
PHYSICAL REVIEW B 88, 054104 (2013)

Machine-learning approach for one- and two-body corrections to density functional theory:
Applications to molecular and condensed water
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We show how machine learning techniques based on Bayesian inference can be used to enhance the computer
simulation of molecular materials, focusing here on water. We train our machine-learning algorithm using
accurate, correlated quantum chemistry, and predict energies and forces in molecular aggregates ranging from
clusters to solid and liquid phases. The widely used electronic-structure methods based on density functional
theory (DFT) by themselves give poor accuracy for molecular materials like water, and we show how our
techniques can be used to generate systematically improvable one- and two-body corrections to DFT with modest
extra resources. The resulting corrected DFT scheme is considerably more accurate than uncorrected DFT for
the relative energies of small water clusters and different ice structures and significantly improves the description
of the structure and dynamics of liquid water. However, our results for ice structures and the liquid indicate
that beyond-two-body DFT errors cannot be ignored, and we suggest how our machine-learning methods can be
further developed to correct these errors.
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I. INTRODUCTION

The computer simulation of materials has become an
indispensable tool across a wide range of disciplines, including
materials physics and chemistry, metallurgy, the earth sciences,
surface science, and biology. Simulation techniques range all
the way from simple empirical force fields to the electronic
structure methods based on density functional theory (DFT)
and correlated quantum chemistry.1 Electronic structure meth-
ods are capable of much greater accuracy and generality than
force fields, but their computational demands are heavier by
many orders of magnitude. A crucial challenge for simulation
is therefore to find systematically improvable methods for cast-
ing information from accurate electronic-structure techniques
into forms that are more rapidly computable. We show here
how machine learning techniques2 allow data from correlated
quantum chemistry to be used to correct the DFT description
of molecular materials, taking condensed-phase water as our
example.

The fundamental interactions in water and other molecular
materials3 consist of exchange-repulsion, electrostatic inter-
action between molecular charge distributions, polarization
(i.e., the electrostatic distortion of charge distributions), charge
transfer, and van der Waals dispersion, together with effects
due to molecular flexibility. Electron correlation plays a role in
all these, and is crucial for dispersion.4 The correlated quantum
chemistry methods of MP2 (second-order Møller-Plesset) and
particularly CCSD(T) (coupled-cluster with single and double
excitations and perturbative triples, often referred to as the
“gold standard” of molecular quantum chemistry)5 give a
very accurate description of these interactions,6,7 but their
heavy computational demands for extended systems make
their routine use for condensed matter problematic. DFT
techniques are less demanding and have been widely used for
water,8 but the results obtained with standard approximations

often agree poorly with experiment9 and may depend strongly
on the assumed approximation.10 There is vigorous debate
about how to overcome the problems of DFT, and our
point of view here is that input from correlated quantum
chemistry is essential. We shall describe an approach in
which machine learning2 is used to construct representations
of some of the main energy differences between correlated
quantum chemistry and DFT, which can then be used to
construct efficient corrected DFT schemes for simulation of
large, complex systems. Our machine learning methods are
partly based on the reported ideas of Gaussian Approximation
Potentials (GAP),11–13 and are also related to the way Gaussian
processes were used recently to model the atomization energies
of small molecules.14

For molecular materials, it is helpful to work with the widely
used many-body representation,15,16 in which the total energy
Etot(1,2, . . . ,N ) of a system of N molecules is separated into
one-body, two-body, and beyond-two-body parts:

Etot(1, . . . N) =
N∑

i=1

E1B(i) +
∑
i<j

E2B(i,j )

+EB2B(1, . . . N) . (1)

Here, E1B(i) is the one-body (1B) energy of molecule i

in free space, which depends on its distortion away from
its equilibrium configuration. The energy E2B(i,j ) is the
two-body (2B) interaction energy of the pair of molecules
(i,j ) in free space, i.e., the total energy of the pair minus the
sum of their 1B energies. For water, E2B(i,j ) is a function
of 12 variables specifying the separation of the molecules,
their relative orientation and their internal distortions. We
have grouped together the three-body (3B) and higher-body
terms into the beyond-two-body (B2B) energy EB2B, which
represents everything not accounted for by 1B and 2B energies.
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Exchange-repulsion and first-order electrostatics are mainly or
entirely 2B interactions, and in most molecular systems, EB2B

arises mainly from polarization. In water systems, dispersion
is mainly a 2B effect,3 though B2B contributions may not
be completely negligible,17,18 but in some molecular systems,
B2B contributions to dispersion can be substantial.19

Our strategy of using machine learning to represent the
corrections to DFT needed to obtain CCSD(T) accuracy can,
in principle, be applied to all terms in the many-body series,
but at the present stage, we use it only to correct the 1B and
2B terms in the energy. This means that we shall obtain an
accurate description if we start from a DFT approximation
that is accurate enough for B2B energy. It has long been
known that there is a strong redistribution of electrons when a
water monomer enters the liquid or solid phases, and its dipole
moment increases from 1.86 D in the gas phase to ∼2.6 D
or more in condensed phases.20,21 The inclusion of B2B
effects is therefore crucial. However, the polarizabilities of the
H2O monomer are generally quite well described by common
DFT approximations (an overestimation by ∼10% is normal
with nonhybrid GGA approximations, with hybrid functionals
being somewhat better22,23) so that use of DFT for B2B energy
should serve as a reasonable starting point. We note that our
approach incorporates an accurate description of molecular
flexibility, which is not always done even in some sophisticated
force fields. Flexibility is essential, because without it one
could not describe the well known lengthening of O-H bonds
and the lowering of O-H vibrational frequency24 when the H
atom of a water monomer participates in a hydrogen bond with
another monomer and nor could quantum nuclear effects25 be
properly treated.

The idea of working within the framework of the many-
body expansion and using data from correlated quantum
chemistry to develop accurate models for the 1B and 2B
(and recently 3B) parts of the energy, with more approximate
models used for the higher-body terms, goes back several
years. This general approach has been extensively used
by many groups (see, e.g., Refs. 26 and 27). By contrast
with early unpolarizable models,28 which were designed to
work only for a limited range of liquid states, developments
within the many-body framework have always emphasized the
importance of B2B energy, which has often been represented
by single- or multisite polarizabilities, usually damped at
short distances. As examples of this approach, we note the
series of TTMn-F models due to the groups of Xantheas and
Burnham,29–31 and the DPPn models of Jordan’s group.32

In recent years, systematic methods have been proposed
for creating accurate parameterized representations of the
energetics of the water dimer, using databases of CCSD(T) en-
ergies for large numbers of geometries.26,33,34 These methods
were subsequently extended to the water trimer, to produce
representations of the three-body energy computed using
correlated quantum-chemistry techniques.26,27,33–36 Combined
with more approximate (but still ab initio based) models for
the higher-body energies, these approaches have achieved
important successes in describing the properties of water in
a variety of aggregation states from small clusters to the bulk
liquid.26,27 A noteworthy example is the very recent work from
Paesani’s group,27,36 in which 1B energy is described by the
very accurate Partridge-Schwenke algorithm,37 2B energy is

represented by the HBB2 ab initio-parameterized model,38 3B
energy is given by the TTM4-F model of Burnham et al.31

corrected using an efficient parameterized representation of
CCSD(T) 3B energies, and higher-body energies are all
described by TTM4-F.

The work presented here differs from what has been done
before in the following respects. First, our systematically
improvable representation of energies and forces employs
machine-learning techniques based on Bayesian inference in
the general framework of Gaussian processes, rather than
using predefined functional forms (e.g., polynomials up to
a fixed degree). We shall show that this approach allows
us to reproduce CCSD(T) energies with very high accuracy.
Second, we use DFT rather than parameterized models for
the higher-body energies. We are motivated to start from
DFT by our long-term aim of developing methods for
general molecular systems, including aqueous solutions of
ions and small molecules. DFT is, of course, a more expensive
simulation technique than parameterized force-fields, but it
has the enormous advantage of not requiring a development
effort every time it is applied to a new system, and this is why
we adopt the strategy of using machine learning combined
with correlated quantum chemistry to make systematic im-
provements to DFT. There is an interesting relation here with
the DFT/CC method of Nachtigall et al.,39,40 which is based
on the idea of correcting DFT approximations for molecular
systems by adding parameterized atom-atom potentials fitted
to reproduce CCSD(T) energies. The approach we present here
differs by using nonparametric machine learning to generate
systematically improvable corrections. We note that machine
learning based on neural-network techniques has recently been
used to represent the energetics of the H2O dimer41 and
more recently some larger clusters,42 but the aim there was
completely different, namely, to reproduce the DFT energies
themselves directly, rather than accurate quantum-chemistry
energies, and without a many-body decomposition.

In the next section, we present our machine-learning
techniques for correcting the 1B and 2B parts of the energy
for water systems. In the subsequent sections, we report
calculations on small water clusters, on polymorphs of ice,
and on liquid water, the technical details of the calculations
being summarized in Sec. III and the results themselves
being presented and discussed in Sec. IV. These will show
that the GAP-based corrections achieve a very substantial
improvement over the DFT approximation on which they are
based.

II. MACHINE LEARNING WITH GAP

We start this section by outlining how we use the principles
of Bayesian inference in the framework of Gaussian processes
to construct our machine-learning scheme for representing
corrections to DFT energies. Passing to practicalities, we then
note the considerations that motivated our choice of DFT
functional to be corrected, and we then describe how we
computed the 1B and 2B corrections to the chosen functional.
Results presented at the end of the section demonstrate the
high quality of the GAP correction of the 2B energy.
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A. Overview of the GAP scheme

Consider a system whose configuration is specified by
points R in a many-dimensional configuration space. We are
given the values f (Rn) of its energy (or corrections to its
energy) at a finite set of configurations {Rn}. We now ask
what is the most likely value of f (R) at a configuration R
not in the given set {Rn}? The rules of Bayesian inference2

are used to compute this most likely value, assuming that
the function f has certain smoothness properties. Here,
the concept of smoothness is used in the sense of spatial
correlation, and simply means that the probability of finding
very different values f (R) and f (R′) decreases rapidly to zero
as R and R′ approach each other. The framework of GAP,
based on Gaussian processes,43 uses a precise formulation of
smoothness in terms of a covariance function C(R,R′) having
the form43

C(R,R′) = θ exp

{
−

∑
i

[(Ri − R′
i)/(2σi)]

2

}
, (2)

where the sum in the exponent is over the dimensions of the
configuration space, θ is the typical scale of f and σi are the
typical length scales on which f (R) varies. The theory yields
the following formula43 for the most likely estimate of f (R)
given the data and the assumption of smoothness (often called
the maximum a posteriori estimator):

f (R) =
data∑
n

C(R,Rn)αn , (3)

where the coefficients αn are given by inversion of the linear
equations

f (Rm) =
data∑
n

[C(Rm,Rn) + εδmn]αn , (4)

where δmn is the Kronecker δ and the diagonal shift of
magnitude ε is included to regularize the linear algebra.

When applying GAP to represent corrections to 1B and
2B energies in water, there are different ways of choosing
the space in which the configurations are represented, but
here it is advantageous to build in the fact that the energy
function f (R) is left unchanged by rotations and translations
of the whole system, and by interchange of identical atoms.
For the water monomer, the two OH distances and the angle
between them provide a convenient coordinate system. For
the water dimer, we ensure rotation and translation symmetry
by working with the space of the 15 interatomic distances,
R = {|ri − rj |}, where ri are the atomic positions. To ensure
interchange symmetry, we symmetrize the covariance function
over permutations of identical atoms and also impose a finite
cutoff range:

C̃(R,R′) = 1

|S|
∑
π∈S

C(π (R),R′)fcut(ROO)fcut(R
′
OO), (5)

where π represents an element of the permutation group, S,
of the water dimer, whose order |S| is 8, and fcut is a cutoff
function whose value changes from unity to zero smoothly
as ROO and R′

OO, the distances between the pairs of oxygen
atoms in the two dimer configurations R and R′, approach
a predefined limit. A more detailed account of our GAP

formalism is given elsewhere.11,12 The computational cost of
evaluating the GAP model is linear in the size of the database
{Rn}, and for the case of the water dimer presented below takes
about 10 ms on a single processor.

B. Choice of DFT functional

Because we wish to correct 1B and 2B energies, in selecting
a DFT functional we concentrate on its accuracy for the
B2B energies. In a recent study46 on thermal samples of
configurations of a range of small water clusters up to the
hexamer, it was shown that for several DFT approximations
the correction of one- and two-body errors does indeed
yield major improvements in accuracy. Some of the DFT
functionals studied there were “hybrid” functionals in which
a fraction of exact exchange is included in the exchange-
correlation functional. For simulations of large aggregates
of water molecules, and particularly for molecular dynamics
simulations, it is preferable not to use hybrid functionals,
because they are computationally very demanding. Of the
nonhybrid functionals studied,46 BLYP was the one that gave
the smallest root-mean-square deviations from benchmark
values for the B2B energies, which is consistent with other
recent work,36 and this is why we chose to employ BLYP in
the present work.

To illustrate the fact that a number of DFT functionals
give a good representation of B2B energy, we show in
Fig. 1 a parity plot in which the three-body energies of 50
configurations of the H2O trimer computed with four DFT
functionals are plotted against highly converged CCSD(T)
benchmarks. For comparison, we also show the three-body
energy computed with the polarizable and flexible interaction
model TTM3-F for water published recently by the group of
Xantheas30 and for which computer code is publicly available.

FIG. 1. (Color online) Parity plot of three-body interaction
energies in a thermal sample of water trimers: approximations are
compared with CCSD(T) benchmarks. Approximations shown are
TTM3-F force field30 and DFT with PBE, PBE0, BLYP, and B3LYP
functionals. The thermal sample was generated by drawing trimers
from an MD simulation of the bulk liquid performed using the
AMOEBA forcefield44,45 at 300 K and ambient pressure.
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We note that the functionals BLYP, PBE, B3LYP, and PBE0
all reproduce the three-body energy with an accuracy that
considerably exceeds that of TTM3-F. This comment is not, of
course, intended as a criticism of TTM3-F, which is a highly
successful model. It should be noted that the revised force field
TTM4-F31 improves the accuracy of three-body terms over its
predecessor.36

C. One-body corrections

The energy of an isolated H2O monomer as a function of
its two O-H bond lengths r1, r2, and its H-O-H angle θ is
very accurately represented using the parameterization due to
Partridge and Schwenke (PS).37 In order to correct the DFT
energy of a water system for one-body errors, we have only to
add to the DFT total energy the difference

�E1B ≡ E1B(PS) − E1B(DFT)

for every monomer. Since �E1B for a monomer depends on
only three variables r1, r2, θ , many possible schemes could be
used to represent �E1B(r1,r2,θ ) accurately. It is convenient
here to use a GAP-like approach, and the method we employ
uses a GAP representation for E1B(BLYP) itself, so that at
run-time we compute E1B(PS) by the standard PS formula and
E1B(BLYP) from the GAP representation and then add the
difference �E1B for every monomer to the total BLYP energy.
Naturally, a direct GAP representation of �E1B could also be
used.

To make the GAP representation of E1B(BLYP), we use
the MOLPRO package47 with an aug-cc-pV5Z basis to compute
the BLYP monomer energies very accurately on a uniform
grid in the space of r1, r2 and θ (0.8 Å < r1,r2 < 1.15 Å with
0.025 Å spacing, 72.5◦ < θ < 127.5◦ with 5◦ spacing). The
three symmetrized coordinates r1 + r2, (r1 − r2)2 and r1 · r2

are used in the GAP scheme.

D. Two-body corrections

To correct the BLYP total energy of a water system for
two-body errors, we add the difference

�E2B ≡ E2B
(
CCSD(T)

) − E2B(BLYP)

for all distinct monomer pairs. Our GAP representation of the
two-body correction �E2B is constructed in two steps: first,
we make a representation of the difference

�E2B(MP2/aug-cc-pVTZ)

≡ E2B(MP2/aug-cc-pVTZ) − E2B(BLYP),

where E2B(MP2/aug-cc-pVTZ) is the two-body energy calcu-
lated with the MP2 approximation and the moderately accurate
aug-cc-pVTZ basis set; in the second step, we represent the
difference �E2B(δCCSD(T),δbasis), which corrects both for
the basis-set errors in �E2B(MP2/aug-cc-pVTZ) and for the
differences between CCSD(T) and MP2. All dimer calcula-
tions are done with the Molpro package,47 and we always
use counterpoise correction to suppress basis-set superposition
errors. It is important to note our aim of representing the
difference between CCSD(T) and BLYP as close as possible
to the basis-set limit for both methods in both one-body and
two-body corrections. We do this because we intend that

the corrections will generally be applied to well converged
plane-wave DFT calculations. This procedure is consistent
with the principle noted in recent work48 that the basis sets
used in the generation of corrections to DFT should be the
same as those employed when the corrections are applied.

To generate ab initio data for correcting DFT to MP2
level, we took 6000 water dimer configurations with ROO <

4.5 Å and 1000 configurations with 4.5 Å < ROO < 6.0 Å
from an AMOEBA44,45 molecular dynamics simulation of a
large periodic liquid water system at 300 K. In order to
achieve coverage across a wider range of configurations,
the data set was augmented by 2040 configurations from a
DFT/BLYP/aug-cc-pVTZ molecular dynamics simulation of
a water dimer in a harmonic confining potential at 4000 K
using a Langevin thermostat.49

Energies and forces were computed for these 9040 configu-
rations using MP2 and BLYP with the aug-cc-pVTZ basis set.
The resulting difference was fitted using the GAP framework.
The basic formulation of Gaussian process regression outlined
above applies to the case when the data comprises function
values only. When derivatives (or equivalently forces) are
also available, they should be used, since they contain much
valuable information; for each dimer configuration, they
supply 18 values in addition to the one value of the energy.
Their treatment in the GAP framework is straightforward;
one simply needs to express the covariance of any two force
values and also the covariance of the observed forces with the
predicted energy, and use these expressions to construct an
enlarged covariance matrix that is then used in the same way
as shown in equations (3) and (4). Since our covariance is a
Gaussian, the covariance of the forces is just the derivative
of this Gaussian with respect to the appropriate coordinate,
and is easy to compute. An extended discussion and detailed
formulas are given elsewhere.11,12

In order to correct for basis-set errors and for the errors of
MP2, we exploit the fact that explicit-correlation (F12) meth-
ods greatly accelerate the basis-set convergence of correlated
calculations.50,51 Since the corrections are small, we find that
it suffices to use only 1000 dimer configurations from the
AMOEBA simulation mentioned above, and that energies alone
(without forces) provide enough data. Our GAP correction for
basis-set errors in MP2 is based on MP2-F12 computations
with the aug-cc-pVTZ basis set, and the correction for the
difference CCSD(T) − MP2 employs CCSD(T)-F12 and
MP2-F12 calculations with the aug-cc-pVDZ basis set.

We show in Fig. 2 the two-body errors of BLYP together
with the errors of GAP-corrected BLYP for a thermal sample of
dimer configurations (which were not used in the construction
the GAP model) drawn from a molecular dynamics simulation
of liquid water. Uncorrected BLYP is too repulsive for the
water dimer,46 with unacceptably large errors of up to 50 meV
at the separations of interest. However, with GAP corrections,
the errors are dramatically reduced to ∼1 meV. GAP thus
provides a way of virtually eliminating all errors in a chosen
DFT approximation apart from those associated with B2B
energy. Also shown in Fig. 2 are the errors of the approximation
obtained by the popular procedure of adding the dispersion
correction due to Grimme et al.52 to BLYP. We note that this
approximation is better than uncorrected BLYP, but is much
less good than GAP-corrected BLYP.
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FIG. 2. (Color online) (Top) Benchmark two-body interaction
(black) and errors of DFT with the BLYP functional (blue) plotted
against oxygen-oxygen distance ROO. Benchmarks are computed
with CCSD(T) close to the basis-set limit. Bottom: two-body errors
of BLYP (blue, same as in top panel) and errors of BLYP + GAP
(red). The rms deviation of BLYP + GAP from benchmarks is 0.45
meV. Also shown are errors of BLYP plus Grimme D3 dispersion
correction.52 The sample of 500 dimer configurations shown here
were drawn from a molecular dynamics simulation of liquid water
and not used in the construction of the GAP models.

III. COMPUTATIONAL DETAILS

A. Calculations on ice structures

Our calculations on ice crystals were carried out using
the CASTEP package,53 using on-the-fly generated ultrasoft
pseudopotentials, 1200 eV plane-wave cutoff and a 3 × 3 × 3
Monkhorst-Pack k-point mesh in the primitive unit cell, both
chosen to achieve 1 meV convergence of total energies. The
geometry was relaxed (including the unit cell) until atomic
displacements were smaller than 0.001 Å, and the components
of the external stress tensor were less than 0.1 GPa.

B. Molecular dynamics for liquid water

Our molecular dynamics (MD) simulations on liquid water
were performed with a modified version of the VASP code,54

which includes the GAP model. The simulations employed
a system of 64 D2O molecules (heavy water) in a cubic cell
with the usual periodic boundary conditions. The number of
molecules per unit volume is the same as for H2O (light water)
at 0.997 g cm−3, and the temperature in the production part of
the run was 308 K.

Our VASP simulations employed the PAW (projector-
augmented-wave) technique,55 with a plane-wave cut-off
energy of 1200 eV. The simulations using the BLYP + GAP
model were performed using Born-Oppenheimer MD at
constant volume and energy, corresponding to the NVE
statistical-mechanical ensemble; no thermostat was employed.
The value of the MD time step was 0.5 fs and at every time step
convergence to the self-consistent ground state was achieved
to within 1 μeV in the total energy. Under these conditions,
the energy drift over a period of 10 ps was on the order of
0.3 meV/H2O. In the BLYP + GAP simulation reported below,
the system was equilibrated for 20 ps. All the results presented
were computed from a subsequent production run of 25 ps.
To test that the equilibration and production parts of the run
were long enough, we compared the RDF from the first and
second halves of the 25 ps production run, and we also varied
the length of the equilibration phase from 10 to 20 ps, and
observed no significant difference. To further verify that the
RDF computed in the NVE ensemble does not suffer from
lack of equilibration and sampling, we checked that it does not
differ appreciably from the RDF obtained from a BLYP + GAP
simulation in the NVT ensemble.

In addition to the main BLYP + GAP simulation, we shall
also refer below to a separate simulation using the uncorrected
BLYP approximation. This simulation, which was used only
to calculate the liquid structure and not dynamical properties,
was carried out in the NVT ensemble enforced by the Andersen
thermostat, using a 2-fs time step and the same masses
(16 amu) for all atoms for a total length of 10 ps. Data
generated during the production of this paper, including the
trajectories for the liquid water simulations and the databases
used for the GAP models associated software are available at
http://www.libatoms.org.

IV. RESULTS AND DISCUSSION

A. Small clusters

To illustrate the effectiveness of our GAP-corrected DFT,
we start with a simple test on the ten stationary points of the
water dimer.56 These form a canonical set of configurations,
which have been exhaustively studied and whose energies are
extremely accurately known.6 The global minimum structure
is bound by a single hydrogen bond, but some of the less
stable structures have up to four weaker hydrogen bonds.6 We
stress that none of these stationary points is included in our
training set, so that the energies computed with BLYP + GAP
are genuine predictions. We compare in Table I the relative
energies of the 10 configurations from BLYP + GAP with
the almost exact results and the predictions of the DFT
functional BLYP; the table also includes the very accurate
predictions of diffusion Monte Carlo (DMC).46 As has been
reported before,57 the DFT approximation shows quite large
errors of around 30 meV in some cases, while the errors of
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TABLE I. Relative energies of the ten stationary points of
the water dimer computed with CCSD(T) close to the basis-set
limit,6 diffusion Monte Carlo,46 DFT with the BLYP functional, and
BLYP + GAP. Numbering of the stationary states is standard.6 Units
are meV.

State BLYP BLYP + GAP CCSD(T) DMC

1 0 0 0 0
2 23 23 21 24
3 32 27 25 27
4 49 32 30 34
5 65 44 41 39
6 73 45 44 41
7 96 79 79 78
8 155 153 154 156
9 95 82 77 79
10 125 116 117 122

DMC are much smaller, being almost all less than 3 meV.
Our BLYP + GAP predictions are very accurate, and indeed
they compete in accuracy with DMC, at enormously reduced
computational cost.

As a second test, we examine the predictions of
BLYP + GAP for the energies of different isomers of the
water hexamer. This system has been studied extensively
for many years,7,16,59 for a very important reason. The most
stable structures of small water clusters from the trimer to
the pentamer have a ringlike form in which each monomer
is hydrogen bonded to two neighbors.59 However, from the
hexamer onwards, rings are less stable than compact structures
in which some monomers are hydrogen bonded to three or
four neighbors.7,59,60 The energy balance for the hexamer
is rather delicate, but high-precision CCSD(T) calculations
leave no doubt that the compact prism and cage structures
have lower energy than the more open book and ring forms.7

However, many of the commonly used DFT approximations,
including BLYP and PBE, wrongly predict that the ring
or book form is most stable.58 We compare in Fig. 3 the
predictions of BLYP + GAP with CCSD(T) benchmarks and
with the predictions of BLYP and DMC. We see that again
the GAP-corrected DFT model is highly accurate and is
comparable to DMC.

B. Ice polymorphs

For any material, crystal energetics provides a crucial test
of modeling techniques. Water has a remarkably rich phase
diagram, with no fewer than fifteen known ice structures.61,62

In the common form ice Ih, found at ambient pressure, each
H2O monomer is H-bonded to four nearest neighbors at an O-O
distance of 2.75 Å, the next-nearest neighbors having the much
greater O-O separation of 4.5 Å. The pattern of H-bonding in
ice Ih is disordered, but the closely related ordered form ice XI,
stable below 72 K, has essentially the same local geometry.61

With increasing pressure, denser structures become more
stable, and we will be concerned here with (in order of
increasing density) ice IX, II, XV, and VIII. The distances
to non-H-bonded next-nearest neighbors decrease along this
series, becoming almost exactly equal to the first-neighbor
distance in ice VIII.61 There are accurate experimental values
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FIG. 3. (Color online) Relative energies (meV units) of four
isomers of the water hexamer58 computed with CCSD(T) close to the
basis-set limit,7 diffusion Monte Carlo,58 BLYP, and BLYP + GAP.
Geometries are depicted below the figure.

for the zero-pressure energies and volumes of almost all these
structures.

Standard DFT approximations perform poorly for ice,22

making the energies increase far too much from ice Ih to VIII,
and giving transition pressures too high by up to a factor of
10. Our machine-learning techniques allow us to correct any
DFT approximation for one- and two-body errors, and enable
us to discover whether these errors are responsible for the
poor description of ice energetics. We have used BLYP + GAP
to calculate the relaxed geometries and the equilibrium
energies and volumes of the ice structures mentioned above,
substituting the periodic Bernal and Fowler structure for the
proton-disordered Ih.65 The results are reported in Table II,
where we also give results obtained with uncorrected BLYP.

The BLYP + GAP energies and volumes of the various
structures relative to those of ice Ih are much better than
those given by uncorrected BLYP. Given the large decrease
of second-neighbor O-O distance from 4.5 Å to ∼2.7 Å as we
pass from Ih to VIII, the experimental energy difference of
31 meV/monomer between the two structures is remarkably
small. The energy difference of 223 meV given by BLYP is
grossly in error, but the GAP correction brings the difference
into very close agreement with experiment. Similarly, the
volume differences between Ih and the other structures from
BLYP + GAP are much better than from BLYP itself. Nev-
ertheless, BLYP + GAP still suffers from some errors, since
it gives a significant uniform overbinding in all the structures
due to beyond-two-body errors, implying that BLYP + GAP
overestimates the strength of cooperative H bonding, leading
to an overestimate of the equilibrium density by about 5–10%.
The systematic overestimation of density by BLYP + GAP
would be partially compensated by zero-point effects, which
increase volumes by between 1–5%.66 Complete correctness
in the relative stabilities of the low-lying ice structures is
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TABLE II. Binding energies and volumes of ice polymorphs
computing using DFT with the BLYP functional and BLYP + GAP
compared with experimental values.63 Zero-point vibrational contri-
butions have been removed from the experimental energies,64 but not
from the volumes.

Ih II VIII IX XI XV

Binding energy [meV]
BLYP −540 −458 −318 −475 −544 −403
BLYP + GAP −667 −672 −637 −670 −671 −657
EXPT −610 −609 −579 −606

Binding energy relative to Ih [meV]
BLYP 0 83 223 66 −3 138
BLYP + GAP 0 −5 30 −3 −4 −11
EXPT 0 1 31 4

Volume [Å
3
]

BLYP 31.7 26.0 21.2 28.0 32.1 24.6
BLYP + GAP 30.6 23.8 18.6 24.0 30.6 21.1
EXPT 32.0 25.3 20.1 25.6 32.0 22.9

Volume relative to Ih [Å
3
]

BLYP 0 −5.7 −10.5 −3.8 0.36 −7.9
BLYP + GAP 0 −6.7 −11.9 −6.5 0 −9.5
EXPT 0 −6.7 −11.9 −6.4 0 −9.2

a stringent test of any method, since some of the energy
differences are only a few meV per monomer. Nevertheless,
some comments are in order. According to the experimental
phase diagram at low temperatures, ice XI should be the most
stable structure, with II, XV, and VIII being successively less
stable. (Ice Ih is entropically stabilized at higher temperatures,
so that it is expected to be energetically slightly less stable
than XI.) The clearest error in the relative energies is thus the
incorrect prediction of BLYP + GAP that XV is more stable
than XI by 7 meV/monomer.

C. Liquid water

Previous DFT simulations of liquid water at near-ambient
conditions have encountered three main difficulties. First, the
equilibrium density of the liquid sometimes differs unaccept-
ably from the experimental value; uncorrected PBE and BLYP
underestimate it by ∼10% and 10%–20% respectively.10,48

Second, DFT approximations tend to make the liquid
overstructured10,48 as compared with neutron and x-ray diffrac-
tion data. Third, the diffusion coefficient is generally reported
to be too low, by at least a factor of 267 and in some
cases by a factor of ten or more.9,68 In this section, we are
asking whether correction of BLYP for 1B and 2B errors
substantially improves the description of the liquid under
those three headings. We note that some earlier simulations
may have been affected by technical sources of error. Lee and
Tuckerman pointed out that significantly less over structuring
is obtained with very well converged basis sets.69 On the other
hand, Kühne at al. showed that there is a significant finite size
error when using only 32 water molecules to describe bulk
water.70 See also Wang et al. for a discussion of finite size
errors in the equilibrium pressure.10 We have made efforts to
take account of these technical problems, including correct

temperature control. We also note that a full treatment of the
liquid must account for quantum nuclear effects, which are
neglected in the present work, and we comment below on how
this neglect may alter our conclusions.

1. Pressure

Our MD simulation of liquid D2O at 308 K and density
1.109 g cm−3 performed with BLYP + GAP gave an average
negative pressure in the 25 ps production run of −2.6 kbar.
By contrast, our simulation using uncorrected BLYP under
exactly the same conditions gave the much larger positive
pressure of ∼7 kbar, which is associated with the well-known
10%–20% underestimate of equilibrium density. A simple
estimate based on our observed pressure together with the
experimental compressibility indicates that the equilibrium
density with BLYP + GAP is higher than the correct value
by ∼10%, which is consistent with the uniform overbinding
observed above for the ice structures.

2. Radial distribution functions

In comparing the structure of our simulated liquid with
data from x-ray and neutron diffraction, we had to decide
which experimental data to compare with. This is not a
trivial question, because x-ray and neutron measurements have
different strengths and weaknesses for water structure, and
there are significant differences between different results. The
experimental data that we compare with here come from a joint
refinement of x-ray and neutron data, and the considerations
that led us to this choice are explained in Appendix.

The well-known DFT errors of overstructuring in liquid
water are most clearly seen in the oxygen-oxygen radial
distribution function gOO(r). A comparison of the experimental
and computed RDFs (using BLYP + GAP and uncorrected
BLYP—see Fig. 4) shows that the GAP correction significantly
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FIG. 4. (Color online) Oxygen-oxygen radial distribution func-
tion of liquid water at 308 K at experimental density using BLYP
(blue dashed) and BLYP + GAP (red solid) compared with two sets
of experimental data (black dotted and dash-dotted). Experimental
data are from joint refinement of neutron data and two sets of x-ray
data, identified as HASYlab and PCCP.63
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improves agreement with experiment. The overstructuring of
the liquid is partially corrected: the first peak in gOO(r) is
lowered by ∼0.25 and the first trough becomes shallower
by ∼0.2. However, our comparison with experimental data
indicates that the liquid may still be slightly overstructured
even with BLYP + GAP.

Our comparison of theory and experiment shows that the
height of the first peak of gOO(r) in our system simulated with
BLYP + GAP (2.87) is somewhat greater than than the values
of 2.3–2.6 that emerge from the joint refinement, and this is
why we conclude that our liquid may be a little overstructured.
However, two points should be borne in mind; first, some
analyses of x-ray data done without joint refinement give
a first-peak height of ∼2.83;71,72 second, quantum nuclear
effects appear not to be negligible for gOO(r) in respect of
the first peak height, and we estimate from the experimental
data73 that they could lower the height of the first peak by
0.1 or more. However, the most significant region of gOO(r)
for characterising order in the liquid may not be the first
maximum but the first minimum, because this corresponds
to the “interstitial” region where ab initio simulations appear
to have the greatest difficulty in reproducing experimental
RDFs.10 Here, there is virtual unanimity among the modern
x-ray and neutron results that the value of gOO(r) at the first
minimum is ∼0.84.63 Our BLYP + GAP value of 0.77 is close
to this. This is in strong contrast to uncorrected BLYP, which
gives a very low value of 0.58. In taking all the above factors
together, our conclusion is that our BLYP + GAP liquid may
be slightly overstructured as judged by gOO(r), but the errors
appear to be rather small.

We now turn to the comparison with experiment of our
calculated gOH(r) and gHH(r). From the comparison with the
joint refinement of x-ray and neutron data shown in Fig. 5,
we see that the positions of the peaks and troughs in both
RDFs agree closely with experiment. The heights of the
first peaks and the depths of the first troughs of gOH(r) and
gHH(r) in the simulated system are greater than in experiment,
but we note that BLYP + GAP is in better agreement with
experiment than uncorrected BLYP. However, a full compar-
ison with experiment cannot be made without accounting for
quantum nuclear effects, which appear to be significant for
both RDFs.30,76 Quantum nuclear effects can be included in
the calculation of RDFs using path-integral simulation, and
there have been several investigations of these effects for
water using both empirical interaction models25,30,77,78 and ab
initio methods.76 The path-integral simulation of liquid water
using BLYP + GAP is a possibility for the future, though
the computational effort would be considerable. At present,
however, we simply estimate the likely size of the effects using
available information.

Published path-integral simulations give conflicting in-
dications about the influence of quantum nuclear effects
on the RDFs, but we take as an example the simulations
of Fanourgakis and Xantheas,30 which were based on the
empirical TTM3-F interaction model and employed large
systems and extensive statistical sampling. These show that
on going from classical to quantum nuclei in H2O (light
water), the heights of the first peaks in both gOH(r) and gHH(r)
decrease by ∼0.1, with smaller effects in the first troughs and
the second peaks. Figure 5 makes it clear that such quantum
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FIG. 5. (Color online) Comparison of calculated radial distri-
bution functions gOH(r) and gHH(r) of bulk liquid water with
experimental data. Calculated results are from MD simulations
performed with uncorrected and GAP-corrected DFT(BLYP), both
simulations performed at 308 K and experimental zero-pressure
density. Experimental results are both from joint refinement63 of x-ray
and neutron diffraction measurements, the x-ray measurements being
identified as HASYlab74 and PCCP.72 The neutron data used in both
joint refinements are those of Soper.75

corrections would improve still further the agreement between
BLYP + GAP and experiment, but noticeable discrepancies
would still remain. This would confirm our earlier conclusion
that our simulated liquid is slightly over-structured. However,
one should note that the ab initio path-integral simulations of
Morrone and Car76 based on the BLYP functional suggest
considerably larger quantum nuclear corrections, and we
believe that definitive statements cannot yet be made.

3. Diffusivity

We compute the self-diffusion coefficient D of molecules
in our simulation in the conventional way49 from the slope
of the time-dependent-mean-square displacement 〈�r(t)2〉,
where the squared displacement �r(t)2 ≡ |r(t0 + t) − r(t0)|2
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FIG. 6. (Color online) Time-dependent-mean-squared displace-
ment of atoms as function of time interval t from MD simulation of
liquid heavy water (D2O) at 308 K and experimental zero-pressure
density. Simulation was performed using GAP-corrected DFT(BLYP)
approximation. Straight line is least-squares fit to the calculated data.

of an atom in time t is averaged over all atoms in the system
and over all time origins t0. The averaging is performed only
for times t0 and t0 + t that are both in the “production” period
of the run, and we take time origins t0 at intervals of 0.1 ps. The
diffusion coefficient D is then obtained from the asymptotic
form of 〈�r(t)2〉 for large t :

〈�r(t)2〉 → A + 6D|t | . (6)

Our results for 〈�r(t)2〉 are shown in Fig. 6, from which we
see that the asymptotic “long-time” form becomes established
after a rather short time of only ∼1 ps.

We find a value of D = 1.3 × 10−9 m2 s−1. In a system of
only 64 molecules, the value of D is expected to be reduced
by size effects by an amount that can be estimated by standard
methods.79 It is well known that the diffusion coefficient of a
liquid calculated in periodic boundary conditions converges
only slowly to its value in the thermodynamic limit with
increasing system size.79,80 With the usual cubic simulation
cell (length of edge L), the value DPBC(L) obtained from the
time-dependent-mean-square displacement is approximately
related to the value D∞ in the thermodynamic limit by the
formula

DPBC(L) = D∞ − kBT ζ

6πηL
, (7)

where η is the shear viscosity and ζ is a numerical coefficient
having the approximate value 2.837. Kühne et al.70 showed
that this formula gives a good fit to the size dependence of
D in their DFT MD simulations of liquid water. In applying
this formula to the correction of our calculated D, we take
the experimental value η = 1.3 mPa s for heavy water at
ambient conditions, which yields a correction of 0.4 × 10−9

m2 s−1, so that the corrected value is D = 1.7 × 10−9

m2 s−1. This is somewhat below the experimental value
D = 2.4 × 10−9 m2 s−1 for heavy water.81 Since we should,
in principle, correct our raw value of D using the η value of
our finite-sized simulated system, rather than the experimental

η, and since an underestimate of D is likely to be associated
with an overestimate of η, one might argue that our correction
to D is slightly larger than it should be, but we have not
attempted to make an improved estimate. The values reported
for BLYP itself are generally too low by a factor of at least
2 and often by more than this.10,67,82 Once again, one- and
two-body effects appear to be the main culprit in making BLYP
unrealistic.

V. SUMMARY AND CONCLUSIONS

The work we have presented is motivated by the prob-
lem that the standard DFT methods widely used to model
condensed matter do not have the accuracy required for a
satisfactory treatment of water and some other molecular
materials. Our aim has been to address this problem for
water by developing machine-learning techniques based on
the GAP approach to represent very accurately the one-
and two-body errors of chosen DFT approximations, so that
these errors can then be almost completely eliminated. To
demonstrate how these ideas work in practice, we chose to
correct the BLYP functional, which has been a popular choice
for work on water. We found that one- and two-body corrected
BLYP (referred to here as BLYP + GAP) does indeed give
a considerably better description of the energetics of small
water clusters and the relative energies and volumes of ice
structures, and also gives significant improvements in the
structure and dynamics of liquid water. Nevertheless, our
work also shows that correction of one- and two-body errors
does not yet achieve completely satisfactory energetics, since
the resulting approximation produces significant over-binding
and noticeably underestimated equilibrium volumes for ice
structures and liquid water. It is clear that further developments
are needed.

We note that the significant beyond-two-body (B2B) errors
of BLYP + GAP are completely consistent with other very
recent work. Medders et al.36 have characterized the three-
body errors of a number of different energy functions for
water, including both parameterized force-fields and DFT
approximations. For a large sample of (H2O)3 configurations,
they showed that the three-body energy given by the BLYP
functional systematically overbinds. In separate work,83 the
errors of BLYP have been characterized for large samples of
the (H2O)6, (H2O)9, and (H2O)15 clusters and for periodically
repeated configurations of liquid water, by comparing BLYP
values of the energies with benchmarks from quantum Monte
Carlo calculations. As expected, energies from uncorrected
BLYP were always seriously underbound, but after correction
for one- and two-body errors significant overbinding was
found for all these systems, and the amount of over-binding
was similar to what we have found in the present work.
This confirms that the GAP methods reported here need to
be supplemented by methods for correcting B2B errors. The
physical origins of B2B errors of the BLYP functional need
further investigation, but we note that a recent analysis for the
H2O hexamer17 indicates that more than one mechanism may
contribute, including an inaccurate description of three-body
exchange repulsion.

We are currently working to extend our GAP methods to
the correction of B2B errors. For water systems, a closely
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related problem has already been addressed by Medders et al.
in the work referred to above. They showed that a fairly simple
parameterized functional form can be used to represent rather
accurately the short-range three-body errors of the TTM4-F
force field, and they further showed that this successfully
corrects for most of the B2B errors of that model for water
clusters and the liquid.27 We have very recently shown83 that
essentially the same procedure succeeds in correcting the B2B
errors of BLYP for water clusters up to the 15-mer. This
being so, it seems highly likely that a GAP representation
of B2B errors can be developed along similar lines, and
we are pursuing this idea. In order to use this approach
confidently for the liquid, it will be important to ensure that
it cures our remaining B2B problems for the ice structures.
An alternative approach to B2B errors also merits study.
GAP and other related methods have already been highly
successful in representing many-body interaction energies.12,42

In those cases, the representation of the energy differed
somewhat from the methods used here, since it employed a
decomposition of the total energy into atomic components,
machine learning then being used to describe the dependence
of these components on the configurations of neighbors within
a specified radius. We believe that this approach could be used
to represent the errors of DFT B2B energy in water and other
molecular systems, and we plan to investigate this possibility
further. We also point out that for some molecular systems
many-body dispersion can be a substantial effect,19,84 which
will need to be integrated into any GAP scheme for B2B
errors.

We have concentrated here on water systems, but the
machine-learning methods we have described are much more
general, and should be useful for a wide range of molecular
materials. The general idea of correcting DFT approximations
by adding parameterized energy functions has become very
popular in the past few years, and a variety of approaches
have been proposed. The GAP methods outlined here have
the advantage that they are systematically improvable, at
least at the one- and two-body levels. In addition, they can
readily be automated. We have stressed the need to extend
the methods beyond the two-body level, but it is already
interesting to explore the usefulness of one- and two-body
GAP corrections for materials other than pure water. As
a step in this direction, we are currently developing these
corrections for methane-water mixtures, with the aim of testing
their effectiveness for the industrially and environmentally
important methane clathrate materials.
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APPENDIX: RADIAL DISTRIBUTION FUNCTIONS
FROM EXPERIMENT

The comparison of simulation and experiment for the
radial distribution functions of liquid water requires us to
make a choice between the many available experimental
measurements. We summarize here the considerations that
led us to make the comparisons presented in the pa-
per.

Data for gOO(r) are available from both x-ray
scattering71–74,85–93 and neutron scattering.63,73,75,94–96 Each
of these techniques has important strengths and weaknesses
for water, and they can be seen as complementary.63,73 The
merit of x-ray diffraction for gOO(r) is that the electron
density is largely concentrated on the O atom, so that gOO(r)
is strongly weighted in the scattering intensity. However,
the scattering cannot be interpreted in terms of an isotropic
electron distribution centered on O atoms, and there has been
extensive discussion about what electron density should be
assumed.63,72,86 It is recognized that the electron distribution
of the H2O molecule in the liquid is not the same as
that in the gas phase, because of the well-known large
change of dipole moment on going from the gas phase
to the condensed phases.20,21 One way of overcoming this
problem is to adopt a parameterized model for the charge
distribution.86 Alternatively, it has been proposed that the
electron distribution can be taken from ab initio simulations.72

It is reassuring that these two approaches give similar
results.72

The merit of neutron diffraction is that scattering occurs
from the nuclei, whose scattering properties are characterized
by the accurately known scattering lengths. The technique of
isotope substitution allows, in principle, a clean separation
of the three RDFs gOO(r), gOH(r), and gHH(r). However,
the scattering lengths are such that gOO(r) is less strongly
weighted than gOH(r) and gHH(r), so that it is more affected
by unavoidable errors.63 Furthermore, the usual methods of
isotopic substitution assume that the structure of the liquid is
the same for heavy and light water and their mixtures, and this
is not in fact the case.30,73,97

With both x-ray and neutron diffraction, the inversion of
wave-vector-dependent scattering data to obtain real-space
RDFs is far from trivial, and the uncertainties due to wave-
vector truncation errors are well known.75 Recent advances in
high-energy x-ray diffraction techniques help to reduce these
uncertainties.

It is because of these difficulties of experimental mea-
surement and analysis that we have opted to compare our
simulated gOO(r) with experimental results obtained from
joint refinement of both x-ray and neutron data, since one
would expect this approach to benefit from the merits of
both techniques.63,98,99 We use the joint refinement results
of Soper,63 based on the method of empirical potential
structure refinement (EPSR).100 This way of making the
comparison is also instructive, since the joint refinement
has been performed with two independent sets of high
quality x-ray data,72,74 and the differences between them
give a useful indication of the uncertainties associated with
the measurements themselves, rather than the analysis tech-
niques.
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(2013).
14M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von Lilienfeld,

Phys. Rev. Lett. 108, 058301 (2012).
15S. S. Xantheas, J. Chem. Phys. 100, 7523 (1994).
16J. M. Pedulla, F. Vila, and K. D. Jordan, J. Chem. Phys. 105, 11091

(1996).
17F.-F. Wang, G. R. Jenness, W. A. Al-Saidi, and K. D. Jordan,

J. Chem. Phys. 132, 134303 (2010).
18N. Goldman and R. J. Saykally, J. Chem. Phys. 120, 4777 (2004).
19O. A. von Lilienfeld and A. Tkatchenko, J. Chem. Phys. 132,

234109 (2010).
20C. A. Coulson and D. Eisenberg, Proc. R. Soc. Lond. A 291, 445

(1966).
21P. L. Silvestrelli and M. Parrinello, Phys. Rev. Lett. 82, 3308 (1999).
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83D. Alfè, A. P. Bartók, G. Csányi, and M. J. Gillan, J. Chem. Phys.

138, 221102 (2013).
84R. A. DiStasio, O. A. von Lilienfeld, and A. Tkatchenko, Proc.

Natl. Acad. Sci. U.S.A. 109, 14791 (2012).
85A. H. Narten and H. A. Levy, J. Chem. Phys. 55, 2263 (1971).

86J. M. Sorenson, G. L. Hura, R. M. Glaeser, and T. Head-Gordon,
J. Chem. Phys. 113, 9149 (2000).

87L. Fu, A. Bienenstock, and S. Brennan, J. Chem. Phys. 131, 234702
(2009).

88G. N. I. Clark, G. L. Hura, J. Teixeira, A. K. Soper, and T. Head-
Gordon, Proc. Natl. Acad. Sci. U.S.A. 107, 14003 (2010).

89C. Huang, K. T. Wikfeldt, D. Nordlund, U. Bergmann, T. McQueen,
J. Sellberg, L. G. M. Pettersson, and A. A. Nilsson, Phys. Chem.
Chem. Phys. 13, 19997 (2011).

90V. Petkov, Y. Ren, and M. Suchomel, J. Phys.: Condens. Matter
24, 155102 (2012).

91J. C. Neuefeind, C. J. Benmore, J. K. R. Weber, and D. Paschek,
Mol. Phys. 109, 279 (2011).

92L. B. Skinner, C. J. Benmore, and J. B. Parise, J. Phys.: Condens.
Matter 24, 338001 (2012).

93L. B. Skinner, C. J. Benmore, B. Shyam, J. K. R. Weber, and J. B.
Parise, Proc. Natl. Acad. Sci. U.S.A. 109, 16463 (2012).

94A. K. Soper and R. N. Silver, Phys. Rev. Lett. 49, 471 (1982).
95A. K. Soper, F. Bruni, and M. A. Ricci, J. Chem. Phys. 106, 247

(1997).
96J. C. Dore, M. Garawi, and M. C. Bellissent-Funel, Mol. Phys.

102, 2015 (2004).
97A. Zeidler, P. S. Salmon, H. E. Fischer, J. C. Neuefeind, J. M.

Simonson, H. Lemmel, H. Rauch, and T. E. Markland, Phys. Rev.
Lett. 107, 145501 (2011).

98M. M. Leetmaa, K. T. Wikfeldt, M. P. Ljungberg, M. M. Odelius,
J. J. Swenson, A. A. Nilsson, and L. G. M. Pettersson, J. Chem.
Phys. 129, 084502 (2008).

99K. T. Wikfeldt, M. M. Leetmaa, M. P. Ljungberg, A. A. Nilsson,
and L. G. M. Pettersson, J. Phys. Chem. B 113, 6246 (2009).

100A. K. Soper, Phys. Rev. B 72, 104204 (2005).

054104-12

http://dx.doi.org/10.1063/1.2718521
http://dx.doi.org/10.1063/1.2718521
http://dx.doi.org/10.1063/1.1908913
http://dx.doi.org/10.1063/1.2354158
http://dx.doi.org/10.1063/1.2354158
http://dx.doi.org/10.1021/ct800417q
http://dx.doi.org/10.1021/ct800417q
http://dx.doi.org/10.1063/1.1319614
http://dx.doi.org/10.1039/b301481a
http://dx.doi.org/10.1103/PhysRevLett.101.065502
http://dx.doi.org/10.1103/PhysRevLett.101.065502
http://dx.doi.org/10.1103/PhysRevLett.94.047801
http://dx.doi.org/10.1016/S0301-0104(00)00179-8
http://dx.doi.org/10.1103/PhysRevLett.101.017801
http://dx.doi.org/10.1063/1.448641
http://dx.doi.org/10.1063/1.448641
http://dx.doi.org/10.1063/1.1407287
http://dx.doi.org/10.1063/1.465445
http://dx.doi.org/10.1021/jp0477147
http://dx.doi.org/10.1063/1.1340584
http://dx.doi.org/10.1063/1.3651474
http://dx.doi.org/10.1063/1.4810882
http://dx.doi.org/10.1063/1.4810882
http://dx.doi.org/10.1073/pnas.1208121109
http://dx.doi.org/10.1073/pnas.1208121109
http://dx.doi.org/10.1063/1.1676403
http://dx.doi.org/10.1063/1.1319615
http://dx.doi.org/10.1063/1.3273874
http://dx.doi.org/10.1063/1.3273874
http://dx.doi.org/10.1073/pnas.1006599107
http://dx.doi.org/10.1039/c1cp22804h
http://dx.doi.org/10.1039/c1cp22804h
http://dx.doi.org/10.1088/0953-8984/24/15/155102
http://dx.doi.org/10.1088/0953-8984/24/15/155102
http://dx.doi.org/10.1080/00268976.2010.520040
http://dx.doi.org/10.1088/0953-8984/24/33/338001
http://dx.doi.org/10.1088/0953-8984/24/33/338001
http://dx.doi.org/10.1073/pnas.1210732109
http://dx.doi.org/10.1103/PhysRevLett.49.471
http://dx.doi.org/10.1063/1.473030
http://dx.doi.org/10.1063/1.473030
http://dx.doi.org/10.1080/00268970412331292849
http://dx.doi.org/10.1080/00268970412331292849
http://dx.doi.org/10.1103/PhysRevLett.107.145501
http://dx.doi.org/10.1103/PhysRevLett.107.145501
http://dx.doi.org/10.1063/1.2968550
http://dx.doi.org/10.1063/1.2968550
http://dx.doi.org/10.1021/jp9007619
http://dx.doi.org/10.1103/PhysRevB.72.104204



