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Modification of the Stoner-Wohlfarth astroid by a spin-polarized current: An exact solution
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The conventional Stoner-Wohlfarth astroid describes magnetic switching caused by an external magnetic field
in a uniaxial, spatially uniform magnet. In spin-transfer devices the shape of the astroid is modified by the
current-induced spin torque. The astroid shape modification is calculated here for a setup with the spin polarizer
directed along the easy axis of the magnet, in which case the overall axial symmetry of the device is maintained.
Our method does not rely on the assumption of small displacement of equilibria by the spin torque and takes into
account that the destabilization of equilibrium states can be caused by two mechanisms: equilibrium merging,
already active in a conventional astroid, and local equilibrium destabilization produced by the spin torque. The
modified astroid has a self-crossing boundary and demonstrates a region with three stable equilibria. It is shown
that the region of stable magnetic energy maximum can be reached only through a narrow bottleneck in the
applied field space, which sets some stringent requirements for magnetic field alignment in the experiments.
Switching diagrams are then calculated for the setups with magnetic field not perfectly aligned with the easy
axis. Features not found in the approximate calculations are revealed and suggestions for their experimental
observation are provided.
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I. INTRODUCTION

Studies of magnetic switching, i.e., of transitions between
the distinct magnetic configurations have a long history. Since
any device with reliable switching constitutes a potential
magnetic memory cell, those investigations are often driven
by the needs of applied disciplines. Nevertheless, they are also
important in a fundamental sense allowing one to achieve a
precise understanding of the switching mechanism.

For a long time the only available method of causing
magnetic switching was an application of external magnetic
field. In general, field-driven transitions between nonuni-
form magnetic configurations characterized by multiple mag-
netic domains require rather complicated theories for their
description.1 A simpler switching behavior is found in sam-
ples with spatially uniform magnetization, such as nanosize
magnets with dimensions much smaller than the characteristic
domain wall width. Here the switching is governed by the
anisotropy energy and takes a particularly simple form in
the case of an easy axis anisotropy. In this case the solution
of the magnetic switching problems produces the “astroid”
curve.2

Theoretical predictions of the spin-transfer torque made
by Berger3 and Slonczewski4 opened a new possibility for
magnetization control. If a spin-polarized current is injected
into the magnet, an additional nonequilibrium torque is
produced. This torque is proportional to the current magnitude
and at sufficiently high currents it can switch the magnetization
of a nanoparticle even in the absence of the external field.4,6–9

When both the field-induced torque and the spin torque are
applied, the switching is a result of their combined action. The
state of the nanomagnet is now controlled by two experimental
parameters: the field and the current. One of the ways to
understand this situation is to consider field switching at a
fixed current magnitude. The solution to this problem gives
the “modified astroid.” Here we consider the spin torque
modified astroids in the axially symmetric case with spin
polarization of the current directed along the easy axis of the

magnet. Experimentally this case is realized in spin valves
using Co/Ni and/or Co/Pt multilayer stacks for their magnetic
parts.5 Such multilayers exhibit a strong interfacial anisotropy
directed perpendicular to their planes and forcing the easy
axis of the magnet and the current spin polarization to point
along the nanowire (Fig. 1, upper panel). For spin valves
of circular cross section the overall axial symmetry is thus
maintained. Modification of the astroid in an axially symmetric
case was studied by several authors, starting from the early
numeric calculations.10 Analytic approaches of subsequent
studies11–15 used certain approximations to get the astroid
shape. Several related publications16,17 considered the cases
of more complicated anisotropies. In this paper we find the
modified astroid in an exact fashion. Consistent application
of the theory reproduces many previous results11–15 but also
shows important differences and additional features.

To formulate the problem more precisely we first briefly
review the case of a conventional astroid. The states of the
uniformly magnetized particle are fully characterized by a
magnetization vector M with constant absolute value Ms

so that M = mMs , and m is a unit vector. Field-induced
switching is completely controlled by the magnetic anisotropy
and demagnetization energies. For the uniformly magnetized
particles they add up to a total effective anisotropy energy
Ea(m). In a special case of uniaxial anisotropy one has

Ea = −K(m · ẑ)2, (1)

where the unit vector ẑ is chosen along the magnetic easy
axis direction and K is the anisotropy constant. In the absence
of external field the magnetization has two stable equilibrium
directions, m = +ẑ and m = −ẑ. When an external field H is
applied and gradually increased in magnitude, the equilibria
change their positions in response. Eventually one of them is
destabilized, and a switching occurs at a critical field Hc.

The collection of critical points Hc forms a “critical surface”
S in the three-dimensional (3D) space of experimentally
controlled parameters (Hx,Hy,Hz). When H approaches and
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FIG. 1. (Upper panel) Spin torque device. Fixed magnetic layer
creates the spin polarization of the current injected into the free
magnetic layer. The easy axis of the free layer and the magnetization
of the fixed layer are directed along the z axis. (Lower left)
Conventional Stoner-Wholfarth astroid. (Lower right) Spin torque
modified astroid with current directed so as to stabilize the m = +ẑ

state (electrons flow from the fixed layer to the free layer). The
features in the lower part of the astroid are exaggerated.

reaches S, one of the equilibria is destabilized. This equilib-
rium mc will be called “critical.” One can visualize mc as a
point on the unit sphere in the (mx,my,mz) space. This point
changes its position in response to a change of applied field so
that mc = mc(H). If the applied field is slowly varied in time,
and the system resides in the critical equilibrium, a jump to a
different state will occur when the trajectory H(t) crosses S.
Importantly, if H(t) later crosses the critical surface backwards
at the same point, no switching will be observed, since now
the system does not reside in the critical equilibrium. To sum
up, every point of the critical surface S is characterized by a
certain critical state mc, and the side of the surface on which
this state is stable.

In the case of a uniaxial anisotropy, the axial symmetry of
Ea with respect to the z axis leads to a corresponding symmetry
of the critical surface: S becomes a figure of revolution around
ẑ. One can therefore study a generatrix curve of S in the 2D
plane (H⊥,Hz), where H⊥ =

√
H 2

x + H 2
y . This critical curve

is the Stoner-Wohlfarth astroid2 shown in Fig. 1 (lower left).
In the presence of a spin-transfer torque magnetic switching

is controlled by one additional parameter, the electric current
I . We consider the case where the spin polarizer p is directed
along +ẑ (Fig. 1, upper panel). In such a setup the overall axial
symmetry is preserved, S remains a figure of revolution in the
H space, and the switching can be described by a surface
in a 3D parameter space (H⊥,Hz,I ). Modified astroids are
the sections of this 3D surface by various I = const planes.
Jumping ahead, we show a sketch of a representative section
found in this paper in Fig. 1 (lower right). The switching
boundaries display a predictable overall shift towards the lower
values of Hz: The sign of I is chosen so as to stabilize the +ẑ

state and destabilize the −ẑ state. Naturally, less positive field
Hz is required to destabilize the −ẑ state, and a “depression”
develops at the top of the astroid. Likewise, a larger negative

Hz is required to destabilize the +ẑ state, and a “bubble”
develops at the bottom of the astroid. The bubble is connected
to the main body of the modified astroid by a “bottleneck.” The
depression and the bubble were identified in Ref. 12, though in
some form they were already found in Ref. 10. The elements
of the figure suggested in this paper are the bottleneck and the
self-crossing character of the boundary near it (Fig. 1, lower
right). Their explanation is our first major result.

Plotting the I = const sections is not the only possible way
to visualize the critical surfaces in the 3D space (H⊥,Hz,I ).
Alternatively one could study the H⊥ = const sections. A
particular section with H⊥ = 0 was a subject of many
investigations (see, e.g., Ref. 18 and references therein) and
is well understood. This section describes the experiments
conducted in an axial external field H = (0,0,Hz). Of course,
in practice the field cannot be aligned perfectly and a certain
shift or angular misalignment can exist. Studies14,15 that used
the approximation of small equilibrium displacements found
that even a small field misalignment produces qualitative
changes in the switching diagram shape. Our exact analysis
shows that the structure of the switching diagram is richer than
predicted by the approximate calculations. We find that it is the
narrowness of the bottleneck connecting the lower bubble to
the main body of the astroid that allows small inaccuracies in
the field alignment to produce significant qualitative changes
in the picture of critical lines. We plot the switching diagrams
and discuss their dependence on the field misalignment angle.
This constitutes our second major result.

II. PROCEDURE FOR FINDING THE
CRITICAL SURFACES

A. Magnetic dynamics in the presence of spin torques

The motion of magnetization M of the free layer is governed
by the Landau-Lifshitz-Gilbert (LLG) equation either in its
Gilbert form (we use the SI units),

dM
dt

= −γμ0M × Heff + α

Ms

M × Ṁ, (2)

or in the Landau-Lifshitz form,

dM
dt

= − γμ0

1 + α2
M × Heff − γμ0α

(1 + α2)Ms

M × (M × Heff),

(3)

where α is the Gilbert damping parameter and γ is the electron
gyromagnetic ratio. The effective field Heff accounts for (a)
externally applied magnetic fields, (b) magnetic anisotropy,
and (c) spin torques generated in spin transfer systems. It is a
sum of three terms,

Heff = H + Ha + Hst, (4)

where Ha and Hst are the anisotropy field and the Slonczewski
spin-transfer torque field,4,9,19–22 respectively,

Ha = − 1

μ0Ms

∂Ea

∂m
= Hkmzẑ, (5)

Hst = 1

μ0Ms

I

Ae

h̄

2

1

d
g(m · p̂)(m × p̂)

= 1

μ0Ms

I

Ae

h̄

2

1

d
g(mz)(m × ẑ). (6)
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Here Hk = 2K/μ0Ms is the anisotropy field, I/Ae = j/e is
the particle current density of itinerant electrons (with A being
the cross-section area of the device and j being the electric
current density), d is the thickness of the free layer, g(m · p̂)
is the spin-torque efficiency function, and we have substituted
p = +ẑ. Our representative results will be obtained using the
Slonczewski’s function,4,9

g(m · p̂) = 1

(1 + P )3(3 + m̂ · p̂)/4P 3/2 − 4
, (7)

where P is the degree of electron spin polarization in the
ferromagnetic material of the free and fixed layers.

Equation (3) can be rewritten in standard spherical
coordinates (θ,φ) associated with the unit vector m =
(sin θ cos φ, sin θ sin φ, cos θ ) (Fig. 1, upper panel). Using
three orthogonal unit vectors m, eθ = ∂m̂/∂θ and eφ =
(1/ sin θ )∂m̂/∂φ, and absorbing γμ0Hk into the redefinition
of time we get

(1 + α2)θ̇ = heff · eφ + αheff · eθ ,
(8)

(1 + α2) sin θ φ̇ = −heff · eθ + αheff · eφ,

where the normalized field is heff = Heff/Hk . At equilibrium,
both θ and φ should be time independent. In our case this leads
to a system of equations,

(heff)
θ ≡ heff · eθ = − ∂ε

∂θ
+ h · eθ = 0, (9a)

(heff)
φ ≡ heff · eφ = h · eφ + hst = 0. (9b)

Here

ε(θ ) = Ea

μ0MsHk

= −1

2
cos2 θ (10)

is the rescaled dimensionless anisotropy energy (from now on
we drop the subscript “a” for convenience of notation). For
p = +ẑ the spin torque field is directed along eφ . Thus it does
not appear in Eq. (9a) and contributes a term,

hst(θ,j ) = Hst · eφ

Hk

= − j

j0
g(cos θ ) sin θ, (11)

to Eq. (9b) with the characteristic current density defined
as j0 = 4edK/h̄ (we use j instead of I in the following
calculations). The spin torque term hst is proportional to the
current and vanishes at j = 0.

B. Equilibrium states

Normally one would like to solve Eqs. (9a) and (9b) and find
the equilibrium angles (θ0,φ0) as functions of the parameters
h and j . This way one would get all equilibria m0i(h,j ) for
a given set of experimental parameters (index i reflects the
existence of multiple equilibria). After that one can study
the stability of those equilibria in order to find the critical
surface S. However, as shown in Ref. 23 it is easier to search for
the critical surface using a variation of the method of Lagrange
multipliers. Namely, we will solve the system backwards,
assuming (θ0,φ0) to be given, and searching for an external
field h which makes m0 an equilibrium at a given current. It is
easy to see from the system (8) that such an h is not unique: If
a particular field h0 solves the equilibrium equations, then the
field h = h0 + λm0 with arbitrary λ will also be a solution.

Solutions for given m0 and j fill a whole line in the h space.
We will call it a “λ line.” Using (9a) and (9b) we find the λ

line equation,

h(m0,j,λ) = ∂ε

∂θ
eθ (m0) − hsteφ(m0) + λm0. (12)

Note that the first two terms in this expression are orthogonal
to m0. Equation (12) defines a mapping of vectors m0 residing
on a two-dimensional (2D) unit sphere to the 3D h space.
Alternatively it can be viewed as a mapping from a 3D (m0,λ)
space to the h space.

C. Stability of equilibria

While m0 is an equilibrium everywhere on the λ line, it
is not necessarily always a stable equilibrium. Let us study
the stability of m0 in an applied field h given by Eq. (12)
with a certain value of λ. To do that we investigate the linear
expansion of Eq. (8) up to the first order in deviations of m
from the equilibrium. The deviations are characterized by the
angle increments (δθ,δφ). Of course, in this expansion only m
is varied and h(m0,j,λ) remains constant. Linear expansion
provides a system of two coupled linear differential equations,(

δ̇θ

sin θ0 ˙δφ

)
= D

(
δθ

sin θ0δφ

)
, (13)

where D(m0,j,λ) is a 2 × 2 matrix,

D = 1

1 + α2

(
∂f θ/∂θ (∂f θ/∂φ)/ sin θ

∂f φ/∂θ (∂f φ/∂φ)/ sin θ

)∣∣∣∣∣
θ0,φ0

, (14)

with

f θ = heff
φ + αheff

θ , f φ = −heff
θ + αheff

φ.

Stability of an equilibrium requires both eigenvalues μ1,2 of
the matrix D(m0,j,λ) to have negative real parts. In the case
of a 2 × 2 matrix,

μ1,2 = tr[D]

2
±

√(
tr[D]

2

)2

− det[D], (15)

and the Re[μ1,2] < 0 requirement is equivalent to two inequal-
ities: det[D] > 0 and tr[D] < 0. Accordingly, an equilibrium
will be destabilized if either the determinant or the trace change
their signs. The determinant and the trace of D(m0,j,λ) are
given by the expressions (for brevity we drop the subscript “0”
in the equilibrium angles θ0 and φ0),

det[D] = 1

1 + α2

1

sin θ

(
∂heff

θ

∂θ

∂heff
φ

∂φ
− ∂heff

φ

∂θ

∂heff
θ

∂φ

)
,

(16)

and

tr[D] = 1

1 + α2

[
∂heff

φ

∂θ
− 1

sin θ

∂heff
θ

∂φ

+α

(
∂heff

θ

∂θ
+ 1

sin θ

∂heff
φ

∂φ

)]
. (17)

Whenever we will study the trace and the determinant on
a given λ line, a shortened notation D(λ) will be used.
Substituting Eqs. (9a), (9b), and (12) into (16), we find that
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the determinant is a quadratic function of λ with a positive
coefficient at the λ2 term. For ε = ε(θ ) and p = +ẑ the two
roots of the equation det[D(λ)] = 0 are given by

λ± = − 1

2 sin θ

∂(sin θε′
θ )

∂θ
±

√
1

4

(
ε′′
θθ − cos θ

sin θ
ε′
θ

)2

− 
.

Here ε′
θ stands for ∂ε/∂θ , etc.; 
 contains all the spin-torque

terms and is given by


 = cos θ

sin θ
hst

∂hst

∂θ
.

Substituting ε from (10) we get

λ± = 1

2
sin2 θ − cos2 θ ±

√
1

4
sin4 θ − cos θ

sin θ
hst

∂hst

∂θ
. (18)

Next, a substitution of Eqs. (9a), (9b), and (12) into (17) shows
that the trace is a linear function of λ with a negative slope and
the root of the equation trD(λ) = 0 is given by

λT = − 1

2 sin θ

∂

∂θ

[
sin θ

(
ε′
θ − hst

α

)]

= 1

2
sin2 θ − cos2 θ + 1

2α

(
cos θ

sin θ
hst + ∂hst

∂θ

)
. (19)

Two situations are possible:
(1) The roots λ± are real. Then for λ outside of the interval

(λ−,λ+) the equilibrium is a focus or a node in the sense of the
dynamical systems theory (Appendix A). It is stable for λ > λT

and unstable otherwise. For λ inside the (λ−,λ+) interval the
equilibrium is a saddle point, which is always unstable. The
stability condition takes the form,

λ > λT and λ < λ−,

or (20)

λ > λT and λ > λ+.

(2) There are no real roots of det[D] = 0, i.e., λ± are
complex conjugate numbers. Then the determinant condition
is satisfied for any λ, and the equilibrium is always a focus or
a node. Stability condition takes a form,

λ > λT and Im[λ±] �= 0. (21)

In the absence of spin-polarized current one gets 
 = 0, both
λ+ and λ− are real, and λT = (λ+ + λ−)/2. Stability condition
(20) is satisfied for λ ∈ (λ+,∞), i.e., m0 is stable when h
belongs to a semi-infinite ray in the h space. In the presence
of current, more complicated divisions of the λ line into stable
and unstable intervals can occur. For example, if λ± are real
and λT < λ−, there will be two intervals of stability: (λT,λ−)
and (λ+,∞).

Note that the current-dependent term in the expression (19)
comes with a factor of 1/α. Since Gilbert damping is small, this
means that λT is very sensitive to the changes of the current.
The term 
, representing the current contribution to Eq. (18),
does not contain a similar large factor, thus λ± are relatively
insensitive to the current changes.

D. Critical surfaces

We have shown that each λ line is divided into the intervals
of stability and instability of m0, and the end points of these

intervals are given by

h± = h(m0,j,λ±(m0,j )), hT = h(m0,j,λT(m0,j )), (22)

with the right-hand sides specified by Eq. (12). It was shown
in Ref. 23 that the sets of points h±(m0),hT(m0), obtained
as the argument m0 runs through all of its possible values,
form the three sheets S+, S−, ST of the critical surface S.
Therefore one may view the subscript “c” in the critical field
hc as an index assuming the values of “+”, “−”, or “T”. In the
most general case all three sheets of S are relevant. However,
there are special cases, e.g., the above-mentioned case of zero
current with λ− < λT < λ+, where some of the sheets become
irrelevant and are not included into S.

Note that this procedure produces the critical surface, but
does not yet provide complete information about switching.
Namely, it does not explicitly show which side of the surface
corresponds to the stability of m0. Such an analysis has to be
performed additionally, after the critical surface is found.

III. MODIFICATION OF THE
STONER-WOHLFARTH ASTROID

The critical surface sheets (22) of the modified astroid
are obtained by substituting expressions (18) and (19) into
Eq. (12). The resulting formulas are exact but very long.
Representative astroid shapes shown in the figures in this
section were obtained for spin polarization P = 0.5 and
current magnitude j/j0 = α = 0.1. Some of the figures show
sketches that are not drawn to scale but instead emphasize the
features produced by the spin torque.

A. Conventional Stoner-Wohlfarth astroid

First we consider the case of j = 0 to illustrate the method
by reproducing the conventional astroid. With hst = 0 and
axially symmetric energy ε(θ ) Eqs. (12) and (22) specialize to

hc(m0) = ∂ε

∂θ
eθ (m0) + λc(m0)m0. (23)

One can see that hc lies in the plane formed by the vectors m0

and ẑ. Together with the fact that the critical surface is a figure
of revolution this means that if m0 is varied in any φ = const
plane, then the points hc(m0) form the entire generatrix of S,
i.e., the desired critical curve in the (h⊥,hz) plane. In practice
we set φ = 0 and obtain the (hc⊥(θ ),hcz(θ )) = (hcx(θ ),hcz(θ ))
critical curve by varying θ in the [0,π ] interval. Three functions
λc(θ ) (c = +, − ,T) are shown in Fig. 2 (left). At j = 0 the
value of λT lies between the two real values λ+ and λ−
(see Sec. II C). Therefore there is only one boundary, λ+(θ ),
separating the stable and the unstable regions. Critical curves
hc(θ ) are plotted in Fig. 3 (left). Only the h+(θ ) curve is
relevant and it reproduces the conventional astroid.

The states destabilized at each point of S+ are well known.
For a field inside the astroid there are four equilibrium states:
An energy minimum m(+)

min in the upper hemisphere, another
minimum m(−)

min in the lower hemisphere, a maximum mmax,
and a saddle point msdl. When h reaches the astroid boundary
from inside, one of the minima collides with a saddle point
and disappears.

A comment has to be made about the relationship between
Fig. 2 (left) and Fig. 3 (left). In the mapping [(Eqs. (12)
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FIG. 2. (Color online) The λ+(θ ), λ−(θ ), and λT (θ ) curves shown
by black (blue), gray (red), and light gray (green) curves, respectively.
The relevant parts of the curves are shown as solid and irrelevant as
dashed lines. The stable region is shown in white. (Left panel) j = 0
conventional case. Stable region is given by λ > λ+. (Right panel)
j = 0.1j0. In the presence of spin torque the stable region is given by
the conditions (20) and (21).

and (22)] the λc(θ ) curves are mapped one-to-one to the
hc(θ ) curves. However, the mapping of the stability region
λ > λ+(θ ) shown in white in Fig. 2 (left) is more complicated.
This region is mapped on the whole h plane in such a way
that each (h⊥,hz) point outside the astroid has one stable
equilibrium point (θ,λ) mapped to it, and each point inside
the astroid has two stable points mapped to it.

B. Modified astroid

The case of a nonzero current j �= 0 has two important
differences from the conventional case. First, according to
Eqs. (12) and (22) the hc(m0) vectors are not necessary lying
in the plane formed by m0 and ẑ. Second, more than one point
hc(m0) may be relevant on some λ lines.

The first circumstance means that for m0 characterized by
φ = 0 all three components of the critical field hc(m0) will be
nonzero. However, due to the axial symmetry of the problem
the relative orientation of the vectors m0, ẑ, and hc(m0) is the
same regardless of φ, and S remains a figure of revolution.
It is therefore still sufficient to consider a subset of vectors
m0 characterized by a fixed φ = 0 and variable θ ∈ [0,π ] to
obtain the entire generatrix of the critical surface given by

(hc⊥(θ ),hcz(θ )) = (
√

h2
cx(θ ) + h2

cy(θ ) ,hcz(θ )).

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

h z
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h- hT h+

h- hT

FIG. 3. (Color online) Stoner-Wohlfarth astroids. (Left panel)
j = 0; (right panel) j = 0.1j0. Critical field curves hc are shown
using the same convention as in Fig. 2 above. The astroids are formed
by the images of the relevant (solid) parts of the λc curves from that
figure.

The second circumstance reflects the main qualitative
difference between the scenarios possible in conventional and
spin torque switching.25 For j = 0 the destabilization of an
equilibrium can only happen due to the sign change of det[D].
As a result, stable equilibria do not just become unstable
upon crossing the astroid boundary but disappear altogether
in the process of merging with other equilibria. For j �= 0
an additional scenario is possible in which the spin torque
changes the sign of tr[D], enabling a local destabilization of
an equilibrium. Locally destabilized equilibria still exist on the
other side of the critical surface but are unstable and do not
show up in experiments.

The functions λ±(θ ) and λT(θ ) at j �= 0 are plotted in Fig. 2
(right). One can see that every arrangement of λ± and λT

discussed in Sec. II C can be found for an appropriate value
of θ . An application of the criteria (20) and (21) gives the
region of stability shown as a white area. The boundary of the
stability region is composed of the pieces of λ± and λT curves.
The corresponding pieces of the h± and hT curves constitute
the modified astroid (Fig. 3, right), which exhibits the features
announced in Fig. 1 (lower right). The inset to Fig. 3 (right)
shows an enlarged view of the bubble in the lower part of the
astroid. One can see the bottleneck that connects the bubble to
the main body of the astroid and the triangular regions formed
by the self-crossing boundary. The details of these features
will be discussed below.

C. Analysis of equilibria and destabilization modes

As explained in Sec. II D, we now have to identify which
side of S corresponds to a stable critical equilibrium and
describe these equilibria at every point of S. A remark about the
nature of equilibria in the presence of spin torque is due here.
For j = 0 the equilibria coincide with the extremum points
of the total magnetic energy εtot = ε(m) − h · m. The energy
minima are always stable, the energy maxima and the saddle
points are always unstable. For j �= 0 the equilibria are not
located in the extrema of εtot and cannot be classified this way.
One can prove that the spin-transfer torque field cannot be rep-
resented as hst = ∂εst/∂m by some energy function εst,18 and
no effective energy of the type εeff = εtot + εst can be defined.
Nevertheless, it is frequently stated in the literature that the
spin torque can “destabilize an energy minimum” or “stabilize
an energy maximum.” Such statements cannot be precise
unless one defines when an equilibrium should be called a
minimum or a maximum in the j �= 0 situation. As explained
in Appendix A, it is the foci with a counterclockwise rotation
of the torque field around them that should be identified as the
quasiminima and the foci with a clockwise rotation—as the
quasimaxima. In the text below we will drop the prefix “quasi”
whenever it does not lead to a confusion. In the j = 0 case the
stability of a focus and its rotation direction are linked to each
other. This link is broken for j �= 0, e.g., a quasimaximum
can be unstable or stable depending on the current magnitude.
The node-type equilibria cannot be meaningfully identified
as either quasiminima or quasimaxima. The saddle points are
unstable in both j = 0 and j �= 0 cases.

It is worth noting here that the absence of an energy function
describing the dynamics of the free layer in the presence of spin
torque is not in contradiction with the notion of an effective
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FIG. 4. (Color online) Separation of the (θ,λ) plane into the
regions with different types of equilibria. The λc lines are shown
using the convention of Fig. 2. (Upper panel) j = 0. (Lower panel)
j = 0.1j0. The gray regions (drawn not to scale) containing the
node-type equilibria are defined by the λf curves. One can prove
that the width of this region reduces to zero at the intersections of the
λ± and λT curves.

potential describing the behavior of spin transfer devices at
finite temperatures.26–31 That effective potential is not used in
the LLG equation but is obtained by averaging the spin torque
contribution over the unperturbed trajectories. Its functional
form and the degree of applicability can be discussed only after
the equilibrium points and the phase portrait of the system are
understood in the LLG framework.

Each point of the (θ,λ) plane corresponds to an equilibrium
state. Figure 4 shows a division of this plane into the regions
of different types of equilibria. The gray area of node-type
equilibria is bound by the curves λf (θ ) on which the foci are
converted into the nodes. According to Eq. (15) these curves
can be obtained from an equation tr[D(λf )]2 − 4 det[D(λf )] =
0. As expected from the arguments given in Appendix A,
the regions of foci with opposite senses of rotation have no
common boundaries. In the j = 0 case (upper panel) they are
separated by both the regions of nodes and saddle points. For
j �= 0 (lower panel) they are sometimes separated only by a
band of node-type equilibria. In addition, in the j �= 0 case the
λT line separates the quasiminimum and quasimaximum areas
into stable and unstable parts.

We now return to the question of finding the side of S

where the critical equilibria are stable. The answer to it
can be obtained from the mapping of the (θ,λ) plane on
the (h⊥,hz) plane defined by the formulas (12) and (22).
Similar to the case of a conventional astroid, this is not a
one-to-one mapping. To study it we return to Eqs. (9a) and
(9b) and search for the equilibria m0 at a given applied field
h. If the field is chosen in the (x,z) plane, h = (hx,0,hz),
the equilibrium m0 is characterized by the angles (φ,θ ) with
φ �= 0 due to the presence of spin torque. Explicitly calculating
h · eθ = hx cos θ cos φ − hz sin θ and h · eφ = −hx sin φ, we

j/j  > 0

Γ1

Γ2

sdlmax
min

max
sdl

max
min

(a)

(b)
(c)

III
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C
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B’

C’

h

h

i

f

D

III

II

0

IVIV

VV

EE’

III

FIG. 5. Qualitative picture (drawn not to scale) of destabilization
near the bottleneck. The equilibria in regions I, II, . . . V are explained
in the text. Upon entering into the gray band, one of the foci becomes
a node. The insets show the destabilization scenarios on the critical
surface. Trajectories �1 and �2 are discussed in the text to illustrate
the dependence of the final state on the path taken.

get a system of equations:

− sin θ cos θ + hx cos θ cos φ − hz sin θ = 0,
(24)

−hx sin φ + hst (θ ) = 0.

Its solutions were studied using a procedure described in
Appendix B, and the results are summarized in Fig. 5. The
equilibria are labeled in the same way as in Sec. III A: This
turns out to be possible because in the axially symmetric
case the spin torque does not create any new equilibria in
comparison with the case of zero current.

The region of the (h⊥,hz) plane shown in Fig. 5 corresponds
to hz < 0, so m(−)

min is always stable and does not switch. We
will be only interested in the evolution of m(+)

min, msdl, and mmax.
Let us start the discussion with region IV. When h resides in
this region, the four equilibria have the same properties as
they do at zero current inside a conventional astroid. Next, we
slowly change the applied field, so that the point h(t) moves
along a certain trajectory � in the (h⊥,hz) plane. If � goes
from region IV to region V, m(+)

min is annihilated in a collision
with msdl on the BC curve. Just before this collision m(+)

min
enters the narrow gray band where its nature changes from a
stable minimum to a stable node. Region V has two equilibria:
a stable minimum m(−)

min and an unstable maximum mmax.
On a trajectory going from region IV to region II the

maximum mmax becomes a stable equilibrium on the ADA′
curve. Stabilization of a maximum point by the spin torque
is well known for an applied field of fixed direction.4,7,18,24,25

The bubble bounded by the curve ADA′ is the generalization
of the stable maximum region for the case of variable field
direction. Region II has four equilibria, of which three are
stable (m(−)

min, m(+)
min, mmax), and one is unstable (msdl). In

most of the region m(−)
min and m(+)

min are stable minima, and
mmax is a stable maximum. Inside the narrow gray bands
one or more of the stable equilibria become stable nodes
and strictly speaking cannot be called a quasimaximum or
a quasiminimum. However, the narrowness of the gray bands
makes it possible to loosely speak about region II as having
two stable minima and one stable maximum. Node areas are
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FIG. 6. The folding mapping (drawn not to scale) of the (θ,λ)
plane to the (h⊥,hz) plane in the vicinity of point B.

present in other regions as well. Whenever a loose description
of the type discussed above is possible, we will not specifically
mention them. However, sometimes the process of conversion
of a minimum or a maximum into a node plays an essential
role, e.g., when going from region I to region II. In those cases
it will be discussed in detail.

The evolution of the equilibria on a trajectory going from
region II into region III is similar to that on a trajectory going
from IV to V. The m(+)

min state collides with msdl on BC. The
difference is that here mmax is stable in II and remains stable in
III. Altogether, region III has two stable equilibria: m(−)

min and
mmax.

On a trajectory going from region II into region I a collision
of mmax and msdl happens on the AB curve. Since mmax is
stable in II, this may produce an experimentally observable
switching event. Region I has only two equilibria, both of
which are stable minima m(±)

min. A similar collision of mmax

with msdl occurs upon going from region IV to region I across
the AE boundary. But in contrast with the II → I transition, the
maximum is already unstable in region IV and this collision
does not produce a switching event: The AE boundary is
irrelevant for switching and therefore is shown as a dashed
line in Fig. 3 (right) and Fig. 5. It is interesting that the spin
torque creates a distinct region I which does not exist at zero
current. Inside this narrow “inner tube” around the z axis there
are no saddle and maximum equilibria, and the pattern of
torque field is qualitatively the same as in the case of h being
exactly parallel to z.

It is instructive to consider an experiment with the field
changing along the trajectories �1 and �2 shown in Fig. 5.
These trajectories start with the system in the energy minimum
state m(+)

min and reach the same final point in the h space. When
the �2 trajectory is followed, the system remains in the m(+)

min
state: Crossing the AB curve does not affect m(+)

min because,
as discussed above, this equilibrium is not critical on AB. In
contrast, following �1 brings the system into the mmax state.
On this trajectory the equilibrium experiences transformations
while crossing the gray band of node-type equilibria. Upon
entering this band the minimum m(+)

min is converted into a
stable node, and upon exiting the band on the other side it is
further converted into a stable focus with an opposite sense
of rotation, i.e., into a stable maximum mmax. Regions I and
III both have two stable equilibria, one of them being m(−)

min,
and the other being a stable minimum m(+)

min in region I and a
stable maximum mmax in region III.

The behavior of equilibria described above can be
summarized by a picture of the (θ,λ) → (h⊥,hz) mapping
in the vicinity of point B (Fig. 6). This mapping folds
the (θ,λ) plane into three sheets on the right of the point

B, while on the left of B the plane remains unfolded.
One can see by inspection that in the vicinity of B

such a procedure transforms the regions of the equilibria
shown in Fig. 4 into the regions shown in Fig. 5. In the
folded region the minima reside on the lower sheet, the
maxima on the upper sheet, and the saddle points occupy
the middle sheet. A trajectory going on the right of B (e.g., the
�2 trajectory in Fig. 5) remains on the lower sheet until it hits
the BC curve where the minimum collides with the saddle.
A trajectory going on the left of B (e.g., the �1 trajectory in
Fig. 5) climbs to the top sheet. This trajectory does not intersect
with the BC curve since the two belong to different sheets
of the surface. As the field moves along �1, the equilibrium
is converted form a minimum to a maximum after it crosses
the gray band. If such a trajectory eventually reaches the AB

curve, the maximum collides with the saddle and disappears.

IV. SWITCHING DIAGRAMS IN A SLIGHTLY
MISALIGNED AXIAL FIELD

The presence of a narrow bottleneck in the modified astroid
means that although the bubble region may be reasonably large,
it is rather hard to reach the stable maximum state inside of it
by varying the external field. Consider an experiment where
the applied field is nominally directed along the easy axis but
in reality is slightly misaligned.11,13–15 A field with a tilt angle
β with respect to ẑ evolves along a trajectory �β given by a
straight line (h⊥,hz) = (h sin β,h cos β) (Fig. 7). The system
starting from the m(+)

min state at zero applied field will evolve
into the stable maximum only if �β is kept inside the bottleneck
(trajectory �β1). If the trajectory wanders outside of the bot-
tleneck and the BC line is crossed (trajectory �β2), the stable
minimum collides with the saddle point and is never converted
into a stable maximum. The width of the bottleneck 
h can
be estimated in the limit j/j0 
 1 where we have obtained


h ≈ 4

(
g|θ=0

j

j0

)3/2

(j/j0 > 0),

(25)


h ≈ 4

(
g|θ=π

j

j0

)3/2

(j/j0 < 0).

For j/j0 = 0.1 and P = 50% this approximation gives

h = 9.71 × 10−3 in good agreement with the actual
bottleneck width 
h = 9.68 × 10−3 found in Fig. 3 (right).

Γβ1
Γβ2

A

B

C

A’

B’

C’

D

FIG. 7. Trajectories �β1 and �β2 (drawn not to scale) represent
two tilting angles of the applied field. Both of them lead into the
bubble region but the stable maximum state is reached only along �β1.
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FIG. 8. (Color online) Switching diagram for a misaligned field.
(Upper panel) Calculation for the tilt angle tan β = 0.01 (left) and
tan β = 0.02 (right). The dashed lines show the β = 0 critical curves.
(Lower panel) Sketch (drawn not to scale) of the features produced
by the field misalignment. The regions and special points are marked
as in Fig. 5: The ST curves are dark gray, the S± curves are black, the
light gray bands contain the node-type equilibria, etc. The dash-dotted
straight line represents the ST curve in the β = 0 case.

We can now discuss the (h,j ) switching diagrams in a
misaligned field. The critical curves in the (h,j ) plane can
be obtained as follows. For each value of current the �β line
intersects the critical surface at a field h̃ which can be found
from a system of equations,

hc⊥(θ,j ) = h̃ sin β, hcz(θ,j ) = h̃ cos β.

Solving this system for the unknowns θ , h̃ one finds the
expression for the critical curve h̃(j,β) in the (h,j ) plane.
This procedure was performed numerically using the results
of Sec. III for hc⊥(θ,j ) and hcz(θ,j ). The resulting plots are
shown in Fig. 8, where the upper panels show the typical results
of calculations, and the lower panel sketches the features of
the critical curves produced by the field misalignment. The
ST boundary, which was a straight line at β = 0 (dash-dotted
line), is separated into two curved pieces: one above and one
below the h axis. The pieces AB and BC of the S± boundary
become relevant and serve as a connection between the pieces
of ST. The larger the tilt angle β of the applied field, the higher
point B rises above the zero-tilt ST boundary. Eventually B can
rise above the stability boundary EE′ of the m(−)

min equilibrium,
a situation which actually occurs for the parameters used in the
upper panels. The critical curves divide the (h,j ) plane into the
regions that correspond to the regions shown in Fig. 5 and are
numbered in the same way. Transitions between those regions
follow the pattern described in Sec. III C. Additionally, the
upper panels of Fig. 8 show gray areas where a precessional
motion of the free layer occurs.4,7,18 The method used in this

paper does not allow one to study the precession states of
a spin-transfer device systematically. For example, it cannot
capture the areas where a stable precession coexists with
stable static equilibria.18 The study of precession states in
a misaligned field should become a subject of future research.

One important conclusion is that there is no bottleneck
phenomenon in the (h,j ) switching diagram. Starting from a
stable minimum in region I or IV it is possible to get into the
stable maximum state in region III along any trajectory that
goes above point B, and there is no restriction on how high
such a trajectory may rise above this point (the EE′ line has
no relevance to this process). It is true though, that the larger
is the value of β, the larger current is needed to go above the
point B in the (h,j ) plane. The way to understand this result is
to note that the width of the astroid bottleneck increases with
current, so at higher currents it is possible to make it wide
enough to contain the whole �β trajectory.

Our exact (h,j ) switching diagrams exhibits some qualita-
tive differences from the results obtained in Le Gall et al.15 by
an approximate method. On the one hand, the approximation
of small equilibrium displacements used in that paper seems to
predict an equivalent of an infinite rise of point B (Figs. 13 and
14 of Ref. 15). On the other hand, their LLG simulations pre-
dict finite jumps of the stability boundaries (Fig. 16 of Ref. 15)
that are much closer to our results and may differ from them
simply due to a limited number of initial conditions used in
numeric simulations. In addition, our approach predicts certain
hysteresis phenomena that can be tested in experiments. For
example, trajectories �1 and �2 going from region I to region
II in Fig. 8 (lower panel) will bring the system into different
final states, in full analogy with the trajectories discussed
in Fig. 5.

-1
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0
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1 -1

0

1
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h
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-j/j0

h z

h
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FIG. 9. (Color online) 3D critical surface in the (hz,h⊥,j )
parameter space. (Upper panel left) Calculation for j/j0 > 0. (Right)
j/j0 < 0. The asymmetry of the results is due to the asymmetry of
the efficiency factor g(cos θ ). (Lower panel) A sketch for j/j0 > 0,
drawn so as to magnify the features produced by spin torque.
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Finally, we present the whole 3D critical surface (Fig. 9).
This figure can be obtained by superimposing a sufficient
number of fixed current sections found in Sec. III B.

V. CONCLUSIONS

We have calculated the shape of the Stoner-Wholfarth
astroid for a uniaxial magnet subject to the spin torque
produced by a spin polarizer directed along the easy axis. The
shape of the modified astroid can be described as “bubble”
connected through a “bottleneck” to the main body of the
astroid with a “depression” on the top (Fig 1). Previous
calculations12,15 were improved by using both the trace and the
determinant criteria of stability in an exact fashion instead of
using an approximation of small equilibrium displacements.
Such an approximation cannot be justified whenever some
equilibria are already close to each other at zero current, as
is the case near the boundary of the conventional astroid.
As a result, it became possible to study the structure of the
astroid boundary near the bottleneck and its self-crossing was
found. This feature turned out to be related to the stabilization
of a maximum state inside the bubble and the presence of
three stable equilibria inside the triangles formed by the
self-crossing.

We further found that the spin torque produces an “inner
tube” region on the phase diagram. In this narrow tube
enclosing the easy axis the system has only two equilibrium
states and exhibits the same phase portrait and qualitative
behavior as when the magnetic field is exactly aligned with
the symmetry axis.

Part of the inner tube forms a bottleneck. The narrowness
of the bottleneck makes it hard to steer the equilibrium into the
lower bubble and observe a stable maximum state, unless one
takes special care to limit the deviations of the field from the
easy axis. Such deviations naturally occur in real experiments
due to the impossibility of a perfect field alignment and this
brings up the question of a switching diagram in a misaligned
field. We show that at high currents such a diagram looks
qualitatively similar to the case of perfect field alignment.
This is explained by the effect of bottleneck widening at
higher currents. The latter effect also makes it possible to
use a variable current setup to circumvent the difficulties
of reaching the stable maximum state. Close to zero current
any misalignment qualitatively changes the (H,I ) switching
diagram. The distortions become more prominent and reach
larger current magnitudes as the misalignment angle increases.
The diagrams calculated in this paper improve the results of
Ref. 15 in terms of finding the exact shape of these features
and providing an accurate description of the switching pattern
created by their presence. While it is still difficult to use the
existing experimental results5,12,15 to distinguish between the
exact and the approximate predictions, we suggest how this
can be done by studying the hysteretic behavior of the system.
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APPENDIX A: QUASIMINIMA AND QUASIMAXIMA
IN THE PRESENCE OF SPIN TORQUE

The LLG Eq. (3) has a form Ṁ = F(m), where F is the
torque field. At the equilibrium points, where F(m0) = 0, it
can be linearized giving the system (13). Depending on the
eigenvalues of the matrix D in the linearized equations the equi-
libria can be the following: Foci (complex eigenvalues), nodes
(real eigenvalues of the same sign), and saddle points (real
eigenvalues of the opposite sign). The foci and the nodes can be
either stable or unstable, and the saddles are always unstable.

When I = 0 and α = 0, the minima and the maxima are
both foci. The difference between them is the direction of
rotation of the field F around the equilibrium point. We will
define the sense of rotation as it is observed by looking from the
outside of the unit sphere. Then the minima are the foci with
counterclockwise (CCW) rotation and the maxima are the foci
with clockwise rotation (CW). Based on this, in the I �= 0 case
we call the foci with a CCW rotation the “quasiminima”, and
the foci with a CW rotation the “quasimaxima.” The following
table of identification follows.

I �= 0, α > 0 I = 0, α = 0

Focus with CCW rotation Energy minimum
Focus with CW rotation Energy maximum

Node –
Saddle Saddle point of energy

The nodes are the only equilibria that do not have a
counterpart among the I = 0, α = 0 equilibria.

When I = 0, α > 0 the minima are always stable and the
maxima are always unstable. In the I �= 0, α > 0 case this
one-to-one correspondence between stability and the sense of
rotation breaks down. The LLG equation may, for example,
exhibit an unstable CCW focus, which should be understood
as quasiminimum destabilized by the spin torque.

The sense of rotation is a discrete characteristic, and a
given focus remains either CW or CCW when the external
parameters, such as magnetic field and current, are gradually
changed. In order to change its sense or rotation, a focus must
be first transformed into a node. The latter is characterized
by the real eigenvalues of D, and the field F does not have a
definite sense of rotation near it.

APPENDIX B: GRAPHIC SOLUTION METHOD

A straightforward way to solve the system (24) would be
to express sin φ = hst (θ )/hx from the second equation and
reduce it to one equation on θ . However, we choose to proceed
in a little bit different way, which will give us a benefit of being
able to simultaneously find the solution and check its stability.
The field h and the equilibrium m0 are always related to each
other through Eq. (12) with a certain value of λ. Solving for λ

one gets

λ = m0 · h = hx sin θ cos φ + hz cos θ. (B1)

Using Eq. (24) one can now express the right-hand side of this
identity in two different ways. From the first equation one gets

hx cos φ = sin θ + hz

sin θ

cos θ
,
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while from the second

hx cos φ = ±
√

h2
x − h2

st (cos θ ),

where a plus sign is used when φ ∈ [−π/2,π/2] and a
minus sign is used when φ ∈ [π/2,3π/2], i.e., the two
cases correspond to positive and negative projections m0x .
Substituting these relationships into the expression (B1) we
find two independent expressions for λ:

λ = sin2 θ + hz

cos θ
, λ = ±

√
h2

x − h2
st (cos θ ) + hz cos θ.

The right-hand side of the second equation can be replaced by
an expression that does not contain hz. This is done using a
relationship following from (24):

hz = hx cos φ cos θ − sin θ cos θ

sin θ

= ±
√

h2
x − h2

st (cos θ )
cos θ

sin θ
− cos θ.

We finally get

λ = sin2 θ + hz

cos θ
≡ �z(θ ),

(B2)

λ = ±
√

h2
x − h2

st (cos θ )

sin θ
− cos2 θ ≡ �±(θ ).

System (B2) should be understood as follows. For a given
field h = (hx,0,hz) all equilibrium angles θi are found from
the equations,

�z(θ ) = �±(θ ). (B3)

This transcendental equation involving elementary trigono-
metric functions can be easily studied numerically.

The value of λ corresponding to a given equilibrium is
given by either of the two functions (B2). The latter property
allows us to set up a convenient graphic procedure for finding
a solution and at the same time checking its stability. We plot
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FIG. 10. (Color online) Graphic procedure employed to study the
equilibrium states and their stability. Thin solid curves show a family
of �c(θ ) functions drawn for three values of magnetic field with the
same hx and different hz projections. Since �± are hz independent,
the family consists of one �+ curve, one �− curve, and three �z

curves. Intersections of these curves give the equilibrium points. The
arrows show the evolution of the equilibria with varying external
field.

the functions �z(θ ), �±(θ ) and λ±(θ ), λT(θ ) [(18) and (19)]
on the same graph (Fig. 10). The horizontal coordinates of
the intersections of the �z(θ ) and �±(θ ) curves provide the
positions θi of all equilibria. The vertical coordinate of each
intersection point gives the value of λ corresponding to this
equilibrium. If an intersection point lands in the region of
stability determined by the criteria (20) or (21), i.e., in the white
region in Fig. 10, the equilibrium is stable. As one changes h,
the curves �z(θ ) and �±(θ ) are continuously modified, the
intersection points move and can enter or leave the region of
stability.

A note should be made about the cusp point B of the
S± boundary in Figs. 5, 6, etc. We find that this is not the
point where S+ and S− join each other. An examination of the
representative cases leads to conjecture that B is determined
by the field h at which the functions λ−(θ ) and �±(θ,h)
touch each other. This is consistent with the fact that a saddle
point collides with the quasiminimum on the BC and with a
quasimaximum on the BAD curves.
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