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Disordered systems have grown in importance in the past decades, with similar phenomena manifesting
themselves in many different physical systems. Because of the difficulty of the topic, theoretical progress has
mostly emerged from numerical studies or analytical approximations. Here, we provide an exact, analytical
solution to the problem of uniform phase disorder in a system of identical scatterers arranged with varying
separations along a line. Relying on a relationship with Legendre functions, we demonstrate a simple approach to
computing statistics of the transmission probability (or the conductance, in the language of electronic transport)
and its reciprocal (or the resistance). Our formalism also gives the probability distribution of the conductance,
which reveals features missing from previous approaches to the problem.
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I. INTRODUCTION

Disorder is ubiquitous in nature. The issue of universal
properties of disordered systems has sparked much interest,
both experimental and theoretical, beginning with Anderson
localization in electronic systems and by now including
phenomena observable in a wide range of physical systems.

Transport in one-dimensional (1D) disordered systems,
being the simplest problem, is naturally the first to be
understood. Studies on electronic conductivity by modeling
a 1D wire as an array of potentials with random shapes and/or
random spacings abound. For an excellent review of the state
of affairs for 1D systems in 1982, we refer the reader to
the article by Erdös and Herndon.1 Overviews of subsequent
developments can be found in Refs. 2– 4.

Despite the comprehensive understanding of the 1D prob-
lem, owing to the difficulty of the subject, exact analytical
results are few and far between. Perturbative treatments,
typically in the limit of weak scattering, are the main tools for
analytical studies: the scaling theory,5 the Born approximation
for scattering,6 the Dorokhov-Mello-Pereyra-Kumar (DMPK)
equation,7 and many more. Exact results emerge mostly from
numerical studies or from the group-theoretic approaches of
Refs. 1, 8, and 3, which apply in general situations, but are
nevertheless somewhat complicated because of the use of
direct products of transfer matrices. More recent work on the
subject (see Refs. 9 and 10) has provided additional powerful
analytical techniques.

In this article, we revisit the simplest problem of a
1D single-scattering-channel system where the disorder in
question is one of uniformly distributed phase disorder. A
physical realization of a system manifesting such a disorder
comprises a stack of identical semitransparent glass plates,
with random spacings between adjacent plates. The task is to
explore the transmission of a laser beam through the random
stack. Because the typical separation between plates is much
larger than the wavelength of the light, a uniform distribution
of separation will describe the phase disorder well. Such a
system was already considered by Stokes11 in 1862, who gave
a ray-optical treatment.

Wave-optical investigations came much later; see Ref. 12
for the history of the subject. In fact, the 1984 work by
Perel’ and Polyakov13 deals with a more general 1D transport
problem that is treated with pertinent approximations; the
situation considered here is contained as a special case, for
which these approximations are not needed. This particular
case was also investigated by Berry and Klein14 in 1997 (which
work inspired our current efforts). We employ a different
strategy that exploits fully the recurrence relation established
in Ref. 15, which facilitates an exact yet simple analytical
treatment.

Disorder average of all moments of the conductance
and resistance (that is, the transmission probability and its
reciprocal) can be derived easily within a single framework.
The same framework further permits direct derivation of
the exact probability distributions for the conductance and
resistance, which allows for computation of all statistics of
the disordered system. This goes beyond past work that recon-
structed the distribution for the conductance from its moments3

or derivations that relied on perturbative approaches.6,16 The
simplicity in our solution lies in a relation with Legendre
functions, whose properties are well studied and are easily
amenable to analytical manipulations. Our exact solution for
this simple model can conceivably be used as the starting point
for perturbation towards other more realistic systems (see, for
instance, the recent experimental proposal of Ref. 17).

The article will proceed as follows: After setting up the
problem in Sec. II, we describe (Sec. III) how to average
over disorder using a recurrence relation, previously derived in
Ref. 15. This recurrence relation is applicable even for general
disorder. Specializing to uniform phase disorder, in Secs. IV
and V, we make use of a close link to Legendre functions to
write down closed-form expressions for the expected values
of moments of conductance and resistance. Comparisons with
existing results in the weak-scattering, long-chain limit are
presented in Sec. VI. The recurrence relation also gives
the exact probability distributions for the conductance and
the resistance, and these probability distributions are stud-
ied in detail in Sec. VII. We close with a summary in
Sec. VIII.
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FIG. 1. The transfer matrix description of the scattering process.
T is the transfer matrix for scattering due to a scatterer by itself (for
example, a glass plate); Tn includes the effects of the spacing Ln

between the nth and (n+1)th scatterers. ψn(x) is the wave function of
the scattered particle just before it hits the nth scatterer and can be
written in terms of left- and right-moving waves as ψn(x) = une

ikx +
vne

−ikx , where k is the momentum of the scattered particle.

II. PROBLEM SETUP: TRANSFER-MATRIX
DESCRIPTION OF THE SCATTERING PROCESS

Consider a 1D chain of scatterers, such as a stack of
semitransparent glass plates or a string of impurities. Both
the scatterer and the scattered particle are assumed to be scalar
particles or at least only scalar degrees of freedom participate
in the scattering process. The scatterers are identical but sit at
locations with varying distances between adjacent scatterers.
The distances between adjacent scatterers are the random
variables in our system—the disorder.

The scattering of the particle off the nth scatterer can be
summarized by a transfer matrix Tn, which propagates the
wave function of the scattered particle past the nth scatterer
(see Fig. 1). Tn is obtained by solving the scattering problem
for the nth scatterer and accounts for multiple scattering off the
same scatterer due to reflected waves from adjacent scatterers.
For our problem, Tn can be decomposed into two parts,

Tn = D(kLn) T with D(ϕ) =
(

eiϕ 0
0 e−iϕ

)
, (1)

where T describes the scattering due to the nth scatterer itself
and D(kLn) accounts for the phase acquired by the scattered
particle in traveling distance Ln between the nth and (n+ 1)th
scatterers. T takes the general form

T = D(β) T (ϑ) D(α) with
(2)

T (ϑ) =
(

cosh
(

1
2ϑ

)
sinh

(
1
2ϑ

)
sinh

(
1
2ϑ

)
cosh

(
1
2ϑ

)).

Here α and β denote overall phases, and T (ϑ) contains the
transmission amplitude t = [cosh( 1

2ϑ)]−1 and the reflection
amplitude r = √

1 − t2 = tanh( 1
2ϑ). Since the scatterers are

identical, the same T describes every scatterer. The disorder
that stems from the variable separation between adjacent
scatterers is characterized by Ln, for n = 1, . . . ,N (with
LN = 0).

The total transfer matrix, for a fixed configuration of N

scatterers, is

T (N) = TNTN−1 . . . T1

= D(β) T (ϑ) D

(
ϕN−1

2

)
T (ϑ) . . . D

(
ϕ1

2

)
T (ϑ) D(α),

(3)

where ϕn = 2(α + β + kLn). T (N) can also be written in the
form of Eq. (2), with an effective N -scatterer transmission

amplitude t (N) = [cosh( 1
2ϑ (N))]−1,

T (N) = D(β(N)) T (ϑ (N)) D(α(N)) (4)

with overall phases α(N) and β(N). These phases and ϑ (N)

can be recursively expressed in terms of ϑ and the in-
dividual spacings Ln. This can be understood by adding
one more scatterer to the end of the chain of N scatter-
ers. The total transfer matrix is now T (N+1) = TN+1T

(N) =
D(β(N+1)) T (ϑ (N+1)) D(α(N+1)), with ϑ (N+1) obeying the
composition law

cosh ϑ (N+1) = cosh ϑ cosh ϑ (N)

+ sinh ϑ sinh ϑ (N) cos φN. (5)

Here, φN is twice the phase sandwiched between the two
matrices T (ϑ) and T (ϑ (N+1)) and is given in this case by
φN = 2(kLN + α + β(N)). We can regard φn, in place of Ln,
as the parameter that represents the disorder in our system.
Composition laws can also be written down for α(N+1) and
β(N+1), but they will not enter our analysis.

As a convenient shorthand, we will use the notation C =
cosh ϑ and S = sinh ϑ = √

C2 − 1. Similarly, one can define
C(N) = cosh ϑ (N) and S(N) = sinh ϑ (N) so that the composition
law appears succinctly as

C(N+1) = CC(N) + SS(N) cos φN. (6)

The total transmission probability (or dimensionless conduc-
tance, in the language of transport on 1D wires) after N

scatterers is

τN = (t (N))2 = 2

C(N) + 1
. (7)

The value of τN depends sensitively on the configuration of
the scatterers, that is, on the values of the phases φn.

III. RECURRENCE RELATION: AVERAGING
OVER DISORDER

Rather than focusing on a particular configuration of the
N scatterers, one is usually more interested in statistics of the
entire ensemble of configurations. This requires a statement
about the nature of the disorder, namely the probability
distribution dμ(φn) for φn. More generally, one can have
correlated disorder, where the φn values are not statistically
independent, but this is beyond the scope of our current
discussion. The transmission of N scatterers, averaged over
the disorder, is then

〈τN 〉 =
∫

dμ(φN−1) . . .

∫
dμ(φ2)

∫
dμ(φ1)

2

C(N) + 1
. (8)

The dependencies on φ1,φ2, . . . ,φN−1 are implicit in C(N).
Writing out these dependencies in full can be very complicated
without being enlightening.

To simplify the problem, we assume that the disorder is
uniformly distributed, which permits the replacement,∫

dμ(φn) −→
∫

(2π)

dφn

2π
, (9)

in the disorder average. Here, the subscript (2π ) denotes
integration over any 2π interval of our choice. A uniform
distribution is a good description whenever the separation
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between adjacent scatterers is itself uniformly distributed.
It also describes the physical situation whenever kL � 1
for some typical separation L between scatterers. This often
applies for monochromatic light scattered by a stack of
semitransparent glass plates with layers of air between them.
In the case of a chain of ions trapped in a lattice, thermal
motion of the ions within the trapping potential leads to random
separation between adjacent ions. The separation is usually
concentrated around some central value L, but for an electron
incident with large momentum k, the phase kLn will explore
many cycles of 2π over even small deviations of Ln from L. A
uniform distribution for φn ∼ kLn is then a fitting description.

A. A recurrence relation

To proceed with our analysis, we recall that the composition
law (6) allows us to compute 〈τN 〉 recursively with the aid of
the recurrence relation derived in Ref. 15. We define a map
MC that transforms any function f (C ′) in accordance with

(MCf )(C ′) =
∫

(2π)

dφ

2π
f (CC ′ + SS ′ cos φ). (10)

Here, as before, C = cosh ϑ is such that t = [cosh( 1
2ϑ)]−1

is the transmission amplitude for a single scatterer. C ′,
the variable here, and S ′ = √

C ′2 − 1 are to be viewed
as the hyperbolic cosine and sine of some ϑ ′. Note that
(MCf )(C ′ = 1) = f (C ′ = C).

The map MC possesses a symmetry that will prove useful
later. For any two functions f (C ′) and g(C ′),∫ ∞

1
dC ′(MCf )(C ′) g(C ′) =

∫ ∞

1
dC ′f (C ′) (MCg)(C ′),

(11)

that is, we can consider MC as acting on either f or g. To see
this, observe that∫ ∞

1
dC ′(MCf )(C ′)g(C ′)

=
∫ ∞

1
dC ′

∫ ∞

1
dC ′′f (C ′)KC(C ′,C ′′) g(C ′′) (12)

with the kernel

KC(C ′,C ′′) =
∫

(2π)

dφ

2π
δ(CC ′ + SS ′ cos φ − C ′′)

= 1

π
[1 − C2 − C ′2 − C ′′2 + 2CC ′C ′′]

− 1
2+ . (13)

Here, δ( ) is the delta function, and the subscript + is such
that [x]−1/2

+ = 1/
√

x when x � 0 and is 0 otherwise. Since
KC(C ′,C ′′) is invariant under permutations of C, C ′, and
C ′′, it follows that the roles of f and g in Eq. (12) can be
interchanged, as expressed by the symmetry rule (11).

From Ref. 15, the average transmission probability is

〈τN 〉 = (
MN−1

C f )(C ′)∣∣
C ′=C

for f (C ′) = 2

C ′ + 1
, (14)

a fact that can be verified by writing out 〈τN 〉 in full for
N = 1,2,3, . . .. More generally, the disorder average of any
function of C(N) is given by

〈f (C(N))〉 = (
MN−1

C f
)
(C ′)

∣∣
C ′=C

. (15)

m scatterers n scatterers
C(m) C(n)

φ

FIG. 2. Illustration of concatenating two subchains of length m

and n together to form a single chain of N = m + n scatterers.

Another way of deriving Eq. (15) is to consider the
probability density WN (C ′) that C(N) takes the value C ′,
so that

〈f (C(N))〉 =
∫ ∞

1
dC ′ f (C ′) WN (C ′). (16)

In view of the composition law (6), we have, for N = m + n,
with m,n positive integers,

WN (C ′) =
∫ ∞

1
dC1 Wm(C1)

∫ ∞

1
dC2 Wn(C2)

×
∫

(2π)

dφ

2π
δ(C1C2 + S1S2 cos φ − C ′)

=
∫ ∞

1
dC1

∫ ∞

1
dC2 Wm(C1)KC ′ (C1,C2) Wn(C2).

(17)

The first two lines of Eq. (17) can be understood by splitting
the N scatterers into two segments (see Fig. 2), one comprising
the left m scatterers, with an overall C(m) value equal to C1,
and the other comprising the remaining n scatterers, with an
overall C(n) value equal to C2. The two segments are separated
by a random phase φ, and the composition law gives the overall
C(N) value for the N scatterers. For W1(C ′) = δ(C ′ − C),
Eq. (17) gives iteratively W2(C ′),W3(C ′), . . . , summarized
as

WN (C ′) = (MCWN−1)(C ′) = (
MN−1

C W1
)
(C ′). (18)

Upon inserting this formula into Eq. (16) and recalling the
symmetry Eq. (11) of MC , we get Eq. (15) for the disorder
average of f .

As an example of the usefulness of Eq. (15), let us
compute the average of log τN . We set f (C ′) = log ( 2

C ′+1 ).
Performing the integration over φ in (MCf )(C ′), we observe
that (MCf )(C ′) = f (C) + f (C ′). Repeated applications of
MC thus yields

〈log τN 〉 = Nf (C) = N log τ1, (19)

where τ1 = t2 = 2
C+1 is the transmission probability for a

single scatterer. This expression comes as no surprise as log τN

is well known to be additive under disorder averaging, and in
the current context, the result (19) is the main observation in
the paper by Berry and Klein;14 Eq. (19) can also be found
in the paper by Perel’ and Polyakov13 as an unnumbered
equation in §4.

Note that formula (15) applies even for disorder that is not
uniformly distributed, as long as we replace

∫
(2π)

dφ

2π
in the

definition of MC by the more general
∫

dμ(φ). Equation (17)
also holds for a general W1(C ′) not necessarily equal to a delta
function.
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B. Eigenfunctions of the recurrence map

Computing the average of log τN is easy because MC acts
in a simple way on the relevant f (C ′). For more general
functions, MC can act in a complicated manner, and it
becomes difficult to solve the recurrence relation directly to
obtain a closed-form expression for the averaged quantity. The
properties of the mapMC thus require thorough understanding
before we can proceed further. Since we are to apply MC

repeatedly, eigenfunctions of MC—functions that remain
invariant (apart from an overall factor) under the action of
MC—will be particularly useful.

Consider the Legendre functions, �ν(C ′), which are func-
tions that satisfy the Legendre differential equation (see, for
example, Ref. 18),

d

dC ′ (1 − C ′2)
d

dC ′ �ν(C ′) + ν(ν + 1) �ν(C ′) = 0. (20)

For our current purposes, as the notation already suggests, C ′
is to be viewed as the hyperbolic cosine of some parameter, and
we are interested in C ′ between 1 and ∞. For a given ν, there
are two independent solutions to the Legendre equation, Pν (C ′)
(Legendre functions of the first kind) and Qν(C ′) (Legendre
functions of the second kind). Qν(C ′) blows up at C ′ = 1 while
Pν(C ′ = 1) = 1 for all ν.

Suppose we begin with Pν(C ′) and apply the recurrence
map MC . We recall the addition theorem for Pν(C ′) (see, for
example, Ref. 19),

Pν(CC ′ + SS ′ cos φ)

= Pν(C)Pν(C ′) + 2
∞∑

m=1

P −m
ν (C<)P m

ν (C>) cos(mφ),

(21)

where P m
ν are the associated Legendre functions and

C<(>) = min(max){C,C ′}. Employing this formula in the
integrand of (MCPν)(C ′) yields the eigenvalue equation

(MCPν)(C ′) = Pν(C)Pν(C ′), (22)

and the Legendre functions Pν(C ′) are eigenfunctions of MC .
One can directly verify that (MCPν)(C ′) satisfies the Legendre
equation with the same value of ν, which permits writing
(MCPν)(C ′) as a linear combination of Pν(C ′) and Qν(C ′).
Considering the value of (MCPν)(C ′) at C ′ = 1 leads to the
conclusion (22). This eigenfunction property results in simple
behavior of Pν(C ′) under repeated applications of MC ,(

Mn
CPν

)
(C ′) = Pν(C)nPν(C ′). (23)

The degree ν can be any complex number. Of particular
importance to us are the cases when ν is a nonnegative integer,
and when ν takes the form ν = − 1

2 + ix. When ν = 0,1,2, . . . ,
we have the Legendre polynomials familiar from many areas
of physics; the Legendre functions P− 1

2 +ix(C ′) are known as
the Mehler (or conical) functions and have appeared in other
physical problems, for example, the solution of Laplace’s
equation in toroidal coordinates. More relevant to our current
subject, the Mehler functions were used in the exact solution
of the DMPK equation (see Ref. 4 and references therein),
as well as in a different eigenvalue problem for the Anderson
model.8,20

IV. MOMENTS OF THE RESISTANCE

In the language of transport in electronic systems, the
analogous quantity for transmission probability is the (dimen-
sionless) conductance. The reciprocal of the conductance is
the resistance, ρN = 1/τN = 1

2 (C(N) + 1) for N scatterers.
Our present concern is to compute the disorder-averaged
resistance. We begin with f (C ′) = 1

2 (C ′ + 1) = 1
2 [P1(C ′) +

P0(C ′)], which gives

〈ρN 〉 = 1
2 (CN + 1), (24)

upon applying Eq. (23).21 For a long chain of scatterers,
N � 1, we have log〈ρN 〉 
 N log C, consistent with the usual
expectation that the resistance grows exponentially as N

increases.
For averages of moments of the resistance, 〈ρm

N 〉, for
positive integer m, we start with f (C ′) = [ 1

2 (C ′ + 1)]m. Noting
that f (C ′) involves only positive integer powers of C ′, and
every positive integer power of C ′ can be expanded in terms
of the Legendre polynomials P�(C ′) (see, for example, Ref. 18
or 19), we can similarly obtain 〈ρm

N 〉 without great effort by
applying Eq. (23).

To illustrate, let us consider 〈ρ3
N 〉. Here, f (C ′) =

1
8 (C ′ + 1)3 = 1

20 [P3(C ′) + 5P2(C ′) + 9P1(C ′) + 5P0(C ′)].
From Eq. (23), we then get〈

ρ3
N

〉 = 1
20P3(C)N + 1

4P2(C)N + 9
20P1(C)N + 1

4 , (25)

an expression that would have been difficult to obtain had
we tried to solve the recurrence relation directly. Note that the
averages 〈ρm

N 〉 can be computed iteratively starting with m = 1
by employing recurrence formulas for Legendre polynomials
that relate C ′P�(C ′) to P�±1(C ′).

For large N , 〈ρm
N 〉 is dominated by the Legendre polynomial

with the largest index � = m, and, hence,

〈
ρm

N

〉 
 (m!)2

(2m)!
Pm(C)N for N � 1. (26)

Thus, log〈ρm
N 〉 ∝ N for N � 1 and any fixed m. Moreover, ρm

N

has spread
√

〈ρ2m
N 〉 − 〈ρm

N 〉2, which, for large N , is dominated
by

√
〈ρ2m

N 〉.

V. MOMENTS OF THE CONDUCTANCE

To compute the average transmission probability (or con-
ductance), we note that the above method of expanding powers
of C ′ in terms of Legendre polynomials no longer works, since
the C ′ dependence in τN occurs in the denominator. Whereas
the Legendre polynomials are complete for −1 � C ′ � 1, this
completeness is of no help for C ′ > 1, which is the range of
interest in the current context.

Nevertheless, the idea of expanding in terms of Legendre
functions still works. For studying the conductance and its
moments, we expand, not in terms of Legendre polynomials,
but in terms of Legendre functions of the Mehler type
P− 1

2 +ix(C ′), through the Mehler-Fock transformation.
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A. The Mehler-Fock transformation

The Mehler-Fock transformation22 is an index transforma-
tion that uses the Mehler functions P− 1

2 +ix(C ′) as the basis for
expansion. Formally, one defines the Mehler-Fock transform
f̂ (x) of f (C ′) as

f̂ (x) = x tanh(πx)
∫ ∞

1
dC ′ P− 1

2 +ix(C ′) f (C ′). (27)

This integral exists whenever f (C ′) is (weighted) square
integrable23 such that∫ ∞

1
dC ′ √C ′ − 1 |f (C ′)|2 < ∞. (28)

The inverse transformation expresses the original function in
terms of its transform,

f (C ′) =
∫ ∞

0
dx P− 1

2 +ix(C ′) f̂ (x). (29)

The Mehler-Fock transform allows us to easily compute
averages of physical quantities f (C(N)), whenever f is square
integrable in the sense of Eq. (28). We write

〈f (C(N))〉 = (
MN−1

C f
)
(C ′)

∣∣∣∣
C ′=C

=
∫ ∞

0
dx

(
MN−1

C P− 1
2 +ix

)
(C ′) f̂ (x)

∣∣∣∣
C ′=C

=
∫ ∞

0
dx P− 1

2 +ix(C)N f̂ (x), (30)

where, exploiting the linearity of the mapMC , we appliedMC

to the Mehler functions using Eq. (23). This gives a closed-
form expression for 〈f (C(N))〉, with two remaining items to
evaluate—the Mehler-Fock transform of f and the final x

integral—but otherwise takes care of the complicated recursive
composition law for concatenating N scatterers.

B. Moments of the conductance

For moments of the transmission probability or, equiva-
lently, moments of the conductance, the Mehler-Fock trans-
form f̂ (x) can be worked out explicitly. For 〈τm

N 〉, we set

f (C ′) =
(

2

C ′ + 1

)m

for m >
1

2
. (31)

To compute its Mehler-Fock transform, we note that
P− 1

2 +ix(C ′) can be written in terms of the hypergeometric

function,18 Pν(C ′) = ( 2
C ′+1 )−νF (−ν,−ν; 1; C ′−1

C ′+1 ), for ν =
− 1

2 + ix. Inserting this into the Mehler-Fock transform in-
tegral for f gives

f̂ (x) = 2x tanh(πx)

×
∫ 1

0
dy (1 − y)m− 3

2 −ixF

(
1

2
− ix,

1

2
− ix; 1; y

)
,

(32)

after making the substitution y = C ′−1
C ′+1 . This integral is a

standard one,19

f̂ (x) = 2x tanh(πx) Gm(x) with

Gm(x) =
∣∣∣∣∣�

(
m − 1

2 + ix
)

�(m)

∣∣∣∣∣
2

(33)

=
(
m − 3

2

)2 + x2

(m − 1)2
Gm−1(x),

where �(z) is the familiar Gamma function. For m = 1,
f̂ (x) = 2πx tanh(πx) sech(πx), an expression that can be
verified against known integrals involving Mehler functions
(see, for example, Ref. 24).

With this, we arrive at a compact expression for 〈τm
N 〉,〈

τm
N

〉 = 2
∫ ∞

0
dx x tanh(πx) Gm(x) P− 1

2 +ix(C)N, (34)

which is valid for m > 1/2, including noninteger m values.25

The remaining integral over x can be estimated in limiting
cases (for example, the weak-scattering limit discussed below)
or evaluated numerically. We note that the Mehler functions
are standard special functions for which efficient methods
of numerical evaluation are known (for instance, via integral
representations) or even built into mathematical software.

VI. A LONG CHAIN OF WEAK SCATTERERS

To connect with previous work on this subject, let us
examine the limit of weak scattering, where we take C close
to 1. At the same time, we assume a long chain of scatterers,
N � 1.

We consider 〈τm
N 〉, given by Eq. (34). For fixed m and C, the

integrand in Eq. (34) is significant only for small x values. This
can be understood from the following integral representation
for the Mehler function (see, for example, Ref. 19),

P− 1
2 +ix(C) =

√
2

π

∫ ϑ

0
du

cos(xu)√
C − cosh u

, (35)

where C = cosh ϑ , as usual. Since x enters only in the cosine
in Eq. (35), for fixed C, P− 1

2 +ix(C) stays bounded as a
function of x. Furthermore, one can check that the factor
x tanh(πx) Gm(x) in the integrand of Eq. (34) vanishes for
large x due to the suppression from the factorials in Gm(x)
as x grows. These observations justify the approximation that,
for C close enough to 1, or, equivalently, for ϑ close enough
to zero, one can expand the cosine in Eq. (35) about xu = 0
and keep only the low-order terms,

P− 1
2 +ix(C) 
 P− 1

2
(C) + x2

2

∂2

∂x2
P− 1

2 +ix(C)

∣∣∣∣
x=0


 P− 1
2
(C)e−bx2

. (36)

In the second line, we have defined b > 0 such that

b = −1

2

[
P− 1

2
(C)

]−1 ∂2

∂x2
P− 1

2 +ix(C)

∣∣∣∣
x=0

(37)

and approximated 1 − bx2 
 e−bx2
.
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With this, 〈τm
N 〉 becomes much simpler,〈

τm
N

〉 = 2
[
P− 1

2
(C)

]NIm(x), with
(38)

Im(x) =
∫ ∞

0
dx x tanh(πx) Gm(x) e−Nbx2

.

For Nb � 1, the Gaussian suppression in Im(x) allows one
to approximate the integral by Taylor-expanding the integrand
about x = 0. This gives

Im(x) 
 1

4

(
π

Nb

)3/2[�
(
m − 1

2

)
�(m)

]2

, (39)

with equality attained when Nb → ∞. Putting the pieces
together, we have

〈
τm
N

〉 

[

�
(
m − 1

2

)
�(m)

]2
1

2

(
π

Nb

)3/2[
P− 1

2
(C)

]N
, (40)

valid in the limit of a long chain of weak scatterers. This
expression validates the conjecture of Ref. 15, namely( 〈τN 〉

〈τ2〉
)1/(N−2)

−→ P− 1
2
(C) as N → ∞, (41)

since the quantity ϒ(τ1) = ∫
(2π)

dϕ

2π
(C + S cos ϕ)−1/2 in

Ref. 15 is an integral representation of P− 1
2
(C).19

We can further approximate b and P− 1
2
(C) for ϑ � 1,

P− 1
2
(C) = 1 − 1

16ϑ2 + O(ϑ4) 
 e−ϑ2/16 and
(42)

b = 1
4ϑ2 + O(ϑ4).

From these, P− 1
2
(C) 
 e−b/4, which, upon inserting into

Eq. (40), gives

〈
τm
N

〉 

[

�
(
m − 1

2

)
�(m)

]2
1

2

(
π

Nb

)3/2

e−Nb/4. (43)

This expression is identical to that found in Ref. 6 for the
conduction of electrons in a 1D wire, once we make the
identification L/l = Nb, where L is the length of the wire
and l is the mean-free-path of the electrons. The factor of 1/4
in the exponential in Eq. (43) is the familiar ratio of log〈τN 〉
to 〈log τN 〉 = N log τ1 (see, for example, Ref. 2). From the
expressions for P− 1

2
(C) and b in the weak-scattering limit,

one can compute corrections to the standard answer of 1/4 as
a function of ϑ .

Observe from Eq. (40) that, under the approximations
above, 〈τm

N 〉 ∝ 〈τN 〉 and that the proportionality factor depends
only on m but not on the scattering strength. We can derive
this statement more directly, using the following identity:18

Gm(x) = 1

π

[
�

(
m − 1

2

)
�(m)

]2

αm(x) G1(x) and

(44)

αm(x) =
m−1∏
k=1

(
1 + (2x)2

(2k − 1)2

)
,

so that we can write (without any approximation)

〈
τm
N

〉 = 1

π

[
�

(
m − 1

2

)
�(m)

]2

×
{

2
∫ ∞

0
dx x tanh(πx)αm(x)G1(x)P− 1

2 +ix(C)N
}
.

(45)

The expression within the curly braces is exactly 〈τN 〉 if we
can replace αm(x) by 1. Now, αm(x) 
 1 whenever x � 1,
and this is a good approximation whenever the integral in
the curly braces gets its dominant contribution from small x

values. From our analysis above for the limit of a long chain
of weak scatterers, the Gaussian suppression from the e−Nbx2

factor guarantees that, indeed, the integrand is important only
for x � 1.

More generally, P− 1
2 +ix(C)N is significant for x � 1 only

whenever (sinh ϑ/ϑ)
N
2 � 1 (see Appendix A). This condition

reduces to Nb � 1 in the limit of weak scattering. We thus
conclude that 〈

τm
N

〉 
 1

π

[
�

(
m − 1

2

)
�(m)

]2

〈τN 〉 (46)

whenever (sinh ϑ/ϑ)
N
2 � 1, which holds when either N or ϑ

(or both) are large. This applies beyond the limit of a long
chain of weak scatterers. For example, one can numerically
verify the excellent accuracy of the above approximation when
ϑ = 5 and N = 5, for which (sinh ϑ/ϑ)N/2 
 850, where
neither are the scatterers weak, nor is the chain a long one.
This proportionality between moments of the conductance
is a specific example of a similar statement applicable for
more general types of disorder (but valid only when N → ∞)
previously pointed out in Ref. 3.

VII. THE PROBABILITY DISTRIBUTIONS FOR
CONDUCTANCE AND RESISTANCE

Armed with all the positive integer moments 〈τm
N 〉, one

expects to be able to reconstruct the probability distribution for
the conductance for given N and C. In Ref. 3, the probability
distribution for the conductance was obtained by writing down
an expansion of the Fourier transform of the distribution
in terms of 〈τm

N 〉. Approaching the probability distribution
from a different angle, one can make use of our recurrence
relation to propagate the initial single-scatterer distribution
to the distribution for N scatterers. Our approach uncovers
features absent from a reconstruction via moments.

We already have an expression [Eq. (18)] for WN (C ′), which
we repeat here,

WN (C ′) = (
MN−1

C W1
)
(C ′)

= (
MN−1

C W̃1,C ′
)
(C ′′)

∣∣∣∣
C ′′=C

, (47)

where, in the second equality, W̃1,C ′ (C ′′) = δ(C ′′ − C ′), and
we have made use of Eq. (11). One can verify that WN (C ′) � 0
for 1 � C ′ < ∞ [in fact, WN (C ′) = 0 for C ′ > cosh(Nϑ)] and
that

∫ ∞
1 dC ′ WN (C ′) = 1. From Eq. (47), we immediately have
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the probability distributions for the conductance τ ′ = 2
C ′+1 and

the resistance ρ ′ = 1/τ ′, related by Jacobian transformations,

dC ′ WN (C ′)

= dτ ′ 2

τ ′2
(
MN−1

C W1
)
(C ′)

∣∣∣∣
C ′= 2

τ ′ −1

, 0 � τ ′ � 1, (48)

= dρ ′ 2
(
MN−1

C W1
)
(C ′)

∣∣∣∣
C ′=2ρ ′−1

, 1 � ρ ′ < ∞.

Observe that Eq. (47) bears resemblance with the expres-
sion for 〈f (C(N))〉 in Eq. (30) if we set f (C ′′) = W̃1,C ′ (C ′′).
It thus seems plausible that our previous method of the
Mehler-Fock transform might aid us in simplifying the
recurrence formula for WN (C ′). The Mehler-Fock transform
integral (over C ′′, with C ′ held constant) gives f̂ (x) =
x tanh(πx)P− 1

2 +ix(C ′). Forgetting for the moment that f (C ′′)
is not square integrable in the sense of Eq. (28), we employ
the inverse-transform formula to yield

WN (C ′) =
∫ ∞

0
dx x tanh(πx) P− 1

2 +ix(C)N P− 1
2 +ix(C ′), (49)

which is Eq. (28) in Ref. 13.
For computing statistics of square-integrable functions of

C ′, we can safely regard Eq. (49) as a true identity for
distributions, since we recover Eq. (30) when we replace
WN (C ′) in

∫ ∞
1 dC ′ f (C ′)WN (C ′) with the right-hand side of

Eq. (49). For computing the average of non-square-integrable
functions of C ′, like the moments of the resistance, the
validity of Eq. (49) is less clear. If we take the long-chain
(s = Nb → ∞), weak-scattering limit (ϑ � 1) of the right-
hand side of Eq. (49), we obtain∫ ∞

0
dx x tanh(πx)P− 1

2 +ix(C ′)P− 1
2 +ix(C)N


 s−3/2e−s/4

2
√

2π

∫ ∞

cosh−1(C ′)
du

ue−u2/(4s)

√
cosh u − C ′ . (50)

Here, we have approximated P− 1
2 +ix(C)N 
 e−s/4e−sx2

as
before and also made use of an integral representation for
P− 1

2 +ix(C ′) of the form26

P− 1
2 +ix(C ′) =

√
2

π
coth(πx)

∫ ∞

cosh−1(C ′)
du

sin(xu)√
cosh u − C ′ .

(51)

The limiting expression in Eq. (50) is identical to the
distribution for C(N) found in Ref. 16 by solving the DMPK
equation and in Ref. 6 for the resistance in the Anderson model.
This lends credibility to Eq. (49), even for moments of the
resistance. Furthermore, the fact that f (C ′) = [(C ′ + 1)/2]m

is not square integrable is perhaps not troublesome because
WN (C ′) = 0 for C ′ > cosh(Nϑ) [although not apparent from
Eq. (49)], so that the C ′ integral in 〈f (C(N))〉 cuts off at
C ′ = cosh(Nϑ) rather than extending to infinity.

A different source of concern lies with how the singularity
of the delta function in W1(C ′) propagates as N grows.
For N = 1, the singularity occurs at C ′ = C; for N = 2, it
occurs at C ′ = 1, since W2(C ′) = KC(C,C ′); for N = 3, the
singularity is at C ′ = C again (see Appendix B); for N = 4,

it goes back to C ′ = 1. In fact, for any even N , we expect
WN (C ′ = 1) to be particularly large (or even infinite), because,
as explained in detail in Appendix B, there exists an infinite
family of phase configurations that attain C ′ = 1 whenever N

is even. Since WN (C ′ = 1) = WN−1(C ′ = C), this large value
of WN (C ′ = 1) for N even is inherited by WN (C ′ = C) for N

odd. This again suggests that the large value of WN (C ′) occurs
at values that differ for N even and N odd, putting into suspect
the existence of an asymptotic probability distribution for
large N . Fortunately, using our exact expressions for WN (C ′),
one can show that beyond N = 4, WN (C ′) becomes finite
everywhere, and the singularity present in small N values
goes away; see Appendix B for a detailed analysis. This
justifies the validity of the reconstruction of the probability
distribution of the conductance via its moments in Ref. 3,
which relies on a Fourier transform that comes with an “equal
almost everywhere” condition that automatically gets rid of
singularities with zero measure.

VIII. SUMMARY

We have shown how one can analytically derive the
statistics of a 1D chain of identical scatterers of any length,
with uniform phase disorder. Making use of the fact that Leg-
endre functions are eigenfunctions of the recurrence relation
governing the chain statistics, we obtained disorder-averaged
moments of the resistance by expanding in terms of Legendre
polynomials; disorder-averaged moments of the conductance
came from expanding in terms of the Mehler functions via the
Mehler-Fock transformation. The probability distributions of
the conductance and the resistance can also be written in terms
of the recurrence relation, and we pointed out singularities
absent in existing derivations. These extra features, despite the
fact that they play little role in the physics in the end, remind us
of the importance of exact and analytical solutions, which may
be the only way of identifying subtle properties and verifying
the validity of common assumptions.

Beyond our current model of uniformly distributed phase
disorder, the recurrence relation central to our analysis remains
valid, as pointed out at the end of Sec. III A. However, the fact
that Legendre functions are eigenfunctions of the recurrence
map—critical to simplifying the recurrence relation for our
model—no longer holds for more general models. In that case,
a different line of attack would be required and would likely
have to be handled case by case.
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APPENDIX A: MEHLER FUNCTIONS FOR LARGE x

We are interested in an approximate form for the Mehler
function P− 1

2 +ix(C) applicable for large x. Following Ref. 27,
one can expand the Mehler function for large x in terms of
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Bessel functions,

P− 1
2 +ix(cosh ϑ) = 1√

ϑ sinh ϑ

∞∑
n=0

An(ϑ)
Jn(xϑ)

xn
, (A1)

where the first three of the coefficients An(ϑ) are

A0(ϑ) = ϑ,

A1(ϑ) = ϑ coth ϑ − 1

8
, and (A2)

A2(ϑ) = (3ϑ coth ϑ + 1)2 − 8(2 + ϑ2)

64ϑ
.

One can check that the n = 0 term gives, by far, the largest
contribution, so

P− 1
2 +ix(C) 


√
ϑ

sinh ϑ
J0(xϑ) for x � 1. (A3)

Let us consider [P− 1
2 +ix(C)]N , in light of this approx-

imate expression. Since J0(xϑ) � 1 for all xϑ values,
we focus on the factor (ϑ/ sinh ϑ)N/2. For ϑ � 1, we
have (ϑ/ sinh ϑ)N/2 
 (1 − ϑ2/12)N 
 e−Nb/3, upon recall-
ing that b 
 1

4ϑ2 when ϑ � 1. This implies, for ϑ � 1, that
[P− 1

2 +ix(C)]N is small for large x whenever Nb � 1. More

generally, [P− 1
2 +ix(C)]N is small for large x whenever

(
sinh ϑ

ϑ

)N/2

� 1, (A4)

which can happen either when N � 1 or when ϑ is
large.

APPENDIX B: SINGULARITIES IN WN (C ′)

Here we examine in detail the argument outlined in Sec. VII
regarding singularities in WN (C ′). We begin by studying how
WN (C ′) behaves for small N near C ′ = 1 for N even and
C ′ = C for N odd. Since W1(C ′) = δ(C ′ − C), it is singular
at C ′ = C. For W2(C ′) = (MCW1)(C ′), we have

W2(C ′) = KC(C,C ′) = 1

π
[(C ′ − 1)(2C2 − C ′ − 1)]−1/2,

(B1)

which is singular at C ′ = 1. Near the singularity, we have

W2(C ′) → 1

π
√

2S
(C ′ − 1)−1/2 for C ′ → 1. (B2)

For W3(C ′), we first write it in terms of an elliptic integral,

W3(C ′) =
{

2
π2a>

K
(

a<

a>

)
if 1 � C ′ � 4C3 − 3C

0 otherwise
, (B3)

where a>(<) = max(min){[(CC ′ + SS ′) − 1][(C2 + S2) −
(CC ′ − SS ′)],4S3S ′}. K( ) is the complete elliptic

integral,18

K(κ) =
∫ π/2

0
dα

1√
1 − κ2(sin α)2

= π/2

(1 − κ2)1/4
P− 1

2

(
1 − 1

2κ2

1 − κ2

)
, (B4)

which is finite everywhere for 0 � κ � 1 except at κ = 1,
corresponding to the point where C ′ = C. Expanding K(κ)
about κ = 1 (see, for example, Ref. 19), we can extract the
behavior near the singularity,

W3(C ′) → − 3

2π2S2
ln |C ′ − C| for |C ′ − C| → 0. (B5)

W4(C ′) for C ′ = 1 is also singular, with a behavior identical
to that of W3(C ′) in the vicinity of C ′ = C. Beyond N = 3,
it becomes difficult to obtain a closed-form expression for
WN (C ′).

Nevertheless, for N even, we expect WN (C ′ = 1) to be
particularly large. This can be understood in the following way:
C(N) = C ′ = 1 corresponds to perfect transmission through
all N scatterers. For N even, every configuration of phases
φ1, . . . ,φN−1 such that φN/2 = π , and φN/2−j + φN/2+j = 2π ,
for j = 1,2, . . . ,N/2 − 1, gives C ′ = 1. There are, thus,
infinitely many perfect-transmission configurations, since only
the sum of each pair is constrained but not the individ-
ual phases (apart from the central one). Furthermore, C ′
is stationary, as the φns vary, at C ′ = 1. This stationary
property, together with the infinite family of configurations
attaining C ′ = 1, will give a large, possibly infinite, value
of WN at C ′ = 1. This large value of WN (C ′ = 1) for
N even is inherited by WN (C ′ = C) for N odd because
WN (C ′ = 1) = WN−1(C ′ = C). This difference between N

even and N odd in the location of the large, possibly singular,
value of WN puts the existence of an asymptotic probability
distribution as N → ∞ under suspicion.

Fortunately, one can show that beyond N = 4, WN (C ′)
becomes finite everywhere, and the singularity present for
small N values goes away. The points of suspicion are at
C ′ = 1 for N even and C ′ = C for N odd. We note that we
can write

Wm+n(C ′ = 1) =
∫ ∞

1
dC ′′ Wm(C ′′) Wn(C ′′), (B6)

as can be shown using the symmetry property Eq. (11) of MC .
We then have

W6(C ′ = 1) =
∫ ∞

1
dC ′′ W3(C ′′)2. (B7)

Since W3(C ′′) is singular at one point C ′′ = C, the vicinity
of that singularity dominates the integral, but the logarithmic
singularity behavior from (B5), after squaring and integrat-
ing, becomes finite. This immediately also tells us that
W5(C ′ = C) = W6(C ′ = 1) is finite. Thereafter, for larger N ,
we have WN (C ′) finite everywhere. We note that Perel’ and
Polyakov13 arrived at the same conclusions about singularities
of the Wm(C ′)s.

054201-8



ONE-DIMENSIONAL TRANSPORT: A SIMPLE AND EXACT . . . PHYSICAL REVIEW B 88, 054201 (2013)

*cqtnhk@nus.edu.sg
†cqtebg@nus.edu.sg
1P. Erdös and R. C. Herndon, Adv. Phys. 31, 65 (1982).
2B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993).
3J. Pendry, Adv. Phys. 43, 461 (1994).
4C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
5P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher,
Phys. Rev. B 22, 3519 (1980).

6A. A. Abrikosov, Solid State Commun. 37, 997 (1981).
7O. N. Dorokhov, JETP Lett. 36, 318 (1982); P. A. Mello, P. Pereyra,
and N. Kumar, Ann. Phys. 181, 290 (1988).

8P. D. Kirkman and J. Pendry, J. Phys. C: Solid State Phys. 17, 5707
(1984).
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