. The model is given by the
Hamiltonian

H = J
∑
i,j

(1 + λui,j )Si,j · Si+1,j + 1

2
K

∑
i,j

u2
i,j

+ J⊥
∑
i,j

Si,j · Si,j+1, (1)

where J⊥ is the interchain coupling, λ is the strength of
the spin-phonon coupling (restricted to be only along the
chains), ui,j ’s are the distortions of the bond lengths, and
K is the elastic constant for the distortions. Following the
experimentally observed31 dimerization pattern in CuGeO3,
the bond length distortions are chosen to be of the form

ui,j = (−1)i+j δ.

This amounts to choosing a fixed dimerization pattern along
the chains corresponding to the wave vector Q = (π,π ). The
bond distortions can be rescaled by the spin-phonon coupling
strength λ, thereby reducing the Hamiltonian to

H =
∑
i,j

(1 + (−1)i+j δ)Si,j · Si+1,j + Nδ2/2ζ

+α
∑
i,j

Si,j · Si,j+1, (2)

where ζ = λ2J
K

, α = J⊥/J , and N is the size of the lattice.
The static approximation for the displacements makes the
computational task easier for the ground state determination
since one needs to minimize only the total energy. The
following strategy is adopted. The simulations are carried out
for the spin variables for several different {α,δ} parameter sets.
This produces the spin energy of the system as a function of
δ for a fixed α. Next the elastic energy with a particular ζ is
added and the total energy is minimized to obtain the value
of the ground state distortion for the given set of parameters
{α,ζ }. This is repeated for different sets of {α,ζ } to obtain the
ground state phase diagram in the parameter space spanned by
α and ζ .

The above approach fails for the finite temperature studies,
where one needs to minimize the free energy (the entropic
contribution is nonzero at finite T). Instead, both the equilib-
rium bond distortion and spin configurations are dynamically
determined by Monte Carlo updates. The stochastic series
expansion (SSE) QMC method has been used to sample spin
configurations in the present model. The SSE method32–34 is
a finite-temperature quantum Monte Carlo method based on
importance sampling of the diagonal elements of the Taylor
expansion of e−βH , where β is the inverse temperature β =
J/T . Ground state expectation values can be obtained using
sufficiently large values of β, and there are no approximations
beyond statistical errors. The use of loop updates34,35 makes
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it possible to explore the spin configuration space of the
Hamiltonian (2) in an efficient manner.

To sample the equilibrium bond distortion, we use a
straightforward implementation of the Metropolis Monte
Carlo algorithm.36 In order to simplify the bond update,
we separate the elastic term ε(δ) = Nδ2/2ζ from the
spin-dependent portion of the Hamiltonian. By the linear
property of the trace, the partition function then becomes
e−βε(δ)Tr(e−β[H−ε(δ)]). Treating the spin-dependent portion of
the Hamiltonian with the SSE method,32 configuration weights
thus become e−βε(δ)W (α,δ,S), where W is the weight of the
spin configuration S generated by the spin updates (note that W
also depends on the Hamiltonian parameters α and δ). During
the bond update, a new value of δ is randomly chosen from a
discretized grid: δ′ = δ ± 	, where 	 = 0.01 has been used
in the present implementation. The proposed move is then
accepted with probability

Min

[
1,

e−βε(δ′)

e−βε(δ)

W (α,δ′,S)

W (α,δ,S)

]
. (3)

The weights W are easily calculated within the SSE frame-
work, so we do not include them here.

For a static dimerization pattern, the above update simply
amounts to sampling δ, the bond distortion parameter. A single
Monte Carlo move thus changes the bond distortion of the
entire lattice simultaneously. This acts as a global update,
and no critical slowing down is expected. Examination of
autocorrelation times confirms this intuitive picture. On the
other hand, if every bond is updated separately (crucial for
determining the optimal dimerization pattern for a model),
such a strategy would lead to long autocorrelation times.
Instead, one needs to use a more sophisticated approach37

in such situations.

III. RESULTS

We begin with the determination of the nature of the
ground state for different parameter regimes. For a system
of weakly coupled Heisenberg chains, it was shown that the
estimates for various observables for a spatially anisotropic
system depend nonmonotonically on the system size for square
(Lx = Ly) geometry.38 One has to go to rectangular (Lx �= Ly)
geometries to obtain monotonic behavior of the numerical
results for extrapolating to the thermodynamic limit. This is
essentially due to a finite-size gap of the coupled chains that
scales as 1/Lx . Only when this gap is smaller than the energy
scale of coupling between chains can we begin to approach the
thermodynamic limit. Thus, while square lattices eventually
converge to the correct thermodynamic values in the limit
of infinite system size, they do so much more slowly than
appropriately chosen rectangular lattices. Similar effects are
expected in the present model for α � 1. Hence rectangular
lattices with the aspect ratio Lx = 4Ly have been studied, with
Lx = 16–512. An inverse temperature of β = 8Lx was found
to be sufficient for the observables to have converged to their
ground state values. The interchain coupling is varied over
0.006 � α < 1, concentrating in the regime α < 0.1.

As discussed earlier, for the determination of the ground
state phases, the magnetic energy is calculated for a range of
values of the static bond distortion and the elastic energy is

0.0 0.1 0.2 0.3 0.4
δ

-0.480

-0.475

-0.470

-0.465

-0.460

E/
N

Espin

ζ=1.12
ζ=0.88
ζ=0.75

FIG. 1. (Color online) The magnetic (spin) and the total ground
state energy per site as a function of the bond distortion for three
representative values of the elastic constant ζ and fixed α = 0.25.
The system size is N = 256 × 32.

added subsequently to determine the total energy. For small
values of δ, the leading order finite-size correction to the
ground state energy is seen to be ∼1/L3

x , similar to that
observed for the pure 2D Heisenberg model.33 On the other
hand, for large values of δ, when the ground state is expected
to be in the spin-Peierls phase, the energy scales exponentially
with system size. Close to the critical point, extrapolation to
the thermodynamic limit becomes difficult due to crossover
effects. Instead, the data from the largest system size studied
have been used to map out the phase diagram. Fortunately,
the data for the largest system sizes studied are found to be
well converged—the fractional difference in the energy for
the two largest system sizes studied is ∼10−5. This observed
convergence allows for a reliable estimation of ground state
properties in the thermodynamic limit based on the data
from the largest system size: Any finite-size effects on such
estimates are expected to be small.

The strategy implemented to extract the ground state bond
distortion is qualitatively demonstrated in Fig. 1. The total
ground state energy is obtained by adding the elastic energy
contribution to the spin part of the energy obtained from the
simulations. The plot shows the spin part of the energy, as
well as the total ground state energy as a function of the
bond length distortion δ for three representative values of the
elastic energy constant ζ at a fixed value of the interchain
coupling (α = 0.25). For large ζ , the total energy is minimum
for a nonzero value of the bond length distortion δ, which
implies a SP ground state. On the other hand, for small ζ ,
a uniform ground state with δ = 0 is energetically favored.
The behavior of the total energy near the critical ζ is also
shown. The ground state distortion in bond length is obtained
by numerically differentiating the total energy data and solving
for ∂Etot

∂δ
|δgs = 0. In principle, one can also fit a polynomial to

the QMC data to get Espin(δ) and add to it the elastic energy
term to get Etot(δ). The ground state distortion can then be
obtained as a continuous function of δ by solving ∂Etot

∂δ
|δgs = 0.

However, in practice, the numerical minimization is found to
be more reliable because of the uncertainty in the order of the
polynomial fit.
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FIG. 2. The equilibrium ground state bond distortion as a function
of the spin-lattice coupling for different values of the interchain
coupling.

Figure 2 shows the equilibrium distortion in the bond
lengths in the ground state of the system as a function of
the elastic energy parameter ζ at fixed values of α, obtained as
described above. For small values of ζ , the tendency towards
dimerization is suppressed, and a uniform (Néel ordered)
ground state with uniform bond lengths is stabilized. As ζ

is increased above a critical value ζc, there is a discontinuous
(first order) quantum phase transition to a ground state with
a finite, nonzero dimerization. For ζ > ζc, the equilibrium
ground state distortion increases monotonically with ζ .

For uncoupled chains with only Heisenberg interaction,
the ground state has no true long range magnetic ordering—
it is a critical state with algebraically decaying spin-spin
correlations. An infinitesimally small ζ is sufficient to destroy
the algebraic correlation and the ground state is dimerized for
all nonzero spin-phonon coupling. A finite interchain coupling
establishes true long range Néel ordering and consequently a
finite ζc required for a transition to a dimerized ground state.
The critical ζc increases with increasing interchain coupling.

The results from Fig. 2 are summarized in Fig. 3, which
shows the ground state phase diagram for the Hamiltonian (2)
in the phase space spanned by the parameters ζ and α. For
small ζ and/or large α, the ground state of the system is Néel
ordered with zero bond distortion, while for large ζ and/or
small α, the ground state is dimerized with a finite spin gap.
The critical coupling strength goes to zero as ζc ∼ 1/lnα as
α → 0. This is consistent with a similar behavior of the Néel
temperature TN for a system of coupled Heisenberg chains.39

Since both TN and ζc are approximate measures of the energy
required to destroy the Néel ordering, such a similarity in
asymptotic behavior is expected. Note that while one could
argue that the energy scale of the SP phase (i.e., the spin gap)
may also exhibit a dependence on α, it is clear from Fig. 2 that
this dependence is very small. Thus, to a first approximation,
we do not expect significant corrections to the 1/lnα behavior
of the phase boundary described above.

Next we turn to the determination of magnetic properties
in the ground state phase with zero bond distortion. This also
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0.0
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0.4

ζ

Spin-Peierls
Neel

FIG. 3. (Color online) The ground-state phase diagram in the
parameter space of the interchain coupling and the spin-lattice
coupling strength. The inset shows the results for α < 0.1 and the
logarithmic dependence of ζc as α → 0.

raises the interesting possibility of having a region in the (ζ,α)
parameter space where the ground state has co-existing Néel
order and nonzero dimerization. Such co-existence has been
shown to exist in the presence of doping.18–23 For this purpose,
the static spin susceptibility, defined as

χ (q) = 1

N

∑
i,j

eiq·(ri−rj )
∫ β

0
dτ

〈
Sz

j (τ )Sz
i (0)

〉
, (4)

has been studied for the spin part of the Hamiltonian (2)
(without the elastic energy term):

H =
∑
i,j

(1 + (−1)i+j δ)Si,j · Si+1,j

+α
∑
i,j

Si,j · Si,j+1. (5)

If the ground state has long range antiferromagnetic order, the
staggered [Q = (π,π )] susceptibility scaled by the system size
[χ (π,π )/N ], for a finite system will increase with increasing
system size, diverging in the thermodynamic limit. On the
other hand, if the ground state has a finite spin gap, χ (π,π )/N
will vanish in the limit of infinite system size. This qualitative
criterion can be expressed in a more quantitative manner
by noting that the ground state of the above Hamiltonian
undergoes a continuous transition from a Néel ordered state
with long range antiferromagnetic order to a spin-gapped,
dimerized phase with no long range magnetic order as δ

is increased beyond a finite, nonzero critical value δ∗ that
depends on the interchain coupling α. The transition belongs
to the universality class of the 3D Heisenberg model.40

Finite-size scaling41 predicts that for such a transition, the
finite-size susceptibility at the critical δ scales with the system
size as

χ (Lx) ∼ L2−η
x ,

for a rectangular lattice of dimension N = LxxLy . This
implies that on a plot of χ (π,π )/L2−η

x , the curves for different
system sizes will intersect at the critical δ. The value of the
critical exponent η is known to a high degree of accuracy
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FIG. 4. The ground-state static staggered magnetic susceptibility
as a function of bond distortion for a fixed value of the interchain
coupling, α = 0.25.

(η ≈ 0.037).42 Figure 4 shows χ (π,π )/L2−η
x as a function of δ

for a fixed value of α = 0.25 for several different system sizes.
For small δ, the scaled susceptibility increases with increasing
system size, indicating the presence of long range magnetic
order. For larger values of δ, the scaled susceptibility goes
to zero with increasing system size, signaling the opening
up of a spin gap. From the data, the critical value of δ is
estimated to be δ∗ ≈ 0.16. This value of the bond length
distortion is less than the jump in δ at the transition point
ζc. This means that for ζ > ζc, the ground state is dimerized
with δgs > δ∗ and has no long range magnetic order. On the
other hand, for ζ < ζc, a uniform ground state is energetically
favored that has zero dimerization (δgs = 0), and long range
magnetic order (the Néel state). For no values of ζ is a
ground state with 0 < δgs < δ∗ ever favored energetically.
Hence the transition to the dimerized phase is accompanied
by the simultaneous vanishing of magnetic order and there is
no region of co-existing dimerization and magnetic order. This
is true for the present model. Whether it is possible to have
ground states with co-existing magnetic order and dimerization
in other models (with different dimerization patterns) remains
to be seen.

In the final part of the work, we study the thermal phase
transitions for the ground state phases determined above.
The Néel state in 2D is destroyed by any infinitesimal
thermal fluctuations in accordance with the Mermin-Wagner
theorem, but the SP phase with a discrete broken symmetry
persists to finite temperatures. With increasing temperature,
the equilibrium bond distortion decreases and finally vanishes
at a critical temperature via a thermal phase transition whose
nature is probed in detail. We have extended the QMC studies
to simulate the Hamiltonian (2) at finite temperatures. As
noted in Sec. II, the strategy used to determine the ground
state bond distortion fails at finite temperatures because of
the nonzero entropic term in the free energy. Instead, both
the spin configurations and the bond distortions are evaluated
using Monte Carlo updates. Since it breaks a twofold discrete
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FIG. 5. (Color online) Thermal melting of the SP phase. The main
panel shows the evolution of the equilibrium bond distortion as the
SP state melts to a normal (paramagnetic) phase. δeq remains finite at
low temperatures, indicating a stable SP ground state. With increasing
temperature, the bond length distortion decreases and eventually
vanishes via a continuous transition. The data is for a single system
size N = 256 × 32 with parameters α = 0.25 and ζ = 1.14. The top
right inset shows a plot of the Tc(L) finite lattices as a function of the
inverse linear dimension to estimate Tc in the thermodynamic limit.
The lower left inset shows the data for different system sizes collapse
to a single curve close to the transition temperature for 2D Ising
critical exponents (β = 1/8 and ν = 1), confirming the universality
class of the transition.

symmetry, the melting of the SP phase is expected to belong
to the 2D Ising universality class. Figure 5 (main panel)
shows the temperature dependence of the equilibrium bond
length distortion δeq for a single finite-size lattice. The data
confirm that the distortion decreases monotonically with T and
eventually vanishes at a (size-dependent) critical temperature
via a continuous phase transition. The estimate for the true
critical temperature in the thermodynamic limit is extracted
from a finite-size scaling of the values for a wide range
of finite-size systems. The universality class of the thermal
transition is verified by plotting δeq(t,L)Lβ/ν vs tL1/ν , where
t = (Tc − T )/Tc is the reduced temperature and L is the
system size. Close to the transition temperature, the data for
different system sizes are found to collapse on a single curve
when we use the known critical exponents for the 2D Ising
universality class. The calculated specific heat (not shown
here) is consistent with the expected 2D Ising universality
behavior, but the accuracy was found to be insufficient to
extract the critical exponent.

IV. SUMMARY

A quantum Monte Carlo method has been used to study
the S = 1/2 antiferromagnetic Heisenberg model on a square
lattice with varying interchain interaction coupled to static
bond phonons. Motivated by experimental observations in
the inorganic quasi-1D spin-Peierls compound CuGeO3,31 the
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bond distortions are restricted to be only along the chains, and
a single dimerization pattern, with a wave vector Q = (π,π ),
is considered. It is found that in contrast to uncoupled chains,
the transition to a dimerized spin-Peierls ground state occurs
only when the spin-lattice coupling strength ζ , exceeds a finite,
nonzero critical value ζc at any nonzero interchain coupling
α. For ζ < ζc, the ground state has long range Néel order and
zero spin gap, whereas for ζ > ζc, the ground state develops
a finite dimerization accompanied by the opening up of a spin
gap. The transition is found to be a discontinuous (first order)
quantum phase transition. The value of the critical coupling
depends on the strength of the interchain coupling and vanishes
logarithmically as ζc ∼ 1/lnα as α → 0. The phase diagram in

the parameter space of α and ζ is mapped out. Furthermore it is
found that in the present model, the transition to the dimerized
Peierls state is accompanied by the simultaneous vanishing of
magnetic order, and there is no region of co-existing magnetic
order and nonzero dimerization. Finally, the thermal transition
of the dimerized state is studied in detail and is determined to
belong to the 2D Ising universality class.
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