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Phase-field simulation study of the migration of recrystallization boundaries
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We present simulation results based on a phase-field model that describes the local migration of recrystallization
boundaries into varying deformation energy fields. An important finding from the simulations is that the overall
migration rate of the recrystallization front can be considerably affected by the variations in the deformed
microstructure, resulting in two regimes. For variations with low amplitude, the overall boundary velocity scales
with the average stored deformation energy density. This behavior is in agreement with generally accepted theories
of recrystallization. For larger amplitudes, however, the velocity scales with the maximum of the deformation
energy density along the variation, resulting in a considerably larger velocity than that obtained from standard
recrystallization models. The shape of the migrating grain boundary greatly depends on the local characteristics
of the varying stored deformation energy field. For different deformation energy fields, the simulation results
are in good qualitative agreement with experiments and add information which cannot be directly derived from
experiments.

DOI: 10.1103/PhysRevB.88.054103 PACS number(s): 07.05.Tp, 64.30.Ef, 64.70.kd, 68.35.bd

I. INTRODUCTION

Deformation of a metal is often followed by an annealing
step, leading to recrystallization by which the deformed
material is replaced by new almost defect-free grains that grow
at the expense of the deformed matrix. The driving force for
recrystallization arises from the excess dislocation density and
other defects that were generated by the deformation process
and stored in the deformed metal. Generally, it is assumed
that, in the absence of obstacles such as pinning precipitates,
recrystallization boundaries move smoothly with a velocity
vgb proportional to the driving force for recrystallization Prex:

vgb = MPrex, (1)

where M is the grain boundary mobility.
A new trend in recrystallization studies is to consider

local phenomena instead of using traditional approaches that
consider behavior on the average. A consideration of the
effect of local variations in the deformation microstructures
is therefore essential. Extensive studies1 have shown that
such local variations exist on all scales from the macro-
scopic sample scale, where inhomogeneous deformation or
forming may lead to substantially different microstructures
in different parts of the sample, to the local grain scale. In
the latter case, grains of different orientations are known
to deform by different slip systems, leading to different
deformation microstructures,2 and even within grains, the
organization of dislocation boundaries can show significant
local variations.3–5 The driving force for recrystallization will
accordingly vary along the recrystallization boundary. Recent
experiments have also shown that grain boundary movement
during recrystallization of samples deformed by both low and

high strains is often very irregular, even in pure materials.6–10

It is observed that individual grain boundary segments move
with different rates and often show a stop-and-go type of
movement. In situ observations and ex situ microstructural
studies of recrystallization in materials with medium to high
stacking fault energy, such as Ni and Al, clearly show the
presence of protrusions (these are parts of the boundary that
have advanced more than other parts) and retrusions (parts of
the boundary that are behind) of a few up to tens of micrometers
along recrystallization boundaries (see for example the picture
shown in Fig. 1). Moreover the boundary profile is dynamic,
such that protrusions can disappear or transform into retrusions
and vice versa as a migrating recrystallization boundary moves
into a deformed matrix.

Zhang et al.11,12 have measured the curvature of protrusions
and retrusions along recrystallization boundaries and related
the values to the local stored deformation energy in front of
the moving boundary. Although, on average, large variations
in stored deformation energy seem to result in protrusions
and retrusions with high curvatures, the size and shape of
the protrusions/retrusions seem to be correlated in a more
complex way to the spatial variations in the stored deformation
energy.11 Another important conclusion from these studies
was that the magnitude of the local curvature-based driving
force at protrusions and retrusions is comparable to that of
the stored energy within the deformed microstructure. The
presence of protrusions/retursion thus can be considered to
provide locally an extra driving (or dragging) force which
should be accounted for when calculating the local migration
rate of the recrystallization boundary:

vgb = M (Prex + Pcurve) , (2)
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FIG. 1. (Color online) Micrograph showing the presence of
protrusions and retrusion on a migrating recrystallization boundary as
obtained in pure aluminum (99.996%), cold rolled to 50% in thickness
at room temperature, followed by annealing at 250 ◦C for 10 min.
The letters R and D refer to recrystallized and deformed, respectively.
The colors refer to the RD inverse pole figure.

where Prex is the local driving force from the stored energy
and Pcurve is the driving force due to the local curvature of the
boundary.

Several simulation methodologies have been applied to
study the effect of local variations in the stored deformation
energy on the possibility for the formation of protrusions
during recrystallization. Martorano et al. studied the forma-
tion of protrusions10,13 by numerical integration of Eq. (2)
considering the movement of a boundary into a deformation
field with a one-dimensional (1D) sinusoidally varying energy
field (to represent the strain field of the dislocation walls). It
was found that for the considered variations, a steady-state
regime could be reached, for which the grain boundary
shape was characterized in detail. Furthermore, molecular
dynamics simulations have shown that the interactions of a
recrystallization boundary with individual dislocations and
local sub-boundaries can result in irregular grain boundary
motion and the formation of local protrusions/retrusions over
a few atomic distances.14,15 Irregular boundary migration was
also obtained using a phase-field model in which long-range
strain fields were used to account for the stored elastic energy
associated with dislocations in a deformed material.16

None of these approaches, however, can be easily extended
to reproduce the full complexity of the grain boundary mi-
gration observed in recrystallization experiments. Calculation
of the local grain boundary position as a function of time
by integration of Eq. (2) for a deformation energy field
Prex with local variations of an arbitrary form appears to be
an extremely complex moving boundary problem,13 and no
analytical solutions of Eq. (2) are available, even for the case
of a simple sinusoidally varying field. It is also not clear to
what extent the extra curvatures associated with the presence
of protruded and retruded parts along the recrystallization
boundary affect the overall recrystallization kinetics on larger
length and time scales.12

As an alternative approach, we present a phase-field model
to simulate the formation of protrusions/retrusions during

migration of a recrystallization boundary into a deformed
microstructure containing variations in stored energy that
do not vary with time. The deformation energy field for
the model is constructed to represent the characteristics of
typical microstuctures deformed to medium-to-large strains.
The local driving force for migration of the recrystallization
front is treated in a similar way as in the model of Martorano
et al. However, an important advantage of using a phase-
field description is that the model can treat easily more
realistic situations, such as different forms of variations in
the deformation energy field, 3D microstructures,17 and the
effect for example of anisotropic grain boundary properties or
a structure-dependent grain boundary mobility.

Our long-term aim is to obtain a systematic understanding
of the effect of local variations of various forms in the stored
deformation energy field on the formation of protrusions and
retrusions with certain characteristics along the recrystalliza-
tion front and to ascertain their effect on the overall migration
rate of the recrystallization front. Such insights are difficult to
obtain experimentally, although they are needed for guiding
and interpreting further experimental studies. In the current
paper, we mainly consider simulations using deformation
fields with one-dimensional variations. It will be shown that
these variations have strong effects on the overall boundary
migration rate and on the formation of local protrusions
and retrusions on the steady-state moving boundary and that
asymmetric shapes of the protrusion-retrusion profile may
evolve.

II. MODEL DESCRIPTION

A. Phase-field model

The phase-field model in this study is based on the
grain growth model of Chen and Yang,18 using the modified
free-energy formulation and parameter relations of Moelans
et al.19,20 An additional term is introduced to represent the
spatial variation of the energy in the deformed microstructure.
For the results presented in this paper, a two-dimensional
system is considered comprising one recrystallizing grain
growing into the deformed matrix of a single grain. Two order
parameters ηrex(x,y,t) and ηdef(x,y,t), which are continuous
functions of the spatial coordinates x and y and time t , are
used to distinguish the deformed and recrystallized parts of
the system, with ηrex = 1 and ηdef = 0 in the recrystallizing
grain and ηrex = 0 and ηdef = 1 in the deformed matrix. If only
two domains (deformed and recrystallized) are considered
in the simulations, a single-phase-field model using only
one order parameter to distinguish between the recrystallized
and deformed domains is sufficient. However, as we aim to
extend our approach to polycrystalline structures in the future
the model is constructed by representing the two types of
grains (deformed and recrystallized grains) using two sets
of order parameters, namely, ηrex,i and ηdef,k . It has been
shown previously20 that the choice of model parameters for
a two-grain structure with a single grain boundary applies to
the individual grain boundaries in polycrystalline structures
represented by a large set of order parameters.

The thermodynamic free energy of the system F is assumed
to consist of contributions from grain boundary energy and
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from the stored deformation energy, namely, F = Fgb + Fdef .
The formulation of the grain boundary energy contributions
Fgb is taken as

Fgb =
∫

�

[
6σgb

�gb

(
η4

rex

4
+ η4

def

4
− η2

rex
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− η2

def
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where the integral is taken over the system domain �. The
first term is a polynomial which is minimal and equal to
0 for (ηdef,ηrex) = (±1,0) or (0, ± 1), corresponding to the
deformed and recrystallizing grains, respectively. σgb is the
grain boundary energy which can be taken from experimental
measurements. �gb is the width of the diffuse interface zone as-
sociated with the boundary in the phase-field simulations,19,20

which is chosen based on numerical considerations (see
Sec. III).

The contribution from the stored deformation energy Fdef

is introduced as

Fdef =
∫
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d�. (4)

The factor η2
def/(η2

rex + η2
def) = φdef represents the local frac-

tion of deformed material,21 which equals 1 within the
deformed grain and 0 in the recrystallizing grain. The diffuse
interface zone is thus treated as a mixture of deformed and
recrystallized material with a smoothly varying local fraction
of each material. The local deformation energy density fdef is a
function of the spatial coordinates and can be of any continuous
or discontinuous form that describes the deformation field well
(see Sec. II B).

The evolution equations of the order parameters are derived
from the free-energy functional F = Fgb + Fdef following the
principles of linear nonequilibrium thermodynamics, namely,

∂ηrex

∂t
= −

(
4

3

) (
M

�gb

)
δF

δηrex
and

∂ηdef

∂t
= −

(
4

3

) (
M

�gb

)
δF

δηdef
, (5)

giving

∂ηrex

∂t
= −

(
4

3

)(
M

�gb

) [
6σgb

�gb

(
η3

rex − ηrex + 3ηrexη
2
def

)

− 3

4
σgb�gb∇2ηrex − 2ηrexη

2
def(

η2
rex + η2

def

)2 fdef(x,y)

]
, (6)

∂ηdef

∂t
= −

(
4

3

) (
M

�gb

) [
6σgb

�gb

(
η3

def − ηdef + 3ηdefη
2
rex

)

− 3

4
σgb�gb∇2ηdef + 2ηdefη

2
rex(

η2
def + η2

rex

)2 fdef(x,y)

]
, (7)

with M the grain boundary mobility.20 They therefore describe
the evolution path with maximum energy dissipation.

In the results presented here the grain boundary energy and
mobility are selected to be isotropic, in order to investigate
directly the effect of the heterogeneous deformation field on the

recrystallizing boundary. The model can, however, be extended
to include anisotropy in grain boundary properties.19,20

B. Representation of the stored energy of deformation

In many metals plastic deformation leads to a process of
grain subdivision by the formation of dislocation boundaries
with a range of boundary misorientation angles. These dislo-
cation boundaries are most commonly arranged in the form
of a cell block microstructure, where dislocation boundaries
of larger misorientation angles delineate rectangular volumes
in which smaller interconnecting dislocation boundaries are
formed.3,5,22 In the ideal case such boundaries have an energy
related to the boundary misorientation angle by the Read-
Shockley equation,23 and are free from long-range stress
fields. In practice, however, small long-range stresses, of
up to the level of about half of the flow stress may be
present, decaying approximately as ln(1/r) with distance (r)
from each boundary. Additionally some loose dislocations
(not incorporated into dislocation boundaries) are generally
present in such deformed microstructures. The deformation
microstructure also exhibits a strong orientation dependence
such that within a single original grain cell block boundaries
are approximately parallel to one another. Local variations
in the spacing between and misorientation angle across the
dislocation boundaries are also typically observed. These
features are illustrated in Fig. 2.

As the simplest model to capture the variation in stored
energy of such deformation microstructure we consider the
energy field to take the form of a sinusoidal function with
maxima at the positions of the cell block boundaries and a
minimum energy in the cell block interior. In this case the
energy field is described by

fdef = Adef

[
1 + sin

(
2π

λdef
x

)]
+ Cdef, (8)

with amplitude Adef , wavelength λdef , and a minimum energy
(offset) Cdef . This energy field is referred to hereafter as type
“s.” As a more realistic model of the variation in deformation

2µm

FIG. 2. Sketch (taken from Refs. 4 and 5) illustrating the ar-
rangement of the dislocation boundaries for a single crystal (Al) with
{112}〈111〉 C orientation deformed to 78% reduction, showing local
variations in the microstructure on the scale of a few micrometers, i.e.,
the microstructure consists of localized glide bands (LBG’s) of high
stored deformation energy density with matrix regions with lower
stored deformation energy density in between.
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energy we also consider two asymmetric functions where the
maximum stored energy is assumed to be more concentrated in
regions near some cell block boundaries. These energy fields
are described by

fdef = Adef

[
1 + sin

(
3π

λdef
x

)]

+Cdef for 0 < x � λdef/3,

= Adef

{
1 + sin

[
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(
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3

)]}

+Cdef for λdef/3 < x � λdef (9)

(referred to as “a1”) and

fdef = Adef

[
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3

)]}

+Cdef for λdef/3 � x < λdef (10)

(referred to as “a2”). All three are sketched in Fig. 3. For
variations “s” and “a2,” the average stored deformation energy

x= /3def

x= /3def

x= /2def

A +Cdef def

A +Cdef def

A +Cdef def

Cdef

Cdef

Cdef

2A +Cdef def

2A +Cdef def

2A +Cdef def

0

0

0

x= def

x= def

x= def

f = A (1+sin(3 x/ ))+C
for (0<x /3)

= A (1+0.5sin(1.5 x+ )/ ))+C
for ( /3<x )

def def def def

def

def def def

def def

def/3

f =A (1+sin(3 x/ ))+C
for (0<x /3)

=A (1+sin(1.5 x+ )/ ))+C
for ( /3<x )

def def def def

def

def def def

def def

def/3

f = A (1 + sin(2 x/ )) + Cdef def def def
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FIG. 3. The three forms of varying deformation energy fields fdef

considered in this work, referred to as “s,” “a1,” and “a2.” The average
stored deformation energy Fdef,av equals Adef + Cdef for “s” and “a2”
and [1 − 2/(3π )]Adef + Cdef for “a1.”

equals Adef + Cdef . For variation “a1,” the average stored
deformation energy is given by Adef[1 − 2/(3π )] + Cdef .

These descriptions are still idealized in that they do not
include the full extent of variations in the magnitude of the
boundary misorientation angle across each cell block boundary
(and hence the stored energy) or in the spacing between
cell block boundaries. They nevertheless capture the basic
characteristics of expected spatial variations in stored energy in
a deformation microstructure in a way that allows examination
of the effects of key parameters of Adef , wavelength λdef , and
a minimum energy (offset) Cdef on the local migration of a
recrystallizing boundary.

III. SIMULATION INPUT, NUMERICAL DETAILS,
AND VALIDATION

The migration of an initially planar grain boundary parallel
to the x axis into the varying deformation fields shown in
Fig. 3 will be studied in the simulations. Based on experimental
information5,11,12,24 for aluminum and nickel, the amplitude of
the variations Adef was varied between 0.1 and 20 MJ/m3

and the wavelength λdef was taken as 1.6, 3.2, and 6.4 μm
for the symmetrical variation “s” and 2.4 and 4.8 μm for the
asymmetrical variations “a1” and “a2,” using grain boundary
energies of σgb = 0.32 J/m2 (aluminum) and σgb = 0.87 J/m2

(nickel). The value of the offset Cdef was arbitrarily taken equal
to 0, 0.34 and 2.01 MJ/m3 merely to verify its effect. The
grain boundary mobility affects only the time scaling of the
simulations. Therefore rather than using experimental values
for M , which are strongly dependent on solute content, we
used a value of M = 1 m4/(MJ s).

Based on numerical considerations, the remaining model
and simulation parameters were taken so that 6σgb =
�gb, �gb = √

9.6�x, |fdef,max|�gb � 0.6σgb, and M�t =
0.0375�gb where �x and �t are the discrete grid spacing
and time step, respectively. It has been shown previously
that for these values grain boundary motion is resolved with
a relative (numerical) error smaller than 5%.20 This was
determined by comparison of the shrinkage rate of a circular
grain under purely curvature-driven boundary migration with
the value expected from analytical theory. A similar accuracy
was found for the case of migration of a flat boundary under a
homogeneous driving force.25

To assess for the presence of artificial effects introduced by
the use of a particular numerical scheme, two discretization
schemes were applied to solve Eqs. (6) and (7), namely,
a Fourier-based spectral method with semi-implicit time
stepping as described in Refs. 26 and 27 and a standard
finite-difference discretization with a central five-point scheme
for the spatial Laplacian and explicit time stepping. With the
Fourier spectral method, periodic boundary conditions are
required along both the x and y directions. The simulation
domain accordingly contains two boundaries which, however,
behave identically. With the finite-difference scheme, periodic
boundary conditions were applied along the x direction and
Neumann (zero-gradient) conditions along the y direction.
The movement of only one boundary was thus considered
in these simulations. Both techniques gave very similar
simulation results for the considered model parameter values,
grid spacings, and time stepping. Moreover, comparison of
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the steady-state shape and migration rate of a boundary in
phase-field simulations with a symmetrical one-dimensional
sinusoidally varying deformation energy field with those
obtained using the sharp interface analysis of Martorano
et al.13 (solved using an extremely fine discretization) shows
that the phase-field simulation results have indeed a numerical
error smaller than 5% for the chosen model parameter values.

For all simulations, the local positions di (in the y direction)
of the grain boundary at all discrete grid points i along the x

direction were extracted at different time steps as

di = �x
∑

j

[1 − φdef(xi,yj )], (11)

with φdef = η2
def/(η2

rex + η2
def) the local fraction of deformed

material as defined before (Sec. II A) evaluated at all grid
points (xi,yj ) and with

∑
j a sum taken over all discrete grid

points along the y direction.
The local curvatures were calculated from the local posi-

tions di as

1

ρi

= (d ′′)i[
1 + (d ′)2

i

]1.5
, (12)

with (d ′)i = [di+1 − di]/�x and (d ′′)i = [(d ′)i −
(d ′)i−1]/�x.

To validate the curvature calculations and study the effect
of the presence of retrusions on the shape of the protrusions
and the grain boundary migration velocity, a limited number
of simulations were performed assuming a stored deformation
energy field of the form shown in Fig. 3(a), but considering
only the protrusion region, thus considering a system with
width λdef/2. The finite-difference discretization was here
applied with different types of boundary conditions along the
boundaries x = 0 and x = λdef/2 and zero-gradient conditions
along the y direction.

In one type of test simulations, referred to as static, the ends
of the boundary are pinned by fixing the values of the order
parameters at x = 0 and x = λdef/2. For this configuration,
the grain boundary obtains an equilibrium shape after a short
simulation time, and obeys the force-balance equation along
the y direction fdef(x) = σgb/|ρ(x)|, as expected. Simulated
curvatures are compared with the expected curvatures along
the boundary in Fig. 4. The deviation is always much smaller
than 5%.

In another type of test simulations, referred to as mirror-
sym, the boundary is allowed to migrate; however, a constant
slope across the left and right boundaries of the system (or a
mirror symmetry with respect to the x axis) is forced, by requir-
ing that ηx=0 − ηx=−�x = ηx=�x − ηx=0 and ηx=λdef/2+�x −
ηx=λdef/2 = ηx=λdef/2 − ηx=λdef/2−�x . The results of these sim-
ulations are discussed and compared to those obtained in the
presence of a retrusion later in Sec. IV.

IV. SIMULATION RESULTS AND ANALYSIS

The migration of an initially planar grain boundary parallel
to the x axis into the varying deformation fields was simulated.
For all stored deformation energy fields shown in Fig. 3,
protrusions/retrusions develop as expected along the recrystal-
lization boundary due to the spatial variation in driving force

0 0.5 1 1.5

0.6

0.8

1.0

1.2

x-position [10 m]-6

[1
0

1/
m

]
6

|1
/ρ

|

simulated curvature
f
def gb

FIG. 4. (Color online) Simulated curvatures along the grain
boundary compared with the values expected from a force balance in
the y direction for configuration static (as described in Sec. III) with
Adef = 0.5 MJ, σgb = 0.87 J/m2, and λdef = 3.2 μm.

for recrystallization. Furthermore, in all cases, a steady-state
grain boundary movement is reached after a certain time. The
evolution of the steady-state interface shape can be understood
as follows. Initially the grain boundary segments where the
stored deformation energy is higher advance faster, forming
protrusions and leaving retrusions behind in the regions where
the stored deformation energy is lower. However, as long as
this process continues, the local curvature at each retrusion
continues to increase, resulting in an extra driving force
(locally) in the direction of grain boundary migration until a
steady state is reached where the grain boundary has obtained
a shape for which the total driving force for grain boundary
migration is constant along the grain boundary.

For each field, the simulated steady-state shapes of the grain
boundary are shown for different values of the amplitude of
the variations in Fig. 5. In all cases, for increasing values
of Adef , the steady-state shape of the protrusion/retrusion
becomes more asymmetric with a larger absolute curvature
at the retrusions than at the protrusions, as is also seen
experimentally. The shape of the grain boundary in the
protrusion region approaches that of a circular segment with
a curvature determined by the width of the protrusion region.
In contrast, the shape of the grain boundary in the retrusion
region is quite different for the different variations of the stored
deformation energy in the retrusion region. The shape of the
grain boundary in the protrusion region is compared for “s” and
“a1” and for “s” and “a2” in Figs. 5(b) and 5(c), respectively.

The absolute curvatures obtained at the protrusions and
retrusions and the migration rate of the grain boundary at
steady state are plotted as functions of the amplitude of the
driving force Adef in Fig. 6 considering stored deformation
energies with various characteristics. For all considered vari-
ations, the curvature at the protrusions reaches asymptotically
towards a constant value. Moreover, although the retrusion
curvature and the migration velocity continuously increase
with increasing amplitude, a kink is found in both curves
near the amplitude at which the protrusion curvature saturates.
The constant term Cdef seems not to affect the protrusion and
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FIG. 5. (Color online) (a) Steady-state shapes of protrusion/retrusions obtained for varying deformation energy fields of the form “s”
with λdef = 3.2 μm and for two values of the grain boundary energy σgb and different values of the amplitude Adef (expressed in MJ/m3).
(b), (c) Steady-state shapes of protrusion/retrusions obtained for varying deformation energy fields of the forms “a1” (b) and “a2” (c) with
λdef = 4.8 μm and “s” with λdef = 3.2 μm for a grain boundary energy σgb = 0.87 J/m2 and different values of the amplitude Adef . For
explanation of “s,” “a1,” and “a2” see Fig. 3

retrusion curvatures, but results in a constant contribution to
the grain boundary velocity.

A closer look at the data presented in Fig. 6(a) shows
that, for low values of the amplitude, the protrusion curvature
increases linearly with Adef having a value very close to
Adef/σgb for “s” and “a2” and close to Adef/σgb[1 + 2/(3π )]
for “a1.” For larger amplitudes, however, the protrusion
curvature stagnates at a constant value which is slightly
larger than 2/wpro, with wpro defined as shown in Figs. 5,
namely, wpro = λdef/2 for the sinusoidal variation “s” and
wpro = λdef/3 for the asymmetrical variations “a1” and “a2.”
This stagnation can be related to the near-circular shape of
the grain boundary in the protrusion region (see Fig. 5), since
2/wpro is the highest curvature a circular segment covering the
full protrusion region can have.

Comparison of Figs. 6(a) and 6(b) shows that for values
of Adef below the kink (Adef < Adef,kink), the steady-state pro-
trusions/retrusions are almost symmetrical with ρre ≈ ρprotr

and the grain boundary migration velocity vgb ≈ MFdef,av ,
whereas for higher driving forces the steady-state protru-
sions/retrusions become more asymmetric with ρre 	 ρpro and
vgb 	 MFdef,av , with Fdef,av the average stored deformation
energy.

The relation Adef,kink = 2σgb/wpro, which defines the am-
plitude at which the steady-state protrusion curvature saturates
for a given length scale of the variations in the deformation
microstructure, is plotted in Fig. 7 assuming a grain boundary
energy corresponding to that of Al. For all amplitudes of the
variations in stored deformation energy Adef above this curve
a highly asymmetrical grain boundary shape with ρre 	 ρpro

will develop, whereas for values of Adef below the curve,
the grain boundary shape will develop only small nearly
symmetric fluctuations (ρre ≈ ρprotr). This curve suggests that
there is a lower limit on the length scale of the variations in
stored deformation energy below which typical asymmetrical
protrusions/retrusions cannot form. For example, to allow for-
mation of protrusions and retrusions a sinusoidal variation with
wavelength 200 nm (wpro = 100 nm) would require a stored
deformation energy density of approximately 6.4 MJ/m3 at
the protrusion, which is unrealistically high considering the
stored deformation energies measured for Al,5 which are of
the order of 0.6 MJ/m3. For variations with a wavelength of
1 μm and larger, such as those shown in Fig. 2, however,
protrusions/retrusions are predicted to develop.

Given this stagnation of the protrusion curvature for large
amplitudes, the kink in the curves of the retrusion curvature
and migration velocity can be understood as follows. At steady
state the velocity along the y direction is constant along the
grain boundary, and therefore the protrusion and retrusion
curvatures are related as

vprotr = M(2Adef − σgb/|ρprotr| + Cdef)

= vre = M(σgb/|ρre| + Cdef) (13)

for the energy fields “s” and “a1” and as

vprotr = M(2Adef − σgb/|ρprotr| + Cdef)

= vre = M(0.5Adef + σgb/|ρre| + Cdef) (14)

for “a2,” with M the grain boundary mobility and where
it is assumed that the driving force for grain boundary
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FIG. 6. (Color online) (a) Absolute local curvatures at the protru-
sion |1/ρpro| and (b) retrusion |1/ρre| and (c) migration velocity vgb,
as functions of the amplitude of the varying deformation energy fields
Adef for the three forms shown in Fig. 3 and different wavelengths
λdef , grain boundary energies σgb, and offset values Cdef . The entries
in the legend are “form of variation–λdef-σgb-Cdef .”

movement consists of a contribution from the local stored
deformation energy density and a contribution due to the
local curvature. Therefore, for values of Adef below the kink
(where 1/|ρprotr| ≈ Adef/σgb for “s” and “a2” and 1/|ρprotr| ≈
Adef/σgb[1 + 2/(3π )] for “a1”) the retrusion curvature should
be very close to Adef/σgb for the field “s,” to Adef/(2σgb) for
“a2,” and to Adef/σgb[1 − 2/(3π )] for “a1,” and for values
of Adef above the kink (where 1/|ρprotr| ≈ 2/wpro for all
three fields) the retrusion curvature should be very close

A =(2* )/wdef,kin b pro

Highly asymetrical grain boundary shape
with >> =w /2

re pro pro

Above the curve

Below the curve
‘Wavy’ grain boundary shape
with and of a comparable size

FIG. 7. Amplitude of the variations in stored deformation energy
density at which the protrusion curvature saturates, Adef,kink, as
a function of wpro(defined in Fig. 5) for the (symmetrical or
asymmetrical) sinusoidal fields considered in this study and assuming
a grain boundary energy equal to 0.32 J/m2. For a given wpro, a
highly asymmetrical grain boundary shape develops for all Adef larger
than Adef,kink.

to 2Adef/σgb − 2/wpro for the fields “s” and “a1” and to
1.5Adef/σgb − 2/wpro for “a2,” as is the case for the data
shown in Fig. 6(b). Moreover, for all three forms of the
deformation field, the steady-state grain boundary velocity
vgb [Fig. 6(c)] is very close to MFav (=M(Adef + Cdef) for
“s” and “a2” and = M{Adef[1 − 2/(3π )] + Cdef} for “a1”)
for Adef � Adef,kink, and to M(2Adef − 2σgb/wpro) for larger
amplitudes, in agreement with Eqs. (13) and (14).

It also follows from relations (13) and (14) that the three
relations plotted in Fig. 6 scale with wpro and 1/σgb for a fixed
form of heterogeneous deformation energy field and value of
Cdef . An example is shown in Fig. 8 for the sinusoidal variation
“s.” For all three deformation fields, the scaled protrusion
curvature 1/|ρ∗

pro| stagnates at A∗
def ≈ 2.2, which is slightly

larger than the scaled curvature of a half circle covering the
protrusion region.

The simulations suggest that the steady-state migration
velocity of the boundary is mostly determined by character-
istics of the heterogeneous deformation energy field in the
protrusion region only, especially at large amplitudes of
the stored deformation energy field. In the retrusion region,
the boundary merely adapts its local curvature to obtain the
local driving force required to obtain the migration velocity
dictated by the variations in the protrusion region. To study the
effect of the presence of a retrusion on the shape and migration
behavior of the protrusion, the steady-state curvatures along
the boundary in the protrusion region are plotted in Fig. 9 for
the three considered variations of stored deformation energy
field together with those obtained for the configuration with
a migrating protrusion only (mirror-sym), for equal σgb, Adef ,
and wpro in the simulations. The comparison shows that, for
large amplitudes [Fig. 9(a)], the curvatures (and hence the
shape) of the grain boundary at and near the protrusion tip are
indeed hardly affected by the presence/absence of a retrusion.
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|1/ *|=A *pro def

w

w
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v *=A *gb def

v *=2A *-2gb def

v *=2A *-2+Cgb def def*

v *=A *+Cgb def def*

w

w

(b)

FIG. 8. (Color online) (a) Scaled absolute protrusion curvature
|1/ρ∗

pro| and (b) scaled velocity v∗
gb as functions of the scaled

amplitude A∗
def obtained for varying deformation energy fields of

the form “s” and different wavelengths λdef , grain boundary energies
σgb, and offset values Cdef , with C∗

def = (Cdefwpro)/σgb. The entries in
the legend are “form of variation–λdef-σgb-Cdef .”

Only near the boundaries of the protrusion region is the grain
boundary shape slightly affected by the characteristics of the
retrusion region. Since for a given Adef and σgb, the grain
boundary velocity is directly related to the curvature at the
protrusion tip through v = M(Adef − σgb/|ρpro|), an equal
grain boundary migration velocity was obtained for the four
configurations. In the low-amplitude regime [Fig. 9(b)], how-
ever, the curvature at the tip of the protrusion 1/|ρpro| seems to
be determined by the average stored deformation energy, such
that the grain boundary migration velocity vgb = MFdef,av .

Although the precise shape of the boundary at steady
state depends on the details of the local variations in stored
deformation energy, any infinite one-dimensional variation
(in addition to those used in this study) will, after a certain
transition time, lead to steady-state migration, at which the
velocity is determined by the average stored deformation
energy for Adef below a certain value and by the characteristics
of the stored deformation energy field in front of the protrusion
for Adef above a certain value. Only one exception exists to
this behavior, namely, the case of a discontinuous variation
with zero energy in the low-energy regions and a constant
stored deformation energy Adef in the high-energy region. In
this case, the protrusion/retrusion will continuously elongate.
However, this is a very artificial situation, as some defects will
always be present in the low-energy matrix regions between the
dislocation boundaries. As soon as even a very small amount
of energy is present in the low-energy region, migration of
the elongated grain boundary parts, namely, those parallel (or
almost parallel) with the variations, towards the tip of the
retrusion (i.e., perpendicular to the overall migration rate)
is then possible due to a difference in stored deformation
energy between the defect-free recrystallized region and the
nonrecrystallized region with low stored deformation energy,
increasing the local curvatures at the retrusion. By this mech-
anism, finally steady-state migration along the y direction can
be reached, although it may require a long migration distance
in the case of a wide region with very low energy density.

0
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FIG. 9. (Color online) Simulated steady-state grain boundary curvature in the protrusion region for the three variations in stored deformation
energy “s,” “a1,” and “a2” (for explanation of “s,” “a1,” and “a2” see Fig. 3) and for the configuration mirror-sym with a migrating protrusion
only (see Sec. III for a detailed description) for equal conditions in the protrusion region, but with different characteristics for the retrusion
region. (a) For wpro = 1.6 μm, σgb = 0.87 J/m2, and Adef = 2 MJ/m3, for which Adef > Adef,kink. The constant curvature of half a circle
covering the protrusion region is added as a broken line. (b) For wpro = 1.6 μm, σgb = 0.87 J/m2, and Adef = 0.2 MJ/m3, for which
Adef < Adef,kink. The full line gives the curvature expected for a static grain boundary, showing that the grain boundary curvature is affected by the
kinetics.
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An important insight from the model is that for large
amplitudes of the driving force the migration velocity depends
on the distribution of the stored energy in the deformation field.
For Adef � Adef,kink, the grain boundary migration velocity is
the same as that when the same amount of stored energy is
distributed uniformly, according to vgb = MFdef,av . However,
for Adef � Adef,kink the migration velocity is systematically
higher than for the case where the same amount of deformation
energy is homogeneously distributed in the deformed material.
The magnitude of the increase in velocity depends on the form
of the energy distribution.

Experimentally, a direct comparison of the migration
velocity into deformed structures with equal average values
but different spatial distributions of the stored energy is not
possible. However, for steady-state migration the amount
of deformation energy released when the grain boundary
advances a unit amount of distance is the same in the case of
either a heterogeneous or a homogeneous distribution of the
deformation energy (namely, Adef times the grain boundary
length). This implies therefore that the higher velocity can be
related to a net curvature force in the direction of the boundary
migration arising from the protrusions and retrusions.

From an experimental perspective the net curvature, i.e., the
local curvature projected on the direction of grain boundary
movement in every point integrated along the grain boundary
[
∫

(1/ρ)n · eydx with n the local unit vector perpendicular to
the grain boundary, ey the unit vector in the direction of grain
boundary motion, and x the coordinate along the direction
perpendicular to grain boundary motion] can therefore be used
as a measure of the effect of the protrusions and retrusions on
the migration velocity of a recrystallization interface. As a first
validation of the proposed simulation approach, we verified
that the magnitude of the net curvature seen in the current
model is of the same magnitude as that seen experimentally.
For example, in a sample of 50% deformed Al annealed
at 250 ◦C for 10 min, a net curvature in the direction of
migration of the order of 0.5–0.8 μm−1 was found. In the
phase-field simulations with a stored deformation energy28 of
0.6 MJ/m3 and grain boundary energy of σgb = 0.32 J/m2

(for Al), and a one-dimensional sinusoidal variation in the
deformation energy (of form “s”) with wavelength λdef =
6.4 μm, a net curvature value of 0.67 μm−1 is obtained.
In real deformation microstructures, the steady-state shape
may not always be reached due to the finite length of the
dislocation boundaries. This comparison however shows that
in the considered material most of the protrusions/retrusions
could develop curvatures (and a shape) close to the steady-state
curvatures and shape obtained in the simulations.

Qualitatively, the increase in grain boundary velocity could
also be predicted directly using the principle of fastest energy
dissipation. The spatial variations in deformation energy
density, namely, introduce extra degrees of freedom which
allow the grain boundary to adapt its shape and move faster to
achieve faster energy dissipation. The actual magnitudes of the

increase in grain boundary velocity are however correlated in
a complicated way with details of the spatial variations in the
stored deformation energy and grain boundary properties. It is
therefore required to use a model that considers the migration
of recrystallization boundaries locally to quantify the effect.

V. CONCLUSIONS

In summary we have proposed a phase-field approach for
boundary migration during recrystallization in the presence
of a varying deformation field. The model has been used
to characterize quantitatively protrusion/retrusion formation
during boundary migration into a deformation field with
one-dimensional sinusoidal variations of both symmetric
and asymmetric form assumed to represent a single set of
dislocation boundaries. The model is able to reproduce the
experimentally observed asymmetry between the protrusion
and retrusion curvatures. Additionally, the simulations show
that the protrusion curvature as a function of the amplitude
of the variations in the deformation energy field saturates
for amplitudes larger than Adef,kink at which the protrusion
curvature is approximately 2/wpro and at which value there
is also a kink in the curves of the retrusion curvature and
migration velocity. Moreover, for larger amplitudes (Adef �
Adef,kink) of the variations in the deformation energy field, the
boundary moves at a considerably higher velocity, determined
by characteristics in front of the protrusion only, than when
the same driving force is distributed homogeneously in the
deformed material, and this can be related to a net driving force
due to curvature along the boundary. The net driving forces
due to curvature obtained in the simulations are similar in
magnitude to those calculated from experimental micrographs.

The modeling technique presented here can be applied
using alternative more complicated forms of spatial variations
in the stored deformation energy in two and three dimensions,
including localized discontinuous descriptions, and extended
to account for, e.g., orientation- or composition-dependent
grain boundary properties.21 This type of modeling is essential
for interpretation of experimental observations of local bound-
ary migration during recrystallization and for suggesting new
experiments.
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