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Stable structures of tantalum at high temperature and high pressure
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Knowledge of the structures of Ta that appear at high pressures and high temperatures is critical for addressing
the recent controversies regarding the phase diagram and melting temperatures of this refractory metal. Structural
searches based on a density functional metadynamics method were therefore employed to obtain candidate
structures at high-pressure and finite-temperature conditions. A structural transformation from the initial body-
centered cubic phase of Ta stable under ambient conditions to an orthorhombic structure with the space group
Pnma is predicted. The Pnma structure is shown to be energetically more favorable and more reasonable than other
candidate structures considered previously, since it was also confirmed to be mechanically and dynamically stable
by phonon and metadynamics calculations. However, a recently proposed hexagonal-ω phase for dense Ta is found
to be mechanically and dynamically unstable when anharmonic effects are characterized by high-temperature,
self-consistent phonon calculations.
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There is an active discussion in the literature of the
structures and properties of elemental Ta. This discussion has
been partially due to a controversial set of measurements on
the melting temperature of this important refractory metal.1

The melting temperatures at high pressures of Ta, as obtained
in diamond anvil cell (DAC) devices,2–4 are reported to be
roughly a factor of 2 lower than those determined in shockwave
(SW) measurements5,6 and calculations.7,8 Several theories
have been developed to explain the large discrepancy in the
measured DAC and SW melting curves. For instance, Wu
et al. suggest that the ambient body-centered cubic (bcc)
structure of Ta will undergo a shear-induced phase transition
to a partially disordered, partially crystalline structure, along a
P -T curve that coincides with the DAC melting curve, before
it reaches the true melting curve, the SW melting curve.9

However, Burakovsky et al. propose that the bcc structure
will transform to another ordered structure, the hexagonal-ω
(hex-ω) structure, at high temperatures before melting.10 The
hex-ω structure has higher predicted melting temperatures than
the bcc structure, which could possibly explain the enhanced
melting curve in SW experiments. Despite the difference
in details, both theories suggest that dense Ta will likely
transform to other polymorphs at high temperatures that can
be stabilized via anharmonicity. This hypothesis is partially
supported by the shock compression experiments, in which
a break in measured sound velocities has been identified
before melting, indicating a possible phase transition.5 Clearly,
accurate knowledge of the structures of Ta at high pressures
is critical for understanding the results of both DAC and SW
studies in order to reconcile the significant discrepancy.

Recently, the suggestion of the appearance of the hex-ω
structure in Ta at high pressure and high temperature has
been challenged and is the source of debate.11 Haskins
et al. suggest that, with the use of combined large-scale
molecular dynamics and effective pair potential developed
from a model generalized pseudopotential theory, the predicted
polymorphism in Ta depends on factors such as size and
shape of the simulation cells used in calculations and the

stability of the hex-ω structure suggested in previous studies
could be an artifact of insufficient simulation cell size. More
importantly, Haskins et al. suggests that alternative unknown
structures, other than the hex-ω structure, could be used to
resolve the question of dense Ta. This indicates a clear need
for further examination of this controversy. In this paper, we
therefore have investigated the structural evolution of dense
Ta by employing the metadynamics method, based on the
density functional theory (DFT),12 which allows structural
searches to proceed at high pressures and finite temperatures.
We predict a new candidate structure of dense Ta that has
lower enthalpies than previously suggested structures, and
it is confirmed to be mechanically and dynamically stable.
In addition, the mechanical properties and high-temperature
stability of the hex-ω structure have been investigated using a
self-consistent lattice dynamical method.

Structural optimizations and total energy calculations were
performed using the Vienna Ab initio Simulation Pack-
age (VASP)13 and the projector-augmented wave (PAW)
potential14 with the PW91 exchange-correlation functional.15

The Ta potential employs 5p, 6s, and 5d as valence states
and a kinetic energy cutoff of 290 eV. Dense k-point grids
were selected to yield the total energies converged to within
0.5 meV/atom. Specifically, a 16 × 16 × 16 k-point grid was
used for the bcc and face-centered cubic (fcc) structures, a
16 × 16 × 12 grid was used for the hexagonal close-packed
(hcp) structure, a 16 × 16 × 6 grid was used for the double
hexagonal close-packed (dhcp) structure, a 12 × 12 × 6 grid
was used for the Pnma structure, a 8 × 8 × 16 grid was used
for the hex-ω structure, a 12 × 12 × 12 grid was used for the
A15 structure, and a 6 × 6 × 12 grid was used for the β-Ta
structure. Temperature-dependent phonons were calculated
employing the self-consistent ab initio lattice dynamical
(SCAILD) method,16 and results were cross-checked with the
ABINIT program (at T = 0 K).17 SCAILD calculations were
carried out employing an appropriate size of supercell to yield
the phonon frequencies that are converged within 0.05 THz
(∼1.67 cm−1). For the hcp (dhcp), hex-ω, and fcc (bcc)
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structures, a supercell of 128, 96, and 64 atoms, respectively,
was employed. Because of the ability for investigating anhar-
monic free-energy surfaces, the first-principles metadynamics
method for the study of reconstructive structural transforma-
tions in crystals was employed to investigate high pressure–
high temperature phase transitions.18,19 The metadynamics
method was applied and combined with VASP,20 using the
same PAW potential and kinetic energy cutoff as described
above. The supercells employed in the simulations contain
64 Ta atoms and use a 4 × 4 × 4 k-point grid. Each metastep
consists of a first principles molecular dynamics simulation
employing a canonical number-volume-temperature (NVT)
ensemble, with 400 time steps for a total simulation time of
0.8 ps. This simulation time has been shown to be adequate
in previous studies employing the metadynamics method.20,21

Gaussian width and height parameters were chosen following
the guidelines summarized in Ref. 22. All structures obtained
in the metadynamics simulations were verified in carefully
converged total energy calculations with the VASP code. The
possibility of structures with unit cells larger than 64 atoms
was not examined. Mechanical properties were calculated
using the Toolkit software employing the VASP code in a
symmetry generalized least-square method to obtain elastic
coefficients.23

The metadynamics simulations starting from the initial bcc
structure revealed a new structure under high-pressure and
high-temperature conditions. The bcc structure was selected
as the initial structure, since one needs to begin the structural
evolution from a stable configuration (a local or global energy
minimum). The hex-ω structure, which has been alternatively
suggested, was found to be mechanically and dynamically
unstable (see below) and therefore was not employed as an
initial structure. In order to accelerate the structural evolution
from the initial bcc structure, we compressed and annealed
the simulation cell up to 400 GPa and 6000 K. Compressing
and heating the system beyond its true transition pressure and
temperature may help to decrease the free energy barrier. The
new structure [Fig. 1(a)] has a four-atom orthorhombic unit
cell with the Pnma space group. The optimized structural
parameters for this structure, at 400 GPa, are 4c 0.3689, 0.25,
and 0.6124 with a = 4.52 Å, b = 3.88 Å, and c = 2.26 Å. The
evolution of the Pnma structure from the bcc structure involves
two internal constraints: a homogeneous deformation of the
(110)bcc planes and a shearing of every second plane along the
[1-10]bcc directions [Fig. 1(b) and 1(c)]. This transformation
mechanism is similar to the bcc to hcp Burgers path.24 A
reason for the preference of this slip system is that the (110)bcc

planes have a higher packing density and a greater interplaner
separation than other crystallographic planes in a bcc lattice,
and this makes their relative displacement easier. In addition,
the plane slipping undergoes along a close-packed direction,
which results in weaker repulsive force. It is interesting that
several elements exhibit or are predicted to have the Pnma
space group at high pressure. For instance, Am and Ca have
the same space group and similar site symmetries for their
component atoms.25–27

To study the microscopic mechanisms for this phase
transition, we examined the energy landscape of Ta at
400 GPa [Fig. 1(d)]. The plane deformation shown in the
y axis describes a uniform transformation from the (110)bcc

(a) Pnma

A 
C 

B 

(c) (010) Pnma 

[100]

[001]

(b) (110) bcc 

[1-10]

[001]

(d)

FIG. 1. (Color online) (a) The Pnma structure of Ta. The
(b) bcc and (c) Pnma structures of Ta viewed along the [110]bcc and
[010]pnma directions, respectively. The Ta atoms on different planes
are differentiated by using different colors (darkness). (d) Contour
plot of the minimized enthalpies of Ta as a function of (110)bcc plane
distortion and relative displacement of neighboring planes at 400 GPa.
The lowest-energy transition pathway is shown by the dashed lines. At
each point, the plane shape and plane displacement were kept fixed,
while all other degrees of freedom of the structure were optimized
with respect to the trace of stress tensors at 400 GPa.

planes to the (010)pnma planes, during which the atoms move
from a body-centered rectangle arrangement into a wavelike
modulation. The shearing shown in the x axis corresponds
to the relative positions of the planes along the [1-10]bcc

direction. Two energy minima are revealed in the lower left
and upper right corners of the energy surface, respectively,
which correspond to the bcc (no shearing or deformation)
and Pnma structure (100% shearing or deformation). The
Pnma structure is shown have a local energy minimum in
comparison with other candidate structures, which makes it
a promising candidate for a metastable phase. As expected,
the energy landscape is flatter along the shearing direction
than it is for plane deformation. The lowest-energy transition
pathway leading from the initial bcc energy well to the
neighboring Pnma well is indicated by the dashed lines. This
structural transformation consists of two steps. In the first
step, a shearing displacement proceeds simultaneously with
a plane deformation. While the planes shift along this path
direction, the Ta sites on each layer can be maintained above
the Ta voids in the neighboring layers, therefore reducing
the interplaner repulsive forces. The transition state along
this path is shown as a saddle point with the barrier height
of ∼0.6 eV, or ∼7000 K in terms of temperature, which
agrees well with the upper bound temperature (6000 K) used
in the metadynamics simulations. In the second step, the
configuration approaches toward the Pnma structure through
a shallow energy well and proceeds with a plane deformation
alone. The nonstationary and saddle points shown in Fig. 1(d)
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FIG. 2. (Color online) Calculated enthalpies of candidate struc-
tures of Ta in the pressure range 0–1 TPa. The enthalpies of the bcc
structure are taken as the reference.

are intrinsically unstable, which, if fully relaxed, will yield
either the bcc or the Pnma structure. Thus, the enthalpies of
these points have to be calculated with constraints by fixing
one or more structural degrees of freedom.28 Consequently,
the calculated energy barrier between the bcc and the Pnma
structures only represents an upper bound estimate, which is
likely an overestimate of the experimental value.

Significantly, the predicted Pnma structure is energetically
favorable. In Fig. 2, we compare the calculated static enthalpies
of the Pnma structure, with the experimentally observed
structures, and with the structures previously considered as
candidates for dense Ta, in a large pressure range from 0
to 1000 GPa (1 TPa). Consistent with previous studies, the
bcc structure is the most stable structure at ambient pressure
and remains the lowest enthalpy structure over the entire
pressure range. In the pressure range, i.e., 50 GPa to 1 TPa,
the Pnma structure has the lowest enthalpy compared with all
other structures. A previously suggested candidate structure
for dense Ta, the hex-ω structure,10 is always less stable than
the Pnma structure, and its enthalpy becomes increasingly
higher than that of the Pnma structure at high pressures. The
two metastable phases of Ta, the A15 and β-Ta structures,
that were previously observed in a supercooled liquid and
thin films,29,30 are more stable than the Pnma structure at
ambient pressure and in the low-pressure range. Once the
pressure is increased beyond 60 and 83 GPa, respectively,
these two structures quickly become less stable than the
Pnma structure. The relative stabilities of three close-packed
candidates, fcc, hcp, and dhcp structures, compared to that
of the bcc structure, initially decrease with pressure, but at
sufficiently high pressure, they start to increase. Additional
enthalpy calculations (not shown) revealed that the fcc, hcp,
and dhcp structures have similar enthalpies at pressures beyond
1 TPa and that all three structures become more stable than the
bcc structure at sufficiently high pressures.

To investigate the mechanical stability of dense Ta, we
calculated the harmonic phonon band structures of the can-
didate structures over a broad pressure range. The calculated
phonon band structures of the fcc, hcp, and dhcp structures
reveal imaginary frequencies in the Brillouin zone at 1 bar,
indicating they are unstable phases. However, the bcc and A15
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FIG. 3. Harmonic (T = 0 K) phonon band structures of (a) bcc
and (b) A15 structures calculated at 1 bar. Symbols with error
bars in (a) are experimental data from Ref. 31. Harmonic phonon
band structures of the Pnma structure calculated at (c) 1 bar and
(d) 400 GPa.

structures were found to be mechanically stable from 1 bar
to at least 1 TPa. In Fig. 3(a) and 3(b), harmonic phonon
band structures for the bcc and A15 structures calculated at
1 bar are shown. The theoretical phonon band structure for
the bcc structure shows a good agreement with the ambient
experimental data.31 The bcc phonons exhibit a frequency
range from 0 to ∼170 cm−1. In comparison, the A15 phonons
have an extended frequency range to ∼225 cm−1. Higher
vibrational frequencies in the A15 structure originate from the
motions of the Ta pairs located on each faces of the cubic unit
cell, which form linear chains along cubic axes. The Ta-Ta
spacing in these linear chains is 2.65 Å at 1 bar, which is
significantly shorter than the shortest Ta-Ta distance in the bcc
structure (2.87 Å).

The Pnma structure is mechanically stable from 1 bar
to at least 400 GPa without showing imaginary frequencies
[Fig. 3(c) and 3(d)]. At 1 bar, the Pnma structure has a range
of phonon frequencies similar to that of the bcc structure,
indicating that these two structures contain similar vibration
modes. Indeed, as discussed earlier, the bcc and Pnma
structures have some resemblances in their structural motifs.
At 1 bar, the closest Ta-Ta distances in the Pnma structure are
between 2.84 and ∼2.88 Å, which compares well with that
of the bcc structure. While their phonon frequencies cover a
similar range, the detailed distributions of the phonons appear
to be different in the bcc and the Pnma structures (Fig. 4).
Compared with the bcc phonons, the Pnma phonons carry
more weight in the low-frequency range. Lower-frequency
phonons are easier to excite and therefore contribute more
effectively to the entropy. Thus, at finite temperatures, the
vibrational free energy for the Pnma structure would be
slightly lower than that of the bcc structure. As an example,
we employed a quasiharmonic approximation,32 from which
we estimated that at P = 400 GPa and T = 6000 K, the
vibrational free energy and vibrational entropy of the bcc
structure are − 4.284 eV/atom and 0.973 meV K−1/atom,
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FIG. 4. (Color online) Calculated phonon density of states (PH-
DOS) for the bcc and the Pnma structures at 400 GPa.

respectively. At the same P -T condition, the vibrational free
energy and vibrational entropy of the Pnma structure were
calculated to be − 4.386 eV/atom and 0.989 meV K−1/atom,
respectively. At 400 GPa, the calculated enthalpies for the
bcc and the Pnma structures are 19.096 and 19.535 eV/atom,
respectively (see Fig. 2). Thus, at finite temperatures, the
energy differences between the bcc and Pnma structures are
likely being reduced from the values calculated at 0 K due to
the phonon contributions.

In principle, the temperature-dependent phonon dispersion
relations and vibrational free energy of the Ta polymorphs can
be calculated employing the SCAILD method, which treats
explicitly the phonon-phonon interactions and anharmonic
effects that may arise in Ta at finite temperatures. In the next
paragraph, we explain in detail the temperature-dependent
phonon band structures of the hex-ω structure derived from
the SCAILD method. Compared with the hex-ω structure,
however, the Pnma structure has lower symmetry and a larger
unit cell; therefore, the SCAILD calculation of the Pnma
structure is more computationally demanding. Convergence
tests showed that the phonon band structure of the Pnma
structure requires a supercell with a size of at least 144 atoms
(3 × 3 × 4), and the force calculations at finite temperatures
may need several tens of distortion steps to converge. Thus,
we do not provide a direct evaluation of the SCAILD phonon
band structure for the Pnma structure, but its stabilities at finite
temperatures can be inferred from the metadynamics simula-
tions. Moreover, a detailed phase diagram and the melting
lines of the Pnma structure can be determined, for example,
following the first principles approaches described in Ref. 11.
The pressure and temperature of the bcc-Pnma-liquid triple
point can also be determined by computing the bcc and Pnma
melting curves and locating their intersection point. However,
these calculations are beyond the scope of the present paper.

One of the current controversies about dense Ta is
whether the hex-ω structure is a valid candidate for the
high-temperature polymorphs. In our harmonic phonon cal-
culations, the hex-ω structure exhibits imaginary vibrational
frequencies over the entire pressure range considered, extend-
ing from 1 bar to 1 TPa. Figure 5(a) shows the harmonic
phonon band structure of the hex-ω structure calculated at
1 bar (solid curves), as seen when the imaginary frequencies go
below 100i cm−1. The ratios of the c-axis lengths to the a-axis
lengths, c/a, employed for these calculations were obtained
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FIG. 5. Harmonic (T = 0 K) and anharmonic (T > 0 K) phonon
band structures of the hex-ω structure calculated at (a) 1 bar and
(b) 400 GPa.

from the DFT structural optimizations. The optimized c/a ratio
increases slowly from the ambient pressure value of ∼0.56
to ∼0.58 at 500 GPa, which is in good agreement with the
values obtained in Refs. 10 and 11. In order to investigate the
high-temperature stability of the hex-ω structure, we employed
the SCAILD method16 that permits a DFT calculation of the
first principles phonons and free energies as a function of
temperature. The SCAILD method is conceptually similar to
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FIG. 6. Evolution of the imaginary phonon frequencies with
pressure and temperature at (a) �, (b) K , and (c) M points. Numbers
in brackets are temperatures in units of 1000 K.
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the renormalized harmonic approximation, which incorporates
the anharmonic effects through the temperature dependence
of phonon frequencies, taking account of phonon-phonon
interactions. In Fig. 5(a), the SCAILD corrected phonon
frequencies at 2000 K are shown in solid dots, which indicate
somewhat enhanced frequencies from T = 0 K, along with
the appearance of phonon degeneracies at the K , M , and
L symmetry points. We repeated the harmonic and SCAILD
phonon calculations at 400 GPa and T = 6000 K but observed
no sign of increased instability [Fig. 5(b)]. We then extended
the temperature-dependent phonon calculations of the hex-ω
structure to higher pressures up to 1 TPa, and to higher
temperatures up to the melting line, but did not find that the
hex-ω structure becomes stable. Figure 6(a)–6(c) shows the
evolutions of the imaginary phonon frequencies at the �, K ,
and M points of the hex-ω structure at different pressures
and temperature. Several temperatures were chosen below the
melting line at each pressure. It is therefore interesting that
previously suggested hex-ω structure is predicted not to be
stable near the melting temperature within the anharmonic
theory considered here.

The elastic moduli of the Pnma structure were calculated,
together with its compressibility and sound velocities, for
comparison of these properties with the bcc and A15 structures.
The bcc elastic moduli calculated with PAW pseudopotentials
employing 5p, 6s, and 5d as valence states yielded values in
good agreement with the C11, C12, and C44 elastic constants and
shear modulus reported in Refs. 33 and 34. The main difference
between the present calculations and those of Refs. 33 and 34 is
the use of the PAW potential in a density functional treatment.
The bulk modulus of the bcc, A15, and Pnma structures are
all calculated to be within a 3% range of ∼1471 GPa at a
pressure of 400 GPa. At 400 GPa, the C11 elastic constant for
the Pnma structure is calculated to be 1862 GPa compared
with 1877 GPa for the bcc structure at 412 GPa of Ta. The
other elastic constants for the Pnma structure at 400 GPa
are C12 = 1420 GPa, C13 = 1126 GPa, C22 = 1906 GPa,

C23 = 1000 GPa, C33 = 2214 GPa, C44 = 210 GPa, C55 =
82 GPa, and C66 = 234 GPa. The C12 and C44 elastic constants
for the bcc structure at 400 GPa are 1305 and 392 GPa,
respectively. The shear modulus obtained within the Voigt
criteria35 for the Pnma structure is 268 GPa compared with
350 GPa for the bcc Ta at 400 GPa. The lower shear modulus
for the Pnma structure than that of the bcc structure appears to
be consistent with the deviation from the 90◦ angles of nearest
neighbors in the Pnma structure in comparison with the perfect
90◦ near-neighbor angles in the bcc structure. The deviation
from 90◦ in the Pnma structure may suggest a more strained
metallic bonding that contributes to a lower shear modulus.
This could also be tested since the elastic properties could,
in principle, be measured since the Pnma structure may be
quench recoverable.

In summary, we have predicted a new Pnma structure
as a high-pressure–high-temperature form of Ta using the
metadyanmics structural search method. It is found that the
Pnma structure obtained via metadynamics simulations is
both dynamically and mechanically stable at 0 K and high
temperatures, while it is also energetically favorable at high
pressures. A mechanism for the transformation from the initial
bcc structure to the Pnma structure has been characterized.
A previously suggested candidate structure for dense Ta, the
hex-ω structure, is found to be energetically unfavorable and
mechanically unstable.
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