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Multiple twinning and variant-variant transformations in martensite: Phase-field approach
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A phase-field theory of transformations between martensitic variants and multiple twinning within martensitic
variants is developed for large strains and lattice rotations. It resolves numerous existing problems. The model,
which involves just one order parameter for the description of each variant-variant transformation and multiple
twinnings within each martensitic variant, allows one to prescribe the twin interface energy and width, and to
introduce interface stresses consistent with the sharp interface limit. A finite-element approach is developed and
applied to the solution of a number of examples of twinning and combined austenite-martensite and martensite-
martensite phase transformations (PTs) and nanostructure evolution. A similar approach can be developed for
reconstructive, electric, and magnetic PTs.
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I. INTRODUCTION

Twinning is a mechanism for plastic deformation in
crystalline materials whereby a region of the crystal lattice
is homogeneously sheared into a new orientation.1 It is most
pronounced at low temperatures, high strain rates, and in
small grains. Martensitic phase transformations (PTs) are
usually accompanied by twinning, which reduces the energy
associated with internal elastic stresses. Martensitic PTs
involve several martensitic variants Mi , i = 1,2, . . . ,n, where
n equals the ratio of the order of the point group of the austenite
A to that of the martensite. Since the Mi are usually in a
twin relation to each other, variant-variant transformations and
twinning in martensite are closely related. The sharp-interface
approach to martensitic PTs and twinning2,3 was a significant
advance, but it is based on the optimization of crystallographic
parameters of the prescribed microstructure under stress-free
conditions or applied homogeneous stresses. The phase-
field approach is widely used for modeling microstructure
evolution during multivariant martensitic PTs and twinning.4–8

Phase-field models that incorporate the main features of
stress-strain curves, the correct instability conditions, a large
strain formulation, and surface tension were developed in
Refs. 7 and 9–12; those models utilize order parameters based
on the transformation strain. Since it was shown in Ref. 9
that it is not possible to realize all of these model features
using total-strain order parameters, we will only consider order
parameters based on transformation strain. In this paper, we
present a phase-field model for variant-variant transformations
and multiple twinning within the martensite, which resolves
numerous problems outlined below. It also includes A ↔ Mi

PTs. For each twinning system {T1,T2, . . . ,Tn}, where the
Ti are crystallographically equivalent, the transformation-
deformation gradient Ft i = I + γ (ηi)m0

i ⊗ n0
i transforms the

parent (reference) lattice L into a twinned lattice Ti by a
simple shear γ in direction m0

i in the plane with normal
n0

i in the reference state; here ηi , the ith order parameter,
varies between 0 for L and 1 for Ti , ⊗ designates a dyadic
product of vectors, and I is the unit tensor. It is usually
assumed that twinning can be described by a phase-field model

of PT for which the thermal part of the free energy does
not change and the transformation strain corresponds to the
twinning shear.7–9 However, this is not completely consistent
because of an essential difference between twinning and PTs:
twinning does not change the crystal structure, i.e., the unit
cell of the twin is the same as that of the parent crystal to
within a rigid-body rotation. This fact introduces a symmetry
requirement not present in the PT theory: the thermodynamic
potential and the transformation-deformation gradient must be
completely symmetric with respect to the interchange L ↔ Ti ;
thus, any twin Ti can be considered as a parent reference lattice
L. Our 2-3-4 Landau potential for martensitic PT9,10 possesses
this symmetry, but our 2-4-6 potential9,10 does not. However,
the main theoretical complication is multiple twinning, that
is, secondary and further twinnings of the primary twin Ti ,
which commonly occurs. Again, since the crystal lattice of
any twin Ti is indistinguishable to within rigid-body rotations
from the parent lattice L, the thermodynamic potential and
transformation-deformation gradient must be completely sym-
metric with respect to the interchanges L ↔ Ti and Tj ↔ Ti

for all i and j . This condition was not satisfied in any previous
model of PTs and twinning but is satisfied in the present model
for twinning in martensite. The crystal lattice of the austenite A
will be considered as the parent (reference) lattice, independent
of whether we consider PT A ↔ Mi or only Mi ↔ Mj . Below,
we will no longer consider designation L, and designations Mi

and Ti are equivalent.
Even for small strains, neither transformations between

martensitic variants nor twinning in any known theory is
described as consistently as A ↔ Ti transformations. Indeed,
the A ↔ Ti transformation can be described by a single order
parameter ηi , the temperature dependence of the stress-strain
curve, and the A-Ti interface energy and width are completely
determined by a small number of material parameters, and
we obtained analytic solutions for the variation of ηi through
both static and propagating interfaces.10,12,13 In contrast, at
a Ti-Tj interface in any known theory, the order parameters
ηi and ηj vary independently, and the transformation path
in the ηi-ηj plane and the interface energy and width have
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an unrealistic dependence on temperature, stresses, and a
larger number of material parameters; these dependencies
can only be determined by numerical methods.11 Thus, one
cannot prescribe a desired Ti-Tj interface energy and width.
Consequently, the consistency of the expression introduced
in Refs. 11 and 12 for the interface (surface) tension σ st in
the sharp-interface limit can be proved for A-Ti interfaces
but not for Ti-Tj interfaces; in fact, simulations show that
σ st does not describe the sharp Ti-Tj interface limit. This
shortcoming is rectified in the model presented here. Also, in
large strain theory,7,8 in which each martensitic variant or twin
is characterized by the transformation deformation gradient
Ft i , the transformations Ti ↔ Tj between Ft i and Ftj do not
represent simple shears without additional rotations. There are
an infinite number of combinations of rotations and twinning
parameters for which two martensitic variants are twin-related,
e.g., zigzag twins.3 Thus, it is impossible to parametrize all
simple shears between two martensitic variants with a single
order parameter.

In this paper, we present a phase-field model of marten-
sitic variant-variant (Ti ↔ Tj ) transformations and twinning
within the variants which resolves all of the above problems.
Each martensitic variant is characterized by the rotation-free
deformation of the crystal lattice U t i . We define a minimal
set of n order parameters for n martensitic variants. The key
point is that each Ti ↔ Tj transformation and all twinnings
within them are described with a single order parameter. This
significantly simplifies the description of Ti ↔ Tj transforma-
tions and multiple twinnings, and moreover, one can prescribe
the Ti-Tj interface energy and width and introduce interface
stresses consistent with the sharp interface approach, which
is completely analogous to the description of A ↔ Ti PT.
For the fully geometrically nonlinear theory (large strains
and material rotation), the twinning parameters and lattice
rotations are not parametrized with the order parameters
but obtained from the solution of the coupled phase field
and mechanics boundary-value problem. Model problems on
twinning in martensite and combined A ↔ Ti and Tj ↔ Ti

transformations and nanostructure evolution in a nanosize
sample are solved by means of the finite-element method
(FEM) COMSOL code.14

We designate contractions of tensors A = {Aij } and B =
{Bji} over one and two indices as A·B = {Aij Bjk} and
A:B = Aij Bji , respectively. The subscripts s, e, and t mean
symmetrization and elastic and transformational strains, the
superscript T designates transposition, and ∇ is the gradient
operator in the deformed states.

II. GENERAL MODEL

The motion of the elastic material undergoing twinning
will be described by a vector-valued function r = r(r0,t),
where r0 and r are the positions of points in the reference
�0 and the deformed � configurations, respectively, and
t is the time. The austenite A lattice will be considered
as the reference configuration, independent of whether we
consider PT A ↔ Ti or only Ti ↔ Tj transformations. The
transformation deformation gradient U t i = I + εt i transforms
the crystal lattice of A into the lattice of the ith martensitic
variant Ti , i = 1,2, . . . ,n, both in the unloaded state. The

multiplicative decomposition of the deformation gradient,
F = Fe·U t , into elastic Fe and transformational U t parts
will be used. Since U t = UT

t , lattice rotation is included in
Fe. We assume the martensitic variants are in twin relation
with each other, hence they satisfy the twinning equation
Qi · U t i − Qj · U tj = γij m0

ij n0
ij for some twinning system

parameters γij , m0
ij , n0

ij , and rigid-body rotations Qm. There
are numerous solutions to the twinning equation for the
same U t i and U tj and different Qm. For example, for
zigzag twins,3 if each of the pairs of variants {R · U t i ; U tj }
and { Q · U tj ; R · U t i} satisfies the twinning equations for
some specific rotations R and Q, then the pair of variants
{ Qp · R · U t i ; Qp · U tj } satisfies the twinning equations as
well for any integer number p of sequential rotations Q.
Thus, it is impractical (and unnecessary) to parametrize all
simple shears between all pairs of martensitic variants with
a separate order parameter. Instead, we describe martensitic
variant Ti with the rotation-free transformation deformation
gradient U t i , and all possible twinnings and variant-variant
transformations between two variants will be described with
a single order parameter. The twinning system parameters are
not functions of the order parameters but are determined via the
solution of the coupled large-strain phase field and mechanics
boundary-value problem.

In our n-dimensional order parameter space, the austenite
A is located at the origin and the ith martensitic variant Ti is
located at the intersection of the positive ith axis with the unit
sphere. The radial coordinate, designated ϒ , describes A ↔ Ti

transformations, while the angular order parameters 0 � ϑi �
1, where π ϑi/2 is the angle between the radius vector ϒ

and the positive ith axis, describe twinning Tk ↔ Ti (variant-
variant) transformations. This geometric interpretation leads
to the constraint

∑n
k=1 cos2(π

2 ϑk) = 1, which significantly
complicates the development of the thermodynamic potential.
However, for each variant-variant or twinning transformation
Ti ↔ Tj (at ϒ = 1, ϑk = 1 for k �= i, j ), this constraint
reduces to the linear constraint ϑj + ϑi = 1. In the general
case, we also employ a linear constraint:

∑n
i=1 ϑi = n − 1.

This slightly changes the geometric interpretation when more
than two order parameters ϑi deviate from 1, but it allows us to
develop a potential that predicts both A-Ti and Ti-Tj interface
widths and energies. Then ϑn = n − 1 − ∑n−1

i=1 ϑi replaces all
occurrences of the parameter ϑn in all equations below. The
Helmholtz free energy per unit undeformed volume is given
by the following expression:

ψ = ψe(B,ϒ,ϑi,θ ) + ρ0

ρ
ψ̆θ + ψθ + ρ0

ρ
ψ∇, (1)

ψ̆θ = [A0(θ − θc) + 3�s0(θ − θe)]ϒ2(1 − ϒ)2

+ Ā

n∑
i,j=1;i �=j

(1 − ϑi)
2(1 − ϑj )2q(ϒ)

(2)

+D

n∑
i,j,k=1;i �=j �=k

(1 − ϑi)(1 − ϑj )(1 − ϑk)q(ϒ),

ψ∇ = β

2
|∇ϒ |2 + q(ϒ)

βϑ

4

n∑
i=1

|∇ϑi |2,

ψθ = −�s0(θ − θe)q(ϒ), q(ϒ) = ϒ2(3 − 2ϒ), (3)
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U t = I +
n∑

k=1

εtk

(
1 − 3ϑ2

k + 2ϑ3
k

)
ϕ(ϒ),

(4)
ϕ(ϒ) = aϒ2 + (4 − 2a)ϒ3 + (a − 3)ϒ4.

Here B = (V · V − I)/2 is the finite strain measure, V is the
left stretch tensor, θ is the temperature, θe is the equilibrium
temperature, A becomes unstable at temperature θc, ρ and
ρ0 are the mass densities in the deformed and undeformed
states, β and βϑ are gradient energy coefficients, A0 and Ā

characterize the barriers for A-Ti and Ti-Tj transformations,
respectively, the parameter a controls the transformation strain
for A-Ti PT, and ψe is the elastic energy. The term with D

in Eq. (2) describes the interaction of three twins at their
triple junctions; it was not present in previous theories and
it disappears for two variants. Thermodynamics and Landau-
Ginzburg kinetics (see, e.g., Ref. 11) lead to

σ = ρ

ρ0
V · ∂ψ

∂ B
· V − ρ

ρ0

(
∇ϒ ⊗ ∂ψ

∂∇ϒ

)
s

−
n−1∑
i=1

ρ

ρ0

(
∇ϑi ⊗ ∂ψ

∂∇ϑi

)
s

, (5)

1

Lϒ

∂ϒ

∂t
= − ρ

ρ0

∂ψ

∂ϒ

∣∣∣∣
B

+ ∇ ·
(

ρ

ρ0

∂ψ

∂∇ϒ

)
,

(6)
1

Lϑ

∂ϑi

∂t
= − ρ

ρ0

∂ψ

∂ϑi

∣∣∣∣
B

+ ∇ ·
(

ρ

ρ0

∂ψ

∂∇ϑi

)
,

where Lϒ and Lϑ are kinetic coefficients, σ is the true
Cauchy stress tensor, and ∂ψ/∂ϒ and ∂ψ/∂ϑi are evaluated
at constant finite strain B. Equations (1)–(4) satisfy all
conditions for the thermodynamic potential formulated in
Ref. 9. In particular, A and the variants Ti are homogeneous
solutions of the Ginzburg-Landau equations (6) for arbitrary
stresses and temperature; the transformation strain for any
transformation is independent of stresses and temperature; the
transformation criteria that follow from the thermodynamic
instability conditions have the same (correct) form as in
Ref. 9. The potential (1)–(4) is much simpler than those
previously used for martensitic PTs7,9–11 and does not require
the introduction of sophisticated cross terms, which has several
important consequences. In particular, the potential does not
possess spurious minima (unphysical phases). All of our
modeling goals are satisfied using a simple fourth-degree
polynomial in ϒ and ϑi . The variant-variant or twinning
transformations Ti ↔ Tj are described by a single order
parameter ϑi (at ϒ = 1, ϑk = 1 for k �= i, j , and ϑj = 1 − ϑi)
and are completely analogous to A ↔ Ti PTs. The ratio ρ0/ρ

and the gradient with respect to the deformed configuration
are used in Eqs. (1)–(4) to introduce interface tension, as
in Refs. 11 and 12. Since the Tj ↔ Ti transformations are
described here in the same way as A ↔ Ti PT, it is now
trivial to demonstrate (see Sec. III) the consistency of the
expression for the interface tension [obtained from Eq. (5)
after subtracting the elastically supported stress] with the sharp
interface limit, whereas this could be proved only for A-Ti

interfaces in Ref. 12. The thermodynamic potential and U t

are symmetric with respect to the interchanges Tj ↔ Ti ; they
need not be symmetric with respect to the interchange A ↔ Ti

because A ↔ Ti is not a twinning.

III. EQUIVALENCE OF EQUATIONS FOR L-Tk AND Ti -T j

TRANSFORMATIONS

Let us simplify Eqs. (2)–(6) for the austenite-martensite
phase transformation by setting ϑ2 = 0, ϑi = 1 for i �= 2. We
also set a = 3, which leads to ϕ(ϒ) = q(ϒ). This is necessary
to make the transformation strain between the austenite
and martensite symmetric with respect to the interchanges
A ↔ Ti , in the same sense as it is symmetric for variant-variant
transformation. Then

ψ̆θ = [A0(θ − θc) + 3�s0(θ − θe)]ϒ2(1 − ϒ)2, (7)

ψ∇ = β

2
|∇ϒ |2, (8)

U t = I + εt2q(ϒ), (9)

σ = ρ

ρ0
V · ∂ψ

∂ B
· V − ρ

ρ0

(
∇ϒ ⊗ ∂ψ

∂∇ϒ

)
s

, (10)

1

Lϒ

∂ϒ

∂t
= − ρ

ρ0

∂ψ

∂ϒ

∣∣∣∣
B

+ ∇ ·
(

ρ

ρ0

∂ψ

∂∇ϒ

)
. (11)

Next, let us simplify Eqs. (2)–(6) for the T1 ↔ T2 transforma-
tion but setting ϒ = 1, ϑ = ϑ1, ϑ2 = 1 − ϑ , and ϑi = 1 for
2 < i � n. Then

ψ̆θ = Āϑ2(1 − ϑ)2, (12)

ψ∇ = βϑ

2
|∇ϑ |2, (13)

U t = I + εt1 + (εt2 − εt1)q(ϑ), (14)

σ = ρ

ρ0
V · ∂ψ

∂ B
· V − ρ

ρ0

(
∇ϑ ⊗ ∂ψ

∂∇ϑ

)
s

, (15)

1

Lϑ

∂ϑ

∂t
= − ρ

ρ0

∂ψ

∂ϑ

∣∣∣∣
B

+ ∇ ·
(

ρ

ρ0

∂ψ

∂∇ϑ

)
. (16)

It is clear that Eqs. (7)–(11) are equivalent to Eqs. (12)–(16)
after substituting ϒ ↔ ϑ with the following correspondence
of parameters:

[A0(θ − θc) + 3�s0(θ − θe)] ↔ Ā,
(17)

β ↔ βϑ, εt1 ↔ 0, Lϒ ↔ Lϑ.

For the austenite-martensite interface, the combination of
Eq. (1) and Eqs. (7)–(11) resulted in the desired expression for
the interface (surface) tension σ st.11,12 Since Eqs. (12)–(16)
for twinning are equivalent to Eqs. (7)–(11) for the austenite-
martensite transformation, the expression for the interface
tension σ st for the Ti-Tj interface has the same desired
expression. This proves the advantage of the chosen order
parameters and phase-field formulation in comparison with
previous studies. Note that for the particular case considered in
simulations, A0 = −3�s0, the term [A0(θ − θc) + 3�s0(θ −
θe)] = A0(θe − θc) is temperature-independent.

IV. ANALYTICAL SOLUTIONS

An analytical solution for a nonequilibrium plane austenite-
martensite interface moving in an infinite medium in the x
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direction under stress-free conditions (ψe = 0) is10,12

ϒ = 1/
[
1 + e−p(x−vϒ t)/δϒ

]
,

δϒ = p
√

β/{2[A0(θ − θc) + 3�s0(θ − θe)]},
(18)

vϒ = −6Lϒδϒ�s0(θ − θe)/p,

Eϒ =
√

2β[A0(θ − θc) + 3�s0(θ − θe)]/6,

where p = 2.667,10 and vϒ , δϒ , and Eϒ are the inter-
face velocity, width, and energy, respectively. Using the
above equivalence, similar equations can be obtained for
a stationary variant-variant interface (since stresses are
absent):

ϑ = 1/
[
1 + e−p(x−vϑ t)/δϑ

]
, δϑ = p

√
βϑ/(2Ā),

(19)
Eϑ =

√
2βϑĀ/6.

These equations allow us to calibrate material parameters
β, A0, Ā, and L when the temperature dependence of the
interface energy, width, and velocity is known. An explicit
expression for a variant-variant interface energy allows us
to correctly define interface stresses at a variant-variant
interface.

V. COMPLETE SYSTEM OF EQUATIONS FOR TWO
MARTENSITIC VARIANTS

Below we enumerate the total system of equations for two
martensitic variants used in our simulations. Elastic strains
are considered to be small, which simplifies the equations
significantly. Transformation strains and rotations are finite.

Kinematic decomposition:

F = Fe·U t , Fe = V e·Re,
(20)

V e = I + εe, εe � I,

where V e is the elastic left stretch tensor, Re is the lattice
rotation, and εe is the small elastic strains.

Transformation deformation gradient (ϑ = ϑ1, ϑ2 = 1 −
ϑ , and a = 3):

U t = I + [εt1(1 − 3ϑ2 + 2ϑ3) + εt2(3ϑ2 − 2ϑ3)]q(ϒ).

(21)

The Helmholtz free energy per unit undeformed volume:

ψ = ψe + ρ0

ρ
ψ̆θ + ψθ + ρ0

ρ
ψ∇, (22)

ψe = 1

2
Kε2

0e + μee : ee, (23)

ψ̆θ = A0(θe − θc)ϒ2(1 − ϒ)2 + Ā(1 − ϑ)2ϑ2q(ϒ), (24)

ψ∇ = β

2
|∇ϒ |2 + q(ϒ)

βϑ

2
|∇ϑ |2, (25)

ψθ = −�s0(θ − θe)q(ϒ), q(ϒ) = ϒ2(3 − 2ϒ), (26)

where ε0e and ee are the volumetric and deviatoric parts of the
elastic strain tensor.

Decomposition of the Cauchy stress σ into elastic σ e and
surface tension σ st tensors:

σ = σ e + σ st; σ e = Kε0e I + 2μee;

σ st = (ψ∇ + ψ̆θ )I − βϒ∇ϒ ⊗ ∇ϒ − q(ϒ) βϑ∇ϑ ⊗ ∇ϑ.

(27)

Ginzburg-Landau equations:

1

Lϒ

∂ϒ

∂t
= σ e:

(
Re · ∂U t

∂ϒ
· U−1

t · Rt
e

)
s

− ρ

ρo

∂ψθ

∂ϒ
− ∂ψ̆θ

∂ϒ
− ∂ψ∇

∂ϒ
+ ∇ ·

(
∂ψ∇

∂∇ϒ

)

= σ e:
(

Re · ∂U t

∂ϒ
· U−1

t · Rt
e

)
s

+ 6�s0(θ − θe)

1 + εo

ϒ(1 − ϒ) − 6Āϒ(1 − ϒ)ϑ2(1 − ϑ)2

− 2A0(θe − θc)ϒ(1 − 3ϒ + 2ϒ2) − 3βϑϒ(1 − ϒ)|∇ϑ |2 + βϒ∇2ϒ, (28)

1

Lϑ

∂ϑ

∂t
= σ e:

(
Re · ∂U t

∂ϑ
· U−1

t · Rt
e

)
s

− ∂ψ̆θ

∂ϑ
+ ∇ ·

(
∂ψ∇

∂∇ϑ

)

= σ e:
(

Re · ∂U t

∂ϑ
· U−1

t · Rt
e

)
s

− 2Āϑq(ϒ)(1 − 3ϑ + 2ϑ2) + βϑq(ϒ)∇2ϑ. (29)

t=0.3 (b) 0.9 1.3 50 90(a) (c) (d) (e)
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-0.2
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-0.6

-0.8
-1

Min: -1.00

Max: 1.00

0

FIG. 1. (Color online) Evolution of 2ϒ(ϑ − 0.5) in a square sample of size 50 × 50 with an initial stochastic distribution of order parameter
ϒ under biaxial normal strain of 0.01.
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FIG. 2. (Color online) Evolution of ϑ in a square sample of size 50 × 50 under biaxial normal strain of 0.01 with an initial condition shown
in Fig. 1(e), reduced temperature θ = 0 K, parameter βϑ = 5.18 × 10−11 N, and changed transformation strain.

Equilibrium equation:

∇ · σ = 0. (30)

In our example simulations, we use the material parameters
for the cubic to tetragonal PT in NiAl found in Refs. 9,
10, and 13: a = 3, A0 = −3�s0 = 4.4 MPa K−1, Ā = 5320
MPa, θc = −183 K, θe = 215 K, Lϒ = Lϑ = 2596.5 m2/N s,
β = βϑ = 5.18 × 10−10 N, and θ = 100 K, unless stated
otherwise. These parameters correspond to a twin inter-
face energy ETT = 0.958 J/m2 and width �TT = 0.832 nm.
Isotropic linear elasticity is used for simplicity; bulk modulus
K = 112.8 GPa and shear modulus μ = 65.1 GPa. In the
plane stress two-dimensional (2D) problems, only T1 and T2

are considered; the corresponding transformation strains in
the cubic axes are εt1 = (0.215, − 0.078, − 0.078) and εt2 =
(−0.078,0.215, − 0.078). The FEM approach was developed
and incorporated in the COMSOL code. All lengths, stresses,
and times are given in units of nm, GPa, and ps. All external
stresses are normal to the deformed surface.

VI. BENCHMARK PROBLEM: BENDING AND SPLITTING
OF MARTENSITE TIPS IN NiAl ALLOYS

Our goal here is to reproduce several nontrivial microstruc-
tures observed in experiments for NiAl alloys.15,16 Since
numerous alternative solutions exist, one has to carefully

choose initial conditions. We did this in several steps. The
initial random distribution of order parameter ϒ in the range
[0; 0.4] was prescribed in a square sample of 50 × 50 with
the austenite lattice rotated by α = 45◦. The initial value of ϑ

was 0.5. For one horizontal and one vertical surface, the roller
support was used, i.e., normal displacements and shear stresses
are zero. Homogeneous normal displacements at two other
surfaces were prescribed and kept constant during simulations,
resulting in biaxial normal strain of 0.01. Shear stresses were
kept zero at external surfaces. The two-dimensional problem
under plane stress condition and temperature θ = 50 K was
studied. The evolution of 2ϒ(ϑ − 0.5) is presented in Fig. 1,
demonstrating transformation of the austenite into martensite
and coalescence of martensitic units.

Despite the symmetry in geometry and boundary condi-
tions, accidental asymmetry in the initial conditions led to
the formation of an alternating horizontal martensitic twin
structure with austenitic regions near vertical sides, in order
to satisfy boundary conditions. Invariant plane conditions for
the austenite-martensite interfaces are a consequence of a
simplified plane-stress two-dimensional formulation.

The stationary solution from Fig. 1 was taken as an
initial condition for the next problem with the following
modifications: temperature was reduced to θ = 0 K; parameter
βϑ was reduced to βϑ = 5.18 × 10−11 N, which led to twin in-
terface energy EMM = 0.303 J/m2 and width �MM = 0.263 nm;

T2

θ=76.9o

θ=77.1o

T1

T2

T1

T2T1θ=77.2o

θ=77o

FIG. 3. (Color online) Comparison of transmission electron microscopy image of a nanostructure for NiAl alloy from Ref. 15 and the
zoomed part of the simulation results from Fig. 2(j). Simulations reproduce well tip splitting and bending angle.
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T2

T1

T2

(a) (b) (c)

FIG. 4. (Color online) (a) Stationary solution for 2ϒ(ϑ − 0.5) in a sample and (b) its zoomed part near the left side of a sample;
(c) transmission electron microscopy of a nanostructure for NiAl from Ref. 15. Crossing twins are observed in experiment and simulation.

components of transformation strains have been changed to the
values U t1 = (k1,k2,k2) and U t2 = (k2,k1,k2) with k1 = 1.15
and k2 = 0.93 corresponding to the NiAl alloy in Ref. 15. Then
ϒ was made equal to 1 everywhere and maintained during the
entire simulation. Due to a reduction in the interface energy,
the number of twins increased by splitting the initial twins
(Fig. 2). Without austenite, rigid vertical boundaries led to
high elastic energy. That is why restructuring produced vertical
twins near each of the vertical sides in proportion, reducing the
energy of the elastic stresses due to the prescribed horizontal
strain. When the microstructure transforms to fully formed
twins separated by diffuse interfaces, narrowing and bending
of the tips of horizontal T2 plates is observed (Figs. 2 and 3),
similar to experiments.15 Note that since the invariant plane
interface between T1 and T2 requires mutual rotation of these
variants by the angle ω = 12.1◦ [cos ω = 2k1k2/(k2

1 + k2
2) =

0.9778],15 the angle between the horizontal and vertical
variants T2 is 1.5ω = 18.15◦, which is in good agreement with
our simulations. Thus, due to lattice rotations, the interface
between the horizontal and vertical variants T2 cannot be an
invariant plane interface, and a reduction in the internal stresses
at this boundary leads to a reduction of the boundary area by
narrowing and bending of the tips of one horizontal plate. The
measured angles between the tangent to the bent tip and the
horizontal line in the experiment15 and in calculations (Fig. 3)
are in good quantitative agreement.

Note that microstructure evolution occurs through interme-
diate values of ϑ in some regions (see t = 125 and 160 in
Fig. 2), i.e., when transformation strain of one twin penetrates
into the region of another one, producing crossed twins. Such
crossed twins have been observed in some experiments16 and
have been arrested (Fig. 4). In our simulations in Fig. 2, they

represent an intermediate stage of evolution. However, if we
reduce Ā to 0.532 GPa, such crossed twins represent stationary
solutions (Fig. 4). Also, on the right side of the solution in
Fig. 2, an alternative way for stress relaxation is visible, when
twins T2 are surrounded by twins T1, which is also observed
in experiments.15

Thus, starting with a microstructure in Fig. 1, which is quite
far from the final one, our solution reproduced three types of
nontrivial experimentally observed microstructures involving
finite rotations, including tip splitting and bending, twins
crossing, and good quantitative agreement for the bending
angle. Note that tip splitting and bending were also reproduced
in Ref. 5 utilizing strain-based phase-field formulation and
initial conditions closer to the final solution than here.

VII. PHASE TRANSFORMATION AND TWINNING
UNDER APPLIED LOAD

A. Nanoindentation: Applied uniform pressure

Nanoindentation-induced twinning T2 → T1 was studied
in a T2 sample with a preexisting T1 embryo of radius 2 under
the indenter (Fig. 5). The sample was obtained from a square A
sample of size 50 × 50 by transforming it homogeneously to
T2. The cubic axes and transformation strain were rotated by
α = 31◦ with respect to the coordinate axes. Initial conditions
were as follows: ϒ = 1 everywhere, ϑ = 0.9 inside the
embryo, and ϑ = 0.999 in the rest of the sample. A uniform
pressure between the indenter of width 4 and the sample was
increased linearly from 2 to 3 GPa over 110 ps. The bottom
sample surface was constrained by a roller support and point
F was fixed; all other surfaces are stress-free. With increasing

 

 
 

(a) p =2.007 (b) 2.05 (c) 2.60 (d) 2.90 (e) 3.00 (f) 2.10F

FIG. 5. (Color online) Twinning T2 (red) →T1 (blue) under indentation with the rigid support (a),(b), support with the hole (c)–(e), and
during unloading (f).
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(a) t = 0.5 (b) 1.5 (f) 20.0(e) 10.0(c) 3.0 (d) 6.0

FIG. 6. (Color online) Evolution of 2ϒ(ϑ − 0.5) for indentation of A (green) sample; T2: red and T1: blue.

load, a twin T1 appears under the indenter and grows in a wedge
shape with a sharp tip [Figs. 5(a) and 5(b)]. Since the bottom
of the sample was constrained by the roller support, the twin
T1 could not propagate through the entire sample. In the same
problem but with a stress-free section of length 20 at the bottom
[Figs. 5(c) and 5(d)], the twin propagated completely through
the sample and widened with increasing load. The load was
then reduced to zero: the width of the twin then decreased
to zero without a change in length [Figs. 5(e) and 5(f)].
These results are in qualitative agreement with experiments1

and previous simulations.8 Since dislocation plasticity and
interface friction6,13 are neglected, there is no residual twin.

B. Nanoindentation: Applied uniform displacement

Nanoindentation of a square 50 × 50 A sample with α =
15◦ was modeled by prescribing uniform vertical displace-
ments growing from 2 to 2.5 over a section of width 4;
friction was neglected (Fig. 6). Adjacent lateral surfaces of
the sample were constrained by the roller supports. In an
initial embryo of radius 2, we set ϒ = 0.1; ϒ = 0.01 outside
of the embryo. The order parameter ϑ = 0.5 everywhere.
The transformed twinned martensite first grew only in the
vertical direction; note the presence of a small nontransformed
region under the indenter [Figs. 6(a)–6(f)]. When the stress
concentration due to the indenter became smaller than the
internal stresses due to transformation strain and the bottom
constraint, a morphological transition occurred: the growth
of T2 changed direction away from T1 toward a corner of
the sample, and ultimately reached the corner. The T2-T1

interface is curvilinear and consequently cannot be described
by crystallographic theories presented in, e.g., Refs. 2 and 3.

C. Biaxial stresses

A square A sample of size 100 × 100 with α = 15◦ and an
embryo of 2 nm radius in the center of the sample was subjected

to uniform vertical and horizontal stresses σy = 3 and σx =
0.1, respectively (Fig. 7). Because of the reflection symmetry,
only one-quarter of the sample was directly simulated; roller
supports were applied along the symmetry axes. The parameter
values Ā = 61.6 MPa and βTT = 19.4 × 10−12 N were used,
corresponding to ETT = 0.01 J/m2 and �TT = 1 nm. The
initial conditions in the embryo were ϒ = 0.1, and ϒ = 0.001
outside the embryo; ϑ = 0.5 everywhere. Within 1 ps, A was
transformed to a mixture of Ti twins, which further evolve to
produce a nontrivial stationary morphology. Note that varying
the ratio Lϑ/Lϒ from 1 to 1000 with Lϒ = 2596.5 m2/N s did
not change the stationary solution and only slightly affected
the evolution.

D. Double indentation

Two indenters of width 4 nm were placed on adjacent
sides of a square 50 × 50 A sample with α = 45◦ (Fig. 8). At
t = 0, there were uniform pressures p1 = p2 = 3 across the
indenters. The remaining lateral surfaces of the sample were
constrained by roller supports. In two initial embryos of radius
2 under the indenters, ϒ = 0.1; outside the embryos, ϒ =
0.01. Again, ϑ = 0.5 everywhere. The complex evolution of
the twinned nanostructure is shown in Figs. 8(a)–8(i). Starting
with state (h), p2 was slowly reduced to zero while keeping
p1 = 3. The quasistationary solutions in Figs. 8(j)–8(l) show
an initial reversal of the nanostructure [see Figs. 8(j) and 8(g)]
followed by the predominance of T1.

VIII. CONCLUDING REMARKS

To summarize, a phase-field model of transformations be-
tween martensitic variants and multiple twinning in martensitic
variants was developed. It accounts for large strains and lattice
rotations, and incorporates a minimal set of order parameters.

Each martensitic variant is characterized by the rotation-
free deformation of the crystal lattice U t i . The twinning
parameters and lattice rotations are not parametrized with the

  

t=0.6
5.0 60.0

1.0

-1.0

0.0

0.8 1.0      1.2

FIG. 7. (Color online) Evolution of 2ϒ(ϑ − 0.5) in a quarter of 100 × 100 sample with an initial embryo at the center under homogeneous
compressive stress of σy = 3 and σx = 0.1.
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(a) t =1.0 (b) 5.0 (c) 10.0 (d) 12.0 (e) 15.0 (f) 20.0

(g) 30.0 (h) 50.0 (j) p2=2.1 (k) p2=1.8 (l) p2=0 

p1

p2

(i) p2=2.8

FIG. 8. (Color online) Evolution of 2ϒ(ϑ − 0.5) in time (a)–(i) for double indentation of an A sample at p1 = p2 = 3, followed by reduction
of p2 to zero at p1 = 3 (j)–(l) from state (h).

order parameters but are obtained from the solution of the cou-
pled phase field and mechanics boundary-value problem. Each
variant-variant transformation and all of the infinite number
of possible twinnings within them are described with a single
order parameter. Despite this economy of order parameters, ar-
bitrarily complex twin-within-a-twin martensitic microstruc-
tures can in principle be described by the model. The energies
and widths of the A-Ti and Tj -Ti interfaces can be controlled
(prescribed), and the corresponding interface stresses are
consistent with the sharp interface limit. A similar approach in
terms of order parameters (ϒ,ϑi) could be developed for recon-
structive, electric, and magnetic PTs and for other phenomena
described by multiple order parameters. Problems on twinning
in martensite and combined A ↔ Mi and Mj ↔ Mi transfor-
mations and nanostructure evolution in a nanosize sample are

solved utilizing the FEM. In particular, for thermally induced
transformation, we reproduced three types of nontrivial exper-
imentally observed microstructures involving finite rotations,
including tip splitting and bending and twins crossing; good
quantitative agreement for the bending angle is obtained.
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