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Longitudinal interlayer magnetoresistance in strongly anisotropic quasi-two-dimensional metals

P. D. Grigoriev*

L. D. Landau Institute for Theoretical Physics, Chernogolovka, Russia
(Received 15 March 2013; revised manuscript received 23 July 2013; published 19 August 2013)

In strongly anisotropic quasi-two-dimensional (2D) metals, where the interlayer band width is less than the
Landau level separation, the role of impurity scattering is enhanced by a magnetic field perpendicular to the
conducting layers. This leads to a longitudinal magnetoresistance (MR) in contrast to the prediction of classical
theory based on the constant-τ approximation. The MR has a square-root dependence Rzz (Bz) in a strong field,
being linear in the intermediate region. The crossover field allows to estimate the interlayer transfer integral or
electron mean-free time. Longitudinal interlayer MR, being robust to the increase of temperature or long-range
disorder, is easy for measurements and provides a useful tool to investigate the electronic structure of quasi-2D
compounds.
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The investigation of the angular and field dependence
of magnetoresistance (MR) is a powerful tool to study the
electronic properties of various metals, including strongly
anisotropic layered compounds, such as organic metals
(see, e.g., Refs. 1–4 for reviews), cuprate and iron-based
high-temperature superconductors (see, e.g., Refs. 5–14),
heterostructures,15 and so on. In layered quasi-two-
dimensional (Q2D) metals with at least monoclinic crystal
symmetry the electron dispersion in the tight-binding approx-
imation is given by

ε3D (k) ≈ ε2D − 2tz cos(kzd), (1)

where the 2D electron dispersion in magnetic field B perpen-
dicular to conducting layers is quantized in Landau levels:

ε2D = ε2D(n) = h̄ωc(n + γ ). (2)

Here the Landau level (LL) separation h̄ωc = h̄eB/m∗c,
e is the electron charge, h̄ is the Planck’s constant, m∗ is
the effective electron mass, n is the LL number, γ is the
Onsager phase equal to 1/2 usually, kz is out-of-plane electron
momentum, and d is the interlayer spacing. If the interlayer
transfer integral tz � h̄ωc, the standard three-dimensional
(3D) theory of galvanomagnetic properties based on kinetic
equation in the τ approximation can be applied,16–18 which is
valid in the lowest order in the parameter h̄ωc/tz. This theory
predicts several peculiarities of MR in Q2D metals: the angular
magnetoresistance oscillations (AMRO)19–21 and the beats of
the amplitude of magnetic quantum oscillations (MQO).17

In more anisotropic Q2D metals, when tz � h̄ωc, some new
features appear, such as slow MR oscillations22,23 and the phase
shift of MQO beats between transport and thermodynamic
quantities.23,24 These two effects are not described by the
standard 3D theory16–18 because they appear in the higher
orders in the parameter h̄ωc/tz. The monotonic part of MR
also changes when h̄ωc/tz ∼ 1. According to the standard
theory,16 the external magnetic field along the electric current
leads only to MQO but does not influence the monotonic
(background) part of this current.25 However, the monotonic
growth of interlayer MR Rzz with the increase of longitudinal
magnetic field Bz was observed in various compounds as a
general feature of Q2D metals.22,26–33

In very anisotropic compounds with tz � �0, h̄ωc, where
�0 = h̄/2τ0 and τ0 is electron mean free time in the absence
of magnetic field, this monotonic growth of Rzz (Bz) becomes
stronger.26–33 First, it was attributed to additional “strongly
incoherent” mechanisms of interlayer electron transport,
which do not conserve the in-plane electron momentum
during interlayer electron hopping: the interlayer hopping
via local crystal defects with in-series intralayer metallic
transport,31 or the metal-insulator transition and variable-range
electron hopping.34 The transverse interlayer MR in the
“strongly incoherent” regime is weaker than in the coherent
3D theory.31,35,36 However, in most experiments the interlayer
MR shows the pronounced AMRO and metallic-type temper-
ature dependence, which is incompatible with the “strongly
incoherent” mechanisms.

Recently it was shown37–40 that at very weak interlayer
coupling tz � �0 � h̄ωc, the longitudinal interlayer magne-
toresistance has a square-root monotonic growth Rzz ∝ √

Bz

even within the coherent-tunnelling model and one-particle
approximation.41 The angular dependence of MR also changes
in this limit,37 which contradicts the previous common
opinion42 that in the “weakly incoherent” regime, i.e., at
�0 > tz, the interlayer magnetoresistance does not differ from
the coherent 3D limit with tz � �0. However, the limitation
tz � �0 � h̄ωc of this calculation37–39 is very restrictive. In
the present paper we calculate the longitudinal interlayer
magnetoresistance at �0 � 4tz < h̄ωc using another approach,
based on the strongly anisotropic 3D electron dispersion in
Eq. (1). This extends the study in Refs. 37–39 to finite
tz � �0 and helps to understand the relation between these
two approaches.

At tz � �0 one can start from the 3D electron dispersion (1),
considering impurity scattering as a perturbation. Below we
show that if the perturbation theory is applicable, this approach
gives a correct result even at tz < �0. The interlayer electron
conductivity can be evaluated at finite temperature using the
3D Kubo formula,43–45 which gives

σzz =
∫

dε[−n′
F (ε)] σzz(ε), (3)

where the derivative of the Fermi distribution function n′
F (ε) =

−1/{4T cosh2[(ε − μ)/2T ]}, and the zero-temperature
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conductivity at energy ε is

σzz(ε) = e2h̄

2π

∑
m

v2
z (kz)[2ImGR(m,ε)]2 , (4)

where vz = ∂ε3D/∂kz = 2tzd sin(kzd)/h̄ is the interlayer elec-
tron velocity, the sum over the electron quantum numbers
m ≡ {n,ky,kz} (excluding spin) is taken in the unit volume,
and the retarded electron Green’s function

GR = [ε − ε3D(m) − �R(ε,m)]−1. (5)

In the self-consistent Born approximation (SCBA) and
even in the “noncrossing” approximation the electron self-
energy �R(ε,m) = �R

n (ε) is independent of ky and kz [see
Refs. 23,46–48 or Eqs. (11) to (14) below]. Since ε3D(m) is
also independent of ky , the summation over ky in Eq. (4) gives
the factor equal to the LL degeneracy of one conducting layer
per spin state NLL = 1/2πl2

H = eBz/2πh̄c (Refs. 49). The
interlayer conductivity is now given by a sum over LLs

σzz(ε) =
∑

n

σn (ε) , (6)

where the contribution to σzz from the nth LL is

σn = e2h̄NLL

2π

∫
dkz

2π
v2

z (kz)[2ImGR(n,kz,ε)]2 . (7)

Substituting Eq. (5) and performing the integration over kz in
Eq. (7), one obtains

σn = σ0h̄ωc�0

2πt2
z

∣∣Im�R
n (ε)

∣∣ Re
4t2

z − (�ε)2 + i �ε
∣∣Im�R

n (ε)
∣∣√

4t2
z − (

�ε − i
∣∣Im�R

n (ε)
∣∣)2

,

(8)

where �ε ≡ ε − ε2D (n) −Re�R
n (ε), and σ0 denotes the inter-

layer conductivity without magnetic field:

σ0 = e2ρF

〈
v2

z

〉
τ0 = 2e2NLLt2

z d/h̄2ωc�0, (9)

ρF = 2NLL/h̄ωcd = m∗/πh̄2d is the 3D density of states
(DoS) at the Fermi level in the absence of magnetic field per
two spin components τ0 = h̄/2�0 and 〈v2

z 〉 = 2t2
z d2/h̄2.

The expansion of Eq. (8) up to the first-order term in t2
z

gives

σn = 2σ0h̄ωc�0

∣∣Im �R
n (ε)

∣∣2

π
[
(�ε)2 + ∣∣Im�R

n (ε)
∣∣2]2 , (10)

which coincides50 with Eq. (32) of Ref. 37 or with Eq. (14)
of Ref. 38. This shows the equivalence of two approaches at
tz < �0 to calculate conductivity, namely using the the 3D
anisotropic dispersion (1) and using the tunneling between
only two adjacent 2D conducting layers as in Refs. 37,38.
Previously this equivalence was shown only for AMRO
without MQO.42,51

How general is this equivalence? Both approaches are based
on the perturbation theory for the stack of isolated 2D electron
layers with two perturbations: the impurity potential and the
finite interlayer hopping. These two approaches differ by the
sequence, in which the above two perturbations are taken into
account. If the same subset of diagrams (the terms in the
perturbation series) is calculated in different orders, the result

FIG. 1. (Color online) Average interlayer magnetoresistance
R̄zz (Bz) = 1/σ̄zz as a function of magnetic field Bz/�0, calculated at
4tz < h̄ωc using Eqs. (8) and (16) at four different values of tz/�0 =
0.2 (solid black line), tz/�0 = 4 (dashed red line), tz/�0 = 8 (dotted
blue line), and tz/�0 = 12 (dash-dotted green line). At tz � �0

there is a wide interval 4tz < h̄ωc � (4tz)
2 /�0 of linear MR (see

dash-dotted green line), while at smaller tz MR has a square-root
field dependence R̄zz (Bz) ∝ √

Bz (solid black and dashed red lines).

is the same. But the changing of the sequence may result in
the summation of different subsets of diagrams, e.g., to give
higher-order terms in the perturbation which is considered first.
Moreover, the perturbation theory itself is often not applicable,
as, e.g., in a metal-insulator transition. Then the sequence of
taking different perturbations into account is important and
can lead to physically different predictions. Equation (10)
only proves the equivalence of two-layer and 3D-dispersion
approaches for the interlayer conductivity calculation in the
second order in the interlayer transfer integral tz within
the one-particle approximation and with sufficiently weak
disorder (i.e., far from any metal-insulator transition). Since
both approaches correspond to the summation of the same
subset of diagrams for the interlayer magnetoresistance, at
2tz � �0 for the described model both approaches are valid.
The anisotropic-dispersion approach may be inapplicable only
at very small tz, when the 2D weak-localization corrections
appear,52 or when the Coulomb blockade of interlayer electron
transport becomes important.53,54 The two-layer approach be-
comes inapplicable at large tz �

√
�0h̄ωc, when the nonlinear

terms in t2
z become important, as one can see from Eq. (8) and

from Figs. 1 and 2 below.
To calculate the electron self-energy �R

n (ε) entering Eq. (8)
we apply the standard model of 3D strongly anisotropic metals
with short-range disorder. The Hamiltonian consists of two
terms: Ĥ = Ĥ0 + ĤI . The first term Ĥ0 = ∑

m ε3D (m) c+
mcm

describes the 3D noninteracting electrons in a magnetic field
with the anisotropic dispersion given by Eqs. (1) and (2).
The second term ĤI = ∑

i Vi (r) �+ (r) � (r) describes the
electron interaction with impurities. The impurities are taken
to be point-like with the potential Vi (r) = Uδ3 (r − ri) and
randomly distributed with volume concentration ni . Without
magnetic field the broadening �0 = |Im�| of the electron
levels due to the scattering by impurities in the Born ap-
proximation is �0 ≈ πniU

2ρF /2. In Q2D metals in a strong
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FIG. 2. (Color online) The same as in Fig. 1 but as function of
the square root of the magnetic field. At tz � �0 MR R̄zz (Bz) ∝ √

Bz

(solid black and dashed red curves are linear). At larger tz � �0 this
dependence transforms to linear MR R̄zz (Bz) ∝ Bz (see dotted blue
and dash-dotted green lines, which look like parabolas).

magnetic field h̄ωc > 4tz,�0, the electron self-energy �R
n

depends on the energy deviation �ε from the nth LL. In
the “noncrossing” or “single-site” approximation,55–57 which
includes all diagrams without the intersection of impurity
lines, the electron Green’s function averaged over impurity
configurations has the form (see the Appendix of Ref. 37)

G(r1,r2,ε) =
∑

n,ky ,kz

�0∗
n,ky ,kz

(r1)�0
n,ky ,kz

(r2)

ε − ε3D (n,kz) − �n (ε)
, (11)

where �0
n,ky ,kz

(r) are the electron wave functions in a magnetic
field without impurities and �n (ε) is the electron self-energy,
averaged over impurity positions and given by the equation

�n(ε) = niU/ [1 − UG (ε)] . (12)

G (ε) ≡ G(r,r,ε) after the integration over ky and kz becomes

G(ε) =
∑

n

NLL/d√
(ε − ε2D(n) − �n(ε))2 − 4t2

z

. (13)

The system of equations (12) and (13) allows to calculate the
electron self-energy �n(ε) numerically.

For the weak impurity potential UG (ε) ∼ UρF � 1 the
self-consistent Born approximation (SCBA) is applicable, and
Eq. (12) reduces to

�(ε) ≈ niU + niU
2G (ε) . (14)

The SCBA is valid when the scattering potential of each
impurity is weak compared to the Fermi energy EF , but the
concentration of impurities ni can be arbitrary,58 so that �0

is also arbitrary. It can be shown by the method of Ref. 38
that one needs at least SCBA to obtain a qualitatively correct
monotonic growth of interlayer longitudinal MR, which differs
in SCBA and in the noncrossing approximations only by a
factor of 4/3. The similar system of SCBA equations for the
electron Green’s function in Q2D metals in a magnetic field
was written previously,23,46–48 but the interlayer conductivity
was calculated only in the simple Born approximation there.

In Refs. 23,46 only the limit 2πtz � h̄ωc has been considered,
while in Ref. 47 a large electron reservoir was introduced to
damp the MQO of the chemical potential44 and to make the
simple Born approximation applicable.

In the strong magnetic field limit, when h̄ωc/4 > tz,�0 and
the LLs do not overlap, we can consider only one LL in the
solution of SCBA equations (13) and (14), which simplify to

�∗ = niU
2NLL/d√

(�ε − �∗)2 − 4t2
z

= �0h̄ωc/π√
(�ε − �∗)2 − 4t2

z

, (15)

where �∗ ≡ �n(ε) − niU and �ε ≡ ε − ε2D (n) − niU =
�ε + Re�∗. At tz = 0 one obtains the 2D result59 for
the electron self-energy in SCBA. Note that the impu-
rity scattering enters Eq. (15) only in the combination
niU

2NLL/d = �0h̄ωc/π ≡ �2
∗ . Therefore, at h̄ωc/4 > tz,�0,

�∗ ≡ √
�0h̄ωc/π is the only energy scale in Eq. (15), and

|Im�∗| ∼ �∗ ∝ √
Bz in agreement with Refs. 55,59, which

leads to the same field dependence of background MR:37,38

Rzz ≈ Rzz0 |Im� (μ,B)| /�0 ∝ √
Bz. Equation (15) rewrites

as the fourth-order algebraic equation:

�2
∗
[

(�ε − �∗)2 − 4t2
z

] = �4
∗. (16)

Among four solutions of this equation, only one satisfies the
physical requirement �∗ → 0 at �ε → ±∞. This solution
gives Im�∗ �= 0 in the finite energy interval of the width ∼
4
√

�2∗ + t2
z , while Re�n has cusps at the boundaries of this

interval. Now we substitute the physical solution of Eq. (16)
into Eq. (8). In the calculation of conductivity in 3D metals
one usually omits the real part Re� of the electron self-energy.
However, in quasi-2D metals in high magnetic field Re� must
be taken into account because it strongly depends on energy. If
one neglects Re�n in Eq. (8), the shape of the curves in Fig. 1
modifies.

The result for the monotonic part of interlayer MR 〈Rzz〉 =
1/σ̄zz is shown in Figs. 1 and 2, where σ̄zz is the conductivity
averaged over period h̄ωc of MQO. From Fig. 1 we see
the crossover from linear to square-root field dependence
of interlayer background MR Rzz (Bz): the lowest curve,
corresponding to tz = 12�0, is almost linear, while the curves
at smaller tz have almost square-root field dependence. The
interval of the linear MR is 4tz < h̄ωc � (4tz)2 /�0 and
increases with the increase of tz/�0. All curves at Bz = 0
must come to 1, which enlarges the region of linear MR as
compared to Figs. 1 and 2. However, the above calculation is
applicable only in a strong field, h̄ωc/4 > tz,�∗. The crossover
from linear to square-root dependence of MR is a general
feature of quasi-2D metals and already has been observed in a
number of experiments (see, e.g., Refs. 26,27). The square-root
dependence Rzz ∝ Bz is now obtained at h̄ωc > 2�∗ � 4tz,
i.e., in a much wider region than the limitation h̄ωc � �0 � tz
of the calculation in Refs. 37,38.

This field dependence of interlayer MR can be understood
as follows. Equation (16) simplifies to a quadratic equation at
�ε = 0 and has two solutions: �2

∗ = 2t2
z ± √

4t4
z + �4∗ . The

physical solution does not diverge at tz → ∞, has a nonzero
imaginary part, and at tz = 0 agrees with the 2D limit described
by T. Ando in Refs. 55,59. All these criteria are satisfied for
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FIG. 3. (Color online) Interlayer conductivity σzz (�ε) calculated
from Eqs. (8) and (16) in the strong-field limit h̄ωc/�0 = 40 as a
function of energy counted from the nearest LL at four different
values of tz/�0 = 0.1 (solid blue line), tz/�0 = 2 (dashed green
line), tz/�0 = 5 (dotted red line), and tz/�0 = 10 (dash-dotted
magenta line). In the limit 2t2

z � �0h̄ωc the interlayer conductivity
has approximately a semicircle shape of width 2tz. In the opposite
limit �0h̄ωc � t2

z the “conducting band” of each LL has the width
∼ √

�0h̄ωc.

sign “−,” which at �ε = 0 gives Re �∗ = 0 and

|Im�∗| =
√√

4t4
z + �4∗ − 2t2

z . (17)

Substituting this to Eq. (8) one obtains

σn (�ε = 0) = 2σ0h̄ωc�0

π�2∗
= 2σ0. (18)

Thus, in the minima of MQO, the interlayer MR may drop
to the values not smaller than Rzz(B = 0)/2. In the limit
h̄ωc > 4tz � √

�0h̄ωc each LL gives an essential contribution
to conductivity in the interval −2tz � �ε � 2tz. This follows
from Eq. (16) and can be seen from Fig. 3, where the
conductivity as a function of energy distance �ε to the nearest
LL has a dome shape of the width W ≈ 4tz, coinciding with
the bandwidth along the z axis in the absence of disorder.
The conductivity, averaged over period h̄ωc of MQO, is then
given by

σ̄zz =
∫ h̄ωc/2

−h̄ωc/2

dε

h̄ωc

σzz (�ε) ≈ σzz (0)
π

4

W

h̄ωc

= σ0 (2πtz/h̄ωc) ∝ 1/Bz. (19)

This predicts a linear background magnetoresistance Rzz =
1/σ̄zz ∝ Bz in the interval 4tz < h̄ωc � (4tz)2 /�0 of the
magnetic field in quasi-2D strongly anisotropic compounds.
Equation (19) also predicts a stronger dependence of σ̄zz on
tz: σ̄zz ∝ t3

z , unlike the usual dependence σ̄zz ≈ σ0 ∝ t2
z . In

Figs. 1 and 2 this unusual tz dependence reveals in the decrease
of 〈Rzz〉 /Rzz0 = σ0/σ̄zz at the same h̄ωc/�0 with the increase
of tz. The obtained nonquadratic dependence σ̄zz ∝ t3

z also
means that the two-layer approach becomes inapplicable at
tz � �∗ = √

�0h̄ωc/π .
In the opposite limit h̄ωc � �∗ � tz the “width of the

conducting band” from each LL is W ≈ 4�∗, and for the

background interlayer conductivity one obtains σ̄zz/σ0 ≈
2
√

�0/h̄ωc ∝ 1/
√

Bz, or

R̄zz (B) /R̄zz (0) ≈
√

h̄ωc/4�0 ∝
√

Bz (20)

in agreement with Refs. 37–40 and Fig. 2.
The magnetic field Bcr of the crossover from linear to

square-root dependence of MR Rzz (Bz) can be used to
estimate the value of the interlayer transfer integral in the
compound: tz ∼ √

�0h̄ωc, where ωc = eBcr/m∗c corresponds
to the crossover field. However, distinguishing linear from
square-root MR dependence requires a large interval of the
magnetic field. In Fig. 2 this crossover field can be seen on
the dotted blue curve at

√
h̄ωc/�0 ≈ 11. This crossover also

appears on the dash-dotted green curve at
√

h̄ωc/�0 ≈ 15.
The obtained monotonic growth of MR originates from

MQO but survives at a much higher temperature, when MQO
are completely suppressed. According to Eqs. (3) and (4), the
temperature smearing of the Fermi distribution function does
not influence the monotonic dependence of MR. Only at much
higher temperature, when the electron scattering by phonons
plays a major role in the relaxation of electron momentum, the
above monotonic dependence of MR is weakened. Similarly,
the long-range disorder, not included in the above calculation,
produces the local variation of the Fermi energy along the
sample on the scale greater than the magnetic length, which
damps the MQO but keeps the monotonic part of MR
almost unchanged. Therefore, even if MQO are not seen in a
compound because of strong disorder or high temperature, the
background longitudinal interlayer MR can be observed and
provides useful information about the electronic structure of
this compound. This feature of the background MR is similar
to that of slow oscillations in Q2D compounds at tz > h̄ωc

(Ref. 22).
To summarize, the calculation of longitudinal interlayer

magnetoresistance in Q2D metals is performed in the strong-
field limit h̄ωc > 4tz based on the anisotropic 3D electron
dispersion. It predicts a linear background MR R̄zz(Bz) =
1/σ̄zz ∝ Bz in the interval 4tz < h̄ωc � (4tz)2/�0 of magnetic
field, where σ̄zz has also unusual dependence on the interlayer
transfer integral: σ̄zz ∝ t3

z . At stronger field or at smaller tz <√
�0h̄ωc, the usual dependence σ̄zz ∝ t2

z is recovered, and the
MR transforms to the square-root dependence Rzz(Bz) ∝ √

Bz,
as was recently obtained in the limit tz � �0 � h̄ωc using
the two-layer tunneling approach.37–39 The present calculation
extends these results to the region

√
�0h̄ωc � tz � �0, but

shows that at tz �
√

�0h̄ωc the MR behavior changes and
the two-layer tunneling approach becomes inapplicable. The
magnetic field of the crossover from the linear to square-
root dependence of R̄zz(Bz) allows to estimate the interlayer
transfer integral tz ∼ √

�0h̄ωc from the experimental data. The
obtained longitudinal MR R̄zz(Bz) helps to explain numerous
experiments on interlayer MR in strongly anisotropic quasi-
2D compounds.22,26–33 The measurement of the monotonic
part of longitudinal interlayer MR is much easier than the
measurement of MQO or AMRO because a finite temperature
and long-range crystal imperfections do not affect R̄zz(Bz)
up to much higher temperatures or disorder. Therefore, the
experimental study of longitudinal interlayer background
magnetoresistance is proposed as a simple additional tool
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to investigate the electronic structure of strongly anisotropic
quasi-two-dimensional compounds in a wide range of param-
eters.
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