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Two-magnon scattering in permalloy thin films due to rippled substrates
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We report on the influence of correlated substrate roughness on the two-magnon scattering in 30 nm Ni81Fe19

thin films. Using ion beam erosion, periodically modulated substrates (ripple) were produced with wavelengths
between 20 and 432 nm. This surface corrugation is adopted by magnetic layers grown on top yielding dipolar
stray fields if magnetization and ripple ridges are aligned perpendicular to each other. In case of λ � 222 nm,
the evolving periodic field pattern triggers two-magnon scattering, which depends strongly on the direction of
magnetization with respect to the ripple pattern. In-plane broadband ferromagnetic resonance reveals prominent
peaks in the frequency-dependent linewidth measured perpendicularly to the ripple ridges. These peaks can be
switched off if the magnetization is aligned along the ripple ridges. Our results are compared to predictions
obtained from recent theory on spin waves in periodically perturbed films.
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I. INTRODUCTION

Magnetic relaxation processes have gained a broad interest
over the past decades since a detailed understanding of the
underlying physical mechanisms offers the possibility to
specifically tailor magnetization dynamics in ferromagnetic
thin films.1,2 This is of crucial importance when pursuing new
devices concepts, e.g., in spintronics or spin-torque applica-
tions, where the control of magnetization damping is essential
for functionality.3–6 The Gilbert damping is studied since
decades.7–12 As it is mainly isotropic in 3d ferromagnets13 it
does not offer much possibilities of influencing the magnetic
relaxation without changing intrinsic material properties. In
contrast, extrinsic relaxation contributions can be induced
artificially, e.g., by defects or misfit dislocations due to Pd
capping layers.14 Hence this approach offers the possibility to
tailor the relaxation rate to some extent. Among all extrinsic
relaxation mechanisms, two-magnon scattering (TMS) is the
most prominent contribution. It is known for bulk materials
since the late 1950s15,16 and was confirmed in thin films a
decade later.17 A standard tool to study both relaxation paths
is given by ferromagnetic resonance (FMR). In FMR, the
linewidth is a direct measure of the relaxation allowing to
disentangle the contributions. TMS contributions introduce
nonlinearities by scattering energy from the excited uniform
mode (k = 0) into degenerate spin wave states (k �= 0). This
is activated by scattering centers, e.g., randomly distributed
surface defects.18 Besides that, defects in magnetic films may
induce inhomogeneous broadening of the linewidth.19,20 As a
consequence of TMS linewidth broadening and/or a shifted
resonance field of the k = 0 spin wave mode were observed in
Ni50Fe50 thin films,21 Fe/V multilayers,22,23 Fe3Si,24 or Fe14

thin films.
Approaches to specifically influence the frequency-

dependent linewidth by artificially modifying the sample’s
layout were for instance realized by coupling Ni90Fe10 to
a synthetic antiferromagnet,25 altering a seed layer beneath

a Fe65Co35 layer,26 or by changing the samples structure
by making grooves27,28 into the substrate. Especially, in the
latter case, the frequency-dependent linewidth increases non-
monotonously in frequency when recorded perpendicularly
to the groove ridges. Recently, Barsukov et al. have used
patterned periodical stripe defects on top of thin permalloy
(Ni81Fe19 ≡ Py) films that showed a similar behavior strongly
deviating from the linear Gilbert damping behavior usually
expected in the frequency dependence.29 In fact, distinct
peaks appeared in the linewidth whose frequency positions are
determined by the defect width, its periodicity, and the material
properties when measuring perpendicularly to the stripe
defects. This is understood in the framework of a theory on spin
waves in periodically perturbed films, presented by Landeros
and Mills very recently assuming stripelike defects on top of
a magnetic thin film.30 Hence a variety of possibilities exists
to tailor magnetization dynamics by externally altering the
sample properties. However, due to the variety of contributing
relaxation processes the FMR linewidth may not automatically
be interpreted as magnetization damping, which is considered
as dissipation of energy from the spin system to the lattice.
Especially if TMS is taken into account, the excited uniform
mode (k = 0) undergoes a relaxation process distributing the
energy within the spin system to higher order spin waves with
k �= 0 that in turn may scatter back to the uniform mode.
Hence also the damping of k �= 0 modes needs to be taken into
account.

The focus of this paper lies on the influence of the
substrate morphology exhibiting a correlated, anisotropic
surface modulation (obtained by ion-induced nanopatterning)
on the extrinsic TMS relaxation process. In comparison
to lithographic approaches combined with ion irradiation,29

rippled samples are much easier in preparation and offer a
continuous surface modulation on a large sample area, while
leaving the magnetic material unaffected.31,32 After reviewing
the underlying perturbation theory of Landeros and Mills in
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Sec. II, details on sample structure and its preparation are
presented in Sec. III and discussed in Sec. IV. Finally, our
findings are summarized in Sec. V.

II. PERTURBATION THEORY: A REVIEW

In the following, the basic assumptions and findings of
the perturbation theory presented by Landeros and Mills are
shortly reviewed. For further details, the reader is kindly
referred to Ref. 30 as well as Ref. 18. The latter reference
contains the underlying response theory of Arias and Mills for
in-plane magnetized ultrathin films exhibiting TMS, which in
turn also was extended to the out-of-plane case.33,34 Here, we
will restrict all considerations to the in-plane case only.

The spin wave dispersion relation of an in-plane magnetized
d = 30 nm thin Py film can be expressed in terms of the
stiffness fields18,35 H||, Hz by

ω (k) = γ
√

H|| (k) Hz (k), (1)

where k denotes the absolute value of the in-plane spin
wave propagation vector with frequency f = ω (k) / (2π ) and
γ = gμB/h̄ is the absolute value of the gyromagnetic ratio
containing the g factor. Note that in the present case, the coor-
dinate system is fixed to the sample geometry as it is commonly
used in experiments. In contrast, in the theory of Landeros
et al.,33 the stiffness fields rotate with the magnetization as it
is required for the Hamiltonian, so H|| (k) labels the stiffness
field in the plane but perpendicular to the magnetization.
The stiffness fields include the applied magnetic field H , the
exchange stiffness D = 2A/Ms, saturation magnetization Ms,
and an in-plane uniaxial magnetic anisotropy (UMA) constant
K2||:33–35

H|| (k) = μ0H cos (ϕ − ϕH) + 2K2‖
Ms

cos 2 (ϕ − ϕu)

+μ0Ms

[
1 − 1 − exp (−kd)

kd

]
sin2 ϕk + Dk2

(2)

and

Hz (k) = μ0H cos (ϕ − ϕH) + 2K2‖
Ms

cos2 (ϕ − ϕu)

−μ0Ms

[
1 − 1 − exp (−kd)

kd

]
+ Dk2

+μ0Meff . (3)

Here, μ0Meff = μ0Ms − 2K2⊥/Ms is the effective magnetiza-
tion containing the out-of-plane uniaxial anisotropy K2⊥. The
equilibrium angle of M (ϕ), the field direction (ϕH), and the
in-plane UMA direction (ϕu) are measured from the x direction
(see Fig. 1). ϕk is the angle between magnetization and spin
wave propagation direction.

For parallel alignment or small values of ϕk, the spin
wave dispersion relation becomes degenerate in energy. If
the magnetization is tipped out of the plane, the degenerate
magnon state vanishes if the angle between the magnetization
and the plane is larger than 45◦.33 The case of degenerate
states is shown in Fig. 2(a) for μ0Ms = 1 T, d = 30 nm,
D = 24 T nm2, g = 2.11, and vanishing anisotropy constants
Ki, while using different external field values. In order to
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FIG. 1. (Color online) Geometry used in the perturbation model.
Like ϕu the angles ϕ, ϕH of magnetization M and external field H
(not shown) are lying in the xy plane and are measured from x.

scatter energy from the excited k = 0 to the degenerate state,
a periodic scattering potential is mandatory that triggers the
process and fulfills momentum conservation. Assuming this
potential has the periodicity a0 = 250 nm in real space, its
reciprocal lattice vector is given by g0 = 2π/a0. Integer
multiples gm = mg0 (m > 0) of g0 are displayed in Fig. 2(a)
by dashed lines, whereby the field values in the dispersion
relation are chosen in a way to match the degenerate states
and reciprocal vectors. If this requirement is fulfilled, TMS
may occur, while field values in between will not match
the periodicity and, thus, do not contribute to the scattering
substantially. Hence, for the frequency-dependent linewidth
mainly distinct field values, and so frequencies, will cause
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FIG. 2. (Color online) (a) Spin wave dispersion of a d = 30 nm
thin Py film for different external fields. Dashed lines mark multiples
of g0 = 2π/a0 with a0 = 250 nm. (b) Modeled linewidth if a
perturbation of h = 3 nm is assumed as well as a Gilbert damping of
α = 0.007. Defect widths are 100 (green, solid), 125 (red, dashed),
and 250 (blue, dotted) nm.
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TMS. Therefore distinct peaks are visible in Fig. 2(b), centered
at the degenerate frequencies.

In order to induce a periodic defect structure in a thin
magnetic film a stripelike pattern was assumed in Ref. 30
on the film’s top with a periodicity of a0 and a width of w, as
depicted in Fig. 1. This steplike surface perturbation can be
described by the Fourier series

hstep (x) = h

π

∞∑
m=−∞

sin (mπw/a0)

m
exp (img0x) , (4)

where h is the step height. Since the stripes are formed by
magnetic material dipolar stray fields evolve at the step faces
that penetrate the ferromagnetic layer beneath forming the
periodic scattering potential. The evolving dipolar stray field
and its comparison to the actual case of rippled samples will
be discussed in detail in the following section.

Note that the theory presented in Ref. 30 considers
stripelike defect structures where the associated magnetic
charge distribution is 1D, i.e., it does not depend on the
coordinate normal to the nominal film. Hence the charges
reside in well defined positions x = m a0. If one considers just
the first Fourier contribution (m = ±1) of function (4) to obtain
a sinusoidal profile quite similar to the ripples, this would
violate the assumption made for the periodic one-dimensional
charge distribution.

Finally, from the stray field the scattering matrix can be
calculated, which enters the response function of the magnetic
film and allows to calculate the half-width half-maximum
linewidth in presence of the perturbations:

�H = 	 (0) + 
I (ω)

γ 2[H|| (0) + Hz (0)]
. (5)

	 (k) is a wave vector dependent function linear in frequency
containing the stiffness fields and intrinsic damping constant
α, while 
I (ω) is the imaginary part of a frequency-dependent
function containing information about the perturbation and
being responsible for the TMS response of the film. For both
functions, the explicit form may be found in Ref. 30. As an
example Fig. 2(b) depicts the evolving frequency-dependent
linewidth of a perturbed film for different choices of the defect
width w using the same parameters as in Fig. 2(a). In addition,
α = 0.007 and h = 3 nm were chosen. As shown in the graph,
the linewidth shows in the depicted range up to three distinct
peaks that are influenced by the ratio between defect width w

and periodicity a0.
In the case that defect width and periodicity are equal,

the linewidth reveals only a linear increase having no peak,
which is understood since this case approximates the planar
limit having no perturbation at all. Focusing on the case
w = 100 nm three peaks are visible that correspond to the
degenerate state g0 and its multiples [see Fig. 2(a)]. As shown
by the w = 125 nm example, the peaks are not always visible
and vary in height. The reason is the ratio of w and a0

causing Fourier components in Eq. (4) to vanish if mπw/a0

becomes a multiple of π . With respect to the peak height, h

has the strongest influence (not shown), since it quantifies the
strength of the scattering potential. This is a consequence of
the magnetic charges of the defects, which naturally increase
with h. For a fixed a0 the relative peak position is given by

ω (k = 0) = ω (k = mg0) and depends on the film’s thickness
and material parameters D, Ms, and anisotropy fields Ki.
Furthermore, the stiffness field H|| [see Eq. (2)] includes the
spin wave propagation angle ϕk, which will change with the
external field and additionally shifts the peak position, as will
be shown later. It should be noted that the TMS mechanisms
may cause a shift and splitting of the observed FMR mode as

I is strongly frequency dependent. This is predicted by the
theory for the response function but explicitly neglected in the
calculation of the linewidth given in Eq. (5), which thus is only
valid for small enough perturbations. As it will be seen later
this is the case for rippled films.

In the experimental section following below, the surface
corrugation caused by ripples will be compared to the stripe
case assumed in the perturbation theory with respect to the
evolving dipolar fields. Furthermore, the influence of the
measured linewidth and the applicability of the model will
be discussed.

III. EXPERIMENTAL DETAILS

In order to investigate the influence of the substrate
morphology onto dynamic magnetic properties two kinds of
Si(100) substrates were used: (i) planar samples for reference
purposes and (ii) rippled substrates with a well defined surface
modulation of periodicity λ. The rippled substrates were
produced by ion beam erosion using Ar+ or Xe+ ions under
an angle of 65◦–67◦ with respect to the sample’s normal,
where the primary ion energy determines the wavelength
of the modulation.36 Details of the preparation process are
reported in Ref. 37. Due to sample transfer under ambient
conditions both samples exhibit an amorphous surface layer
of natural oxide (SiO2). In case of the rippled samples, the
necessary sputtering process during the sample preparation
causes a much thicker (dependent on ion energy) amorphous
layer compared to naturally oxidized (usually up to 2 nm in
thickness) substrates.

After substrate preparation, atomic force microscopy
(AFM) was performed to determine the morphology and
ensure substrate quality. Subsequently, the templates were son-
icated in an isopropanol bath, inserted into a molecular beam
epitaxy system, and annealed to 200 ◦C. The 30 nm Py film was
deposited at a base pressure of less than 10−10 mbar using a rate
below 0.2 Å/s. To prevent the sample from further oxidation,
a 3 nm Cr cap was grown. After sample preparation, a second
AFM measurement was performed in order to check potential
changes in the surface morphology. Image processing was
done using WSXM38 and GWYDDION39 software. To access the
film’s structure across the Py thickness transmission electron
microscopy (TEM) was applied. Therefore lamellae (thickness
below 100 nm) were cut from the films using a focused ion
beam (FIB) method. The TEM cross-section images were used
to extract the layer’s shape, which allowed for calculating
the magnetic configuration and the evolving dipolar stray
fields using the micromagnetic simulation package OOMMF.40

Finally, magnetic characterization was performed by means
of vector network analyzer ferromagnetic resonance (VNA-
FMR). An Agilent E8364B two-port VNA was used to
generate microwaves with frequencies from 10 MHz up to
50 GHz with an amplified power of up to 500 mW coupled
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M. KÖRNER et al. PHYSICAL REVIEW B 88, 054405 (2013)

(b)

2 mµ λ=222 nm
: 0–78 nmh

(a)

300 nm λ=47 nm
h:  0–18 nm

30 nm

30 nm

C

Py/Cr

Si
a-Si

x
z

(c)

(d)

FIG. 3. (Color online) (a) and (b) Sample characterization using
AFM (height scale labeled by h, insets show the 2D FFT) prior to
layer deposition. (c) and (d) TEM images taken after deposition. In
(a) and (c), images are shown for ripples with λ = 47 nm and in
(b) and (d) for λ = 222 nm.

into a coplanar waveguide (CPW). The CPW’s width was
80 μm and the samples were placed face-down on the CPW.
By sweeping an external magnetic field, applied in-plane and
perpendicularly to the microwave field, the FMR signal was
recorded using the complex microwave scattering parameter
S21, i.e., the transmission of microwaves emitted from port one
and received on port two of the VNA.

IV. RESULTS AND DISCUSSION

As already mentioned, in a first step the rippled substrates
were characterized after ion beam erosion with respect to their
surface morphology using AFM. Two corresponding images
are shown in Figs. 3(a) and 3(b), respectively. The wavelength
of the surface modulation can be extracted by using the 2D fast
Fourier transformation (FFT), which is depicted by the insets.
The FFTs clearly underline the anisotropy of the surface by
showing two satellite peaks. From the distance between both
peaks, the ripple wavelength λ can be derived. Additionally,
the root mean square (rms) roughness was calculated from
these images. A summary of the samples is given in Table I.
One observes an increase in rms roughness and ripple peak-
to-peak amplitude δ for increasing wavelength, where the
only exception is the sample with the highest wavelength of
λ = 432 nm. In this case, a superstructure started to appear
caused by nonlinear effects during ion beam erosion.41 After
material growth, the rms value usually increases slightly,
whereas the ripple wavelength stays constant. Further studies
on this may be found in Ref. 32. Due to the high ripple
peak-to-peak amplitudes in case of high wavelengths—around
the film’s thickness and beyond—the question arises whether
the assumption of perturbation is still valid and, additionally,
how dipolar fields are distributed in comparison to the assumed
stripe case of the model.30

To investigate the material growth and to answer whether
rippled films can be viewed as being perturbed, TEM

TABLE I. Structural parameters (periodicity λ, rms roughness,
and peak-to-peak height δ) as well as magnetic parameters (exchange
stiffness D, inhomogeneous linewidth contribution �H inh

pp , and
damping constant α) of the samples. Along the easy axes α equals
the hard axis values except for λ = 222 nm, where α = 0.0062(2).
The g factor of the samples with λ � 103 nm was determined as
g = 2.11(1).

D �H inh
pp

λ rms δ easy hard easy hard α

(nm) (nm) (nm) (T nm2) (T nm2) (mT) (mT) hard

– 0.2 – 24(1) 24(1) 0.3 0.4 0.0062(2)
27 0.9 1.8 24(1) 21(1) 0.5 1.2 0.0063(2)
35 1.7 2.3 24(1) 21(1) 0.7 0.7 0.0062(2)
47 2.5 3.5 24(2) 26(1) 0.5 0.3 0.0065(2)
103 2.7 6 25(1) 24(1) 1.1 0.5 0.0063(2)
222 12.3 30 26(1) 25(2) 0.6 1.0 0.0075(3)
341 27.9 61 – – – – –
432 16.5 60 – – – – –

cross-section images of the two rippled samples with wave-
length of 47 and 222 nm were recorded. In each of both images,
four different layers are observable, as depicted in Figs. 3(c)
and 3(d). At the bottom, the Si substrate is visible, which is
followed by amorphous Si. In the case of λ = 47 nm, this
layer has a thickness of 1–2 nm, which is barely visible and
mainly originates from natural oxidation when transferring
the substrate under ambient condition. In contrast, the λ =
222 nm case shows an enlarged amorphous layer unevenly
distributed with the surface corrugation. This is caused by
strongly increased ion energies of 40 keV during sputtering,
necessary to prepare high-wavelength ripples. Here, the ions
penetrate the Si surface causing amorphization within the ion
penetration depth, while shadowing effects of the corrugated
surface, together with the tilted ion incidence angle, cause the
asymmetric shape. Due to the amorphous substrate surface,
the deposited layers of Py and Cr grow in a polycrystalline
fashion. Finally, the TEM images end with a carbon layer
deposited prior to the lamella cutting to protect the magnetic
layers during FIB milling.

Both TEM images show a congruent layer growth, where no
curvature dependent thickness variation can be observed. To
visualize this parallelism between the layer’s upper and lower
interfaces, the lower one was marked by a dashed white line
that was duplicated and parallelly shifted to the upper interface,
perfectly reproducing it. Therefore, for both thicknesses, no
significant thickness variation was observed excluding dipolar
fields that would originate from varying layer thicknesses.

In Ref. 32, it was shown that rippled magnetic films, com-
parable to the one shown in Fig. 3(c), exhibit dipolar magnetic
fields causing the magnetization to align partially with the
surface corrugation.42 However, the tilt away from the perfect
alignment of a planar film is rather small. This also applies
to the dipolar field strengths when being compared to the
magnetization, which justifies the assumption of perturbation
in this modulation limit. Nevertheless, the TEM image in
Fig. 3(d) shows that film thickness and ripple amplitude are
comparable to each other for a wavelength of λ = 222 nm.
Additionally, the exchange length for Py is typically around
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5 nm and thus well below the modulation length of the surface.
Therefore a parallel alignment of the magnetization with the
surface corrugation can be expected. To prove this assumption,
micromagnetic simulations will be discussed in the following.

The sample geometry for the simulation was taken from
Fig. 3(d) where the interface corrugation was extracted from
the image and implemented in OOMMF using a polynomial
ansatz. For simplicity, only one interface was approximated
and the derived function shifted by the film’s thickness d =
30 nm to model the magnetic film. The other parameters were
set to μ0Ms = 1T, D = 24 T nm2, and λ = 216 nm, where
the latter originates from the TEM picture and differs only
slightly from the averaged value determined by AFM. The
cell size of the simulation grid [using the coordinate system
depicted in Fig. 3(d)] was set to 1 × 5 × 0.5 nm3, which is
much below the exchange length and necessary to model the
surface corrugation in order to minimize artifacts caused by
step edges. The simulation volume was 216 × 50 × 100 nm3

with periodic boundary conditions along the x direction.
In order to prevent y from being an easy axis the slice
geometry—equivalent to the TEM geometry—was chosen,
enabling investigation of the magnetization with and without
external field along the direction of interest (x).

As expected, the magnetic moments align parallel with
the surface modulation for vanishing external field and start
to reorient along the field direction if an external field is
present. This is exemplarily shown in Fig. 4(a), where a single
slice along the y direction is presented for an external field
of 0.5 mT along the x direction showing the magnetization
alignment (arrows: x, color: z component). Red (blue) colors
label positive (negative) values and green (orange) arrows
mark positive (negative) orientations. Even for vanishing
external field the magnetization alignment is not perfect with
the surface, which in turn gives rise to stray fields. If the
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FIG. 4. (Color online) Micromagnetic simulations of the ripple
profile extracted from Fig. 3(d) for an external field of μ0H = 0.5 T.
The color code shows the component of (a) the magnetization along z

and (b) the stray field along x, where red (blue) colors denote positive
(negative) values. Small arrows denote the in-plane orientation, where
the color displays (a) the x and (b) the z component with green
(orange) colors denoting positive (negative) values. The full range of
the color scale is (a) ±251 and (b) ±38 mT, respectively.

field strength is increased, the magnetization starts to point
towards the ripple slopes, which enhances the dipolar field
strength by keeping the pole positions nearly unchanged.
In Fig. 4(b), the dipolar field is depicted evolving from the
magnetization configuration shown in Fig. 4(a). In comparison
to the magnetization, these fields are much smaller. This
in turn justifies the assumption that the magnetic film is
perturbed by dipolar fields, where only a slight influence on
the magnetization can be observed. Nevertheless, the shape of
the dipolar field is quite different to the stripe case. This will
have a strong influence on the magnon scattering property and
is discussed in detail below.

The magnetic investigations were performed using VNA-
FMR, which allows to excite the samples in a broad frequency
range. To explore the in-plane anisotropy and linewidth
contributions, two types of measurement geometries were
used: (i) a f (H ) dependence at fixed angles of the external
field, usually along the easy and hard anisotropy direction, and
(ii) an in-plane angular dependence that changes the in-plane
angle of the external magnetic field. For the planar case, the
in-plane angular dependence (not shown) reveals a uniaxial
magnetic anisotropy K2||/Ms below 1 mT, as it is known for
Py thin films. Cubic anisotropy contributions are one order of
magnitude smaller, which is due to the poly-crystalline sample
structure. For the effective magnetization μ0Meff = μ0Ms −
2K2⊥/Ms = 1021 mT was measured, which is close to μ0Ms.
This indicates that the out-of-plane anisotropy contribution
K2⊥/Ms is negligible. From the f (H ) dependence, the g factor
was determined resulting in g = 2.11(1).

In Fig. 5, the measurements are depicted for a planar refer-
ence sample. The frequency-dependent resonance field shows,
next to the FMR mode, a second branch that corresponds
to a perpendicular standing spin wave43 (PSSW) and allows
to determine the exchange stiffness D, as D = 24(1) T nm2.
Besides that, Fig. 5(b) shows the frequency dependence of the
peak-to-peak linewidth of the FMR signal recorded along the
easy axis of the sample. The linewidth of the PSSW mode
equals the linewidth of the FMR mode and therefore is not
shown. The linear increase indicates pure Gilbert damping,
that can be modeled by

�H G
pp = 2√

3

α

γ
ω (6)

and is also obtained from Eq. (5) if the perturbation term 
I

vanishes. Note that the factor 2/
√

3 is used to convert between
half-width half-maximum and peak-to-peak linewidth �H

and �Hpp, respectively. To account for the case of a residual
linewidth at zero frequency, a frequency independent contri-
bution �H inh

pp is added to the Gilbert damping term, which
is also known as inhomogeneous line broadening. Applying
Eq. (6) and the inhomogeneous broadening to the data gives a
Gilbert damping of α = 0.0062(2) and an inhomogeneous line
broadening of �H inh

pp = 0.25 mT for the easy axis. Along the
hard axis, the same Gilbert damping behavior is observed,
while the inhomogeneous broadening slightly increased to
�H inh

pp = 0.35 mT. Hence the planar reference sample shows
an isotropic in-plane linewidth, dominated by Gilbert-like
relaxation mechanisms. A corresponding behavior was also
observed for the in-plane angular dependence (not shown).
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FIG. 5. (Color online) Planar reference sample of 30 nm Py. (a)
Field dependence of the FMR mode (black circles) and the first PSSW
(green squares). (b) The linewidth of the FMR mode. For clarity the
linewidth of the PSSW is not shown as it is identical to the FMR
mode’s linewidth. The solid lines are fits to the data.

Now we turn to the rippled samples. From Fig. 2(a) it
becomes clear that not all reciprocal periodicities g0 = 2π/a0

will trigger TMS scattering. A too small a0 causes the recip-
rocal lattice number g0 to be bigger than the k distance of the
degenerate states. Therefore TMS will occur only at very high
field/frequency values and thus out of the measurement range.
Additionally, peaks at high frequencies are broadened due to
intrinsic damping and will be hardly visible with respect to
the latter. To estimate the lower modulation limit necessary to
observe TMS within a 30 GHz measurement range, two basic
assumptions can be made: (i) the defect periodicity equals the
wavelength, so a0 = λ and (ii) the defect width is roughly half
the wavelength w = λ/2, which is due to the asymmetry of
the ripples, a very rough estimation that will be discussed in
detail later. Using this parameter set, the perturbation theory
predicts no changes in linewidth (within the given frequency
range of up to 30 GHz) if the wavelength stays below λcrit ≈
70 nm. Hence, to determine the general impact of rippled
surfaces onto magnetic properties, samples are investigated
that have a wavelength around and below the limit. Like in
the case of the planar reference, the samples discussed below
exhibited a negligibly small fourfold anisotropy. However, the
in-plane twofold contribution strongly increased, which has

FIG. 6. (Color online) Frequency dependent linewidth measured
parallel (green squares) and perpendicular to the ripple ridges (red
circles) of λ = 222 nm. Solid lines are fits using the perturbation
theory (blue) or Gilbert damping (orange), respectively. The cyan
dashed line depicts the case of a0,1 = 137 nm, w1 = 62 nm, and the
magenta dashed dotted line a0,2 = 88 nm, w2 = 39 nm. The black
dotted line is the average case with ā0 = 112.5 nm, w̄ = 50.5 nm.

its origin in the dipolar fields evolving if the magnetization is
perpendicularly oriented to the ripple crests.42 This behavior
is discussed in detail in Ref. 32. Using f (H ) measurements
the g factor was found to be isotropic for all samples up to
λ = 103 nm. In addition, the first PSSW mode was observed
again. From this, D was extracted. Along the easy axis, D

equals the planar reference value, while measurements along
the hard axis showed a slight decrease of D = 21(1) T nm2

for samples with λ = 27 nm and λ = 35 nm. Increasing the
wavelength to λ = 47 nm yields the planar value instead.
Since the determination of the exchange stiffness includes the
in-plane UMA contribution, the deviation may originate from
structural changes caused by the ripple morphology at small
wavelengths. Furthermore, no changes in the intrinsic damping
factor α were found within the experimental precision, being
isotropic over the whole in-plane angular dependence. Most
important, no influence of the frequency-dependent linewidth
in form of peaks could be observed.

In contrast, increasing the ripple wavelength to λ = 222 nm
has a strong impact on the linewidth behavior when the
measurement is taken perpendicularly to the ripple ridges.
The corresponding measurements are depicted in Fig. 6.
While the linewidth parallel to the ripple ridges shows again
pure Gilbert damping, the perpendicular orientation reveals a
well pronounced peak. Surprisingly, for the frequency range
considered here, only a single peak is observed, which, in
addition, has a much broader distribution than an equivalent
stripelike perturbed film (black dotted curve). The absence of
higher-order peaks may have different reasons: (i) if the surface
modulation is a sinusoidal function Eq. (4) provides just a
rough estimation of a 1D modulated charge distribution if m is
limited to m = ±1, and thus, only a single peak (corresponding
to g0) would result. (ii) The modulation periodicity is a
multiple of the defect width and thus suppresses peaks or (iii)
the interplay between defect periodicity/width and exchange
stiffness simply shifts the peak out of the measurement range.
The first two arguments can be ruled out immediately if the
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spatial distribution of the dipolar field is considered. Hence,
observing only a single peak within the measurement range can
be attributed to the chosen geometry of the modulation. The
final slope of the linewidth with f (red open circles) indicates
that there should be a second peak at f > 30 GHz. Otherwise
the slope of the red circles and the green squares should be
equal.

To compare the model with the measurement, the pa-
rameters of the surface modulation need to be adapted to
the perturbation model. With respect to magnetic properties,
μ0Ms = 1 T and d = 30 nm were used. Again, the first
PSSW mode was used to determine the exchange stiffness
to D = 25(2) T nm2 [D = 26(1) T nm2] along the hard (easy)
axis, which is comparable to the λ = 103 nm case. However,
note that the evaluation is based on the assumption of vanishing
influences of TMS with respect to the resonance position. Since
the g factor determination is very sensitive on the resonance
position, the previously determined value of g = 2.11 was
used. In contrast, D is most sensitive to the spacing between the
FMR and PSSW mode. Due to the unknown influence of TMS
also in this case the planar reference value of D = 24 T nm2

was used. Furthermore, the defect periodicity (a0 = 216 nm)
is taken from the TEM images, whereas the defect width
corresponds to the length on the ascending or descending
ripple slope, as described in the next paragraph. Note that
the choice between the two possibilities of the defect width
has no influence on the result as long as both widths sum up
to the defect periodicity.

However, using the parameters obtained in this way results
in a first linewidth peak at a frequency of f ≈ 6.5 GHz and
is thus well below the experimentally observed peak position
of f = 10.7(3) GHz. Keeping anisotropy Ki, the spin wave
propagation angle ϕk, and film thickness d fixed, mainly two
parameters determine the peak position, namely the defect
periodicity a0 and the exchange stiffness D. Since the latter
has to be changed by a factor of two to match the experimental
observation—which is not seen in the recorded modes—the
initial assumption of equal ripple wavelength and defect
periodicity has to be reconsidered.

To do so, the dipolar fields created by the rippled mor-
phology will be compared with the stripelike defect structure
assumed by the theory. Based on Eq. (4) Landeros and Mills
derived an expression for the in-plane dipolar stray field
component generated by a surface stripe pattern as it is depicted
in Fig. 1. The corresponding field pattern is shown in Fig. 7 for
a 30 nm Py film with a defect height of h = 3 nm, periodicity
of a0 = 250 nm, and defect width w = 115 nm. Note that
only the stray field component inside the Py film is depicted
neglecting the defect structure. The underlying periodicities
are denoted by arrows highlighting a0 and w. As it can be
seen from the image, the stray field changes once its strength
inside the film over the defect period in a steplike manner
and is thus divided into two parts with nearly constant field
strengths. Thereby, the stray field below the stripe defect nearly
vanishes, while it has a much higher value next to the stripe
with a steplike transition region.

This in turn is not the case for the rippled geometry, where
the field modulation changes continuously with the surface
corrugation as it is shown in Fig. 4(b). More important, due
to the rising and falling slopes, the film exhibits minima and
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FIG. 7. Plot of the dipolar stray field assumed in the perturbation
theory caused by stripe defects of a0 = 250 nm, w = 115 nm, and
h = 3 nm. Only the configuration inside a 30 nm thick Py (μ0Ms =
1 T, D = 24 T nm2, external field of 0.1 T along the x axis) film is
shown.

maxima at which the dipolar fields reverse the sign across
the film’s thickness. Since the magnetization is aligned in the
plane and due to two opposing curvatures across a single wave-
length not only a single periodicity is observed but multiple
ones. Exemplarily, two periodicities and corresponding defect
widths are highlighted in Fig. 4(b). From the image, the values
a0,1 = 137 nm, w1 = 62 nm, and a0,2 = 88 nm, w2 = 39 nm
were taken. The resulting linewidths are calculated for both
cases where the obtained frequency dependencies are plotted
in Fig. 6 by a cyan dashed line and a magenta dashed dotted
line, respectively. For the defect height, an arbitrary value
of h = 1 nm was chosen to scale the height of the linewidth
peaks to the measurement. Both resulting peaks are covered
by the measured peak with respect to its frequency position.
Since the ripple morphology creates a continuous transition
in the stray field not a single parameter set is obtained but a
continuous range of periodicities and corresponding widths.
This continuous range superimposes multiple peaks, which
sum up in the measurement and results in a broadened peak
distribution. Simply averaging the two given periodicities—
basically the limiting cases—results in ā0 = 112.5 nm and
w̄ = 50.5 nm, which is plotted in Fig. 6 by a black dotted line
reproducing the peak’s center. Note also that ā0 almost equals
half the wavelength of λ = 222 nm, which is obvious since the
two extrema of the surface corrugation have a mean distance
of λ/2. In order to approximate the measured linewidth peak
by a model of continuously superimposed peaks a series of
200 model curves was averaged changing the defect periodicity
a0 linearly between 72 and 139 nm and the defect width
between 39 and 62 nm. The slight deviation to the previously
determined a0 range simply results from uncertainties in the
graphical determination of a0 from the cross-sectional TEM
image, where additionally only a single wave was evaluated
neglecting a variation in the wavelength as it is suggested by
the AFM images shown in Fig. 3. In contrast, w does not
influence the frequency position of the first order peaks and,
thus, cannot be approximated by the fit.

For the defect height h, a linear dependence was assumed
starting at 1.2 nm at the lower limit of a0 increasing to
3.5 nm when reaching the center of the defect range and
finally decreasing again to 1.2 nm until the upper limit of
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a0 is reached. This assumption is justified by Fig. 4(b) since
the strongest dipolar fields are roughly separated by half
the wavelength in distance, while shorter/longer periods have
smaller dipolar fields. In this way, the morphology of a single
ripple wave is approximated by stripe defects with respect to
the dipolar fields. Note that inhomogeneities caused by the
varying ripple quality are neglected. The resulting curve is
depicted in Fig. 6 by the blue solid line, perfectly reproducing
the data. It also reproduces the asymmetry of the peak’s
slopes, which are caused by the increasing linewidth of single
peaks occurring with increasing microwave frequency (cf.
cyan dashed and magenta dashed dotted curves). Note that due
to averaging the resulting peak height appears much smaller
than a single linewidth peak calculated with h = 3.5 nm would
look like. As mentioned earlier, perturbations cause a shift
and splitting of the measured resonance. Although this has a
remarkable influence when calculating the film’s response for
a single a0, w set the averaging over a whole range causes a line
shape where the determination of a single resonance position
and width is possible. However, this means that the observed
line broadening results from averaging resonances and, thus,
is apparent. An increase in damping would only be present
if the k �= 0 modes—excited by TMS—exhibit an increased
damping with respect to the k = 0 mode. Finally, the Gilbert
damping α = 0.0062(2) derived from the measurement equals
the value for the reference sample if measured parallel to the
ripple ridges and increases to α = 0.0075(3) for perpendicular
alignment.

The peak position as well as its magnitude is influenced
by the ripple wavelength set during sample preparation and
by the external field direction with respect to the ripple
ridges during measurement. Both cases are depicted in Fig. 8,
where panel (a) shows the frequency dependent linewidth
for different angles with respect to the ripples. Here, ϕH

measures the angle between external field and the direction
perpendicular to the ripple ridges of the λ = 222 nm sample.
By increasing ϕH the linewidth peak slightly shifts up in
frequency by simultaneously decreasing in magnitude. The
latter is understood in the framework of the dipolar field
strength that is responsible for triggering TMS. By rotating the
magnetic fields towards the easy axis (parallel to ripple ridges)
the dipoles become weaker in strength and finally vanish if the
easy axis alignment is reached (black diamonds). To include
this into the perturbation theory, as it is pointed out in Ref. 30,

I needs to be scaled by cos4 ϕH. It might be tempting to
discuss this within context of the critical angle, where TMS
shuts off if ϕk exceeds a critical value, thus suppressing the
mode degeneration.18,33 However, the estimated critical angle
of ϕc = 20◦ does not explain the entire angular dependence
(not shown), since the multiple periodicities and the imperfect
ripple structure may further broaden the critical angle, as it
occurs with the linewidth peak in Fig. 6. Here, a superposition
of different stripes was considered to fit the data. Although
the experimental data do not follow exactly the critical angle
criteria, the individual stripes indeed follow this criteria,
having a narrow angular dependence with the corresponding
shut-off of TMS if ϕk exceeds the critical angle.

The increasing peak position can be understood considering
the following. (i) The resonance condition (1) includes the spin
wave propagation angle ϕk entering the stiffness field H|| in
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FIG. 8. (Color online) Linewidth peak in dependence of (a) the
external field orientation ϕH for λ = 222 nm and (b) the ripple
wavelength λ at ϕH = 0◦. Dashed lines mark the peak maxima.

Eq. (2). The perturbation direction triggering the spin waves
is set by the ripple ridges. Thus, under the assumption that 
k is
perpendicular to the ridges, ϕk increases if the magnetization
is turned away from the perpendicular alignment by changing
ϕH. (ii) When the 
H component along the hard magnetization
axis is reduced this may influence the dipolar stray field
distribution. This in turn alters the scattering periodicity and
thus the linewidth peak position, but no significant changes in
the stray field periodicity are observed in Fig. 4. In addition,
this effect leads to a reduction in scattering strength and hence
the amplitude of the linewidth peak is reduced.

For Fig. 8(b), the frequency dependent linewidth was
recorded perpendicularly to the ripple ridges and plotted as
a function of ripple wavelength. For comparison, the reference
case of λ = 27 nm having no peak is shown. The remaining
wavelengths show a decrease in peak position with increasing
ripple wavelength. Due to increasing λ the average periodicity
ā0 increases, which thus leads to a decrease in the reciprocal
lattice vector g0. Therefore the scattering condition is fulfilled
at lower fields corresponding to lower microwave frequencies.

From the peak positions of the λ = 341 nm case and
λ = 432 nm the averaged periodicity was determined to be
ā0 = 146(14) and 182(30) nm. Within the given error, these
corresponds to the surface modulations set by the ripples. The
height of the peak is influenced by the ratio between defect
width and periodicity [see Fig. 2(b)]. This ratio changes with
the ripple wavelength.
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Another interesting feature is observed well above the
linewidth peaks in Fig. 8(b). The slope of the data of the
341 and 432 nm sample remarkably differ from the other
two samples. The reason might be the evolution of a broad
second peak. Hence, Gilbert damping is not the only linewidth
contribution in this range. This in turn could also explain the
higher α value seen in Fig. 6 for perpendicular alignment.

Proven by TEM cross-section images [see Fig. 3(d)], ripples
obey no perfect sinusoidal modulation and hence those higher-
order linewidth peaks (|m| > 1) should exist. Smaller defect
periodicities, e.g., caused by nonperfect ripples, will cause
even higher frequencies. Calculations show that the higher
order peaks are broader. Hence they might blend into the linear
Gilbert background, thus increasing the slope. Nevertheless,
in the calculation of the λ = 222 nm case, no further peaks
at higher frequencies exist. This suggests that other (smaller)
defect periodicities may be present in the samples that are
neglected in the model. Such contributions may come from
the variation of the ripple quality, whereas the model assumes
a perfect ripple periodicity of the simulated single wave shown
in Fig. 4.

V. SUMMARY

In this work, we investigated the influence of periodically
modulated substrates on 30 nm thin Py films with respect to
magnetic relaxation properties. From investigations presented
earlier, it is known that rippled substrates introduce an
UMA that in turn is caused by periodic dipolar stray fields
generated by the modulated surface. These fields were used

to extrinsically modify the relaxation mechanisms by intro-
ducing two-magnon scattering. In contrast to intrinsic Gilbert
damping, TMS is strongly direction dependent and correlated
to the surface morphology. Hence the frequency-dependent
linewidth is enhanced when measuring perpendicularly to the
ripple ridges and reduces to the Gilbert contribution for parallel
alignment. In the first case, a peak evolves for sufficiently high
wavelengths, whose frequency position is determined by the
periodicity of the surface modulation. This can be understood
in the framework of the perturbation theory presented by
Landeros and Mills as a superposition of different scattering
periodicities causing an apparent increase in the measured
linewidth. Additionally, influences on the in-plane angle-
dependent linewidth behavior are found. The symmetry in
linewidth is caused by the symmetry of the substrate’s surface
modulation. Therefore using rippled substrates provides a fast
and easy method to extrinsically tailor magnetic relaxation by
simply changing the magnetic field direction or the excitation
frequency of the microwave field. Especially the first alters the
linewidth by up to 500% in magnitude if the magnetization
direction is switched between easy and hard axis alignment.
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29I. Barsukov, F. M. Römer, R. Meckenstock, K. Lenz, J. Lindner,
S. Hemkento Krax, A. Banholzer, M. Körner, J. Grebing,
J. Fassbender, and M. Farle, Phys. Rev. B 84, 140410(R) (2011).

30P. Landeros and D. L. Mills, Phys. Rev. B 85, 054424 (2012).
31M. O. Liedke, M. Körner, K. Lenz, F. Grossmann, S. Facsko, and

J. Fassbender, Appl. Phys. Lett. 100, 242405 (2012).
32M. O. Liedke, M. Körner, K. Lenz, M. Fritzsche, M. Ranjan,
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