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Optical properties of functionalized graphene
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We use ab initio calculations to investigate the geometry, band structures, and optical properties of hydrogen
functionalized graphene, where hydrogen atoms are attached periodically to A-site carbon atoms to form

√
3 ×√

3, 2 × 2, 3 × 3, 4 × 4, and 5 × 5 supercells. The adsorbed hydrogen atoms distort the carbon atoms vertically,
with almost no modification of the in-plane structures. The ground states show ferromagnetic order, with a total
energy of a few tens meV lower than the nonmagnetic ground state. The hydrogen adsorption opens a gap that
depends on the supercell size. Optical conductivities are calculated and show fine structures at the band edge.
Taking into account the spin-orbit coupling, the nonzero off-diagonal components of the conductivity predict
Kerr and Faraday effects without an external magnetic field.
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I. INTRODUCTION

Due to its high transport mobility, long spin relaxation time,
and low optical absorption, graphene has become a popular and
important material for studies in electronics, spintronics, and
photonics, as well as their integrated fields.1–3 Most of the
potential applications stem from graphene’s peculiar linear
dispersion relation, a direct result of which is a universal
optical conductivity4 σ0 = e2/4h̄ that survives over a wide
energy range. However, the nonzero dc limit of conductivity
makes graphene unsuitable for applications in standard digital
electronic circuitry where a high on/off ratio is required. One
way to open a gap is to functionalize graphene in order to break
π bonds by adsorbing hydrogen atoms,5 diazonium groups,6

or aryl groups7,8 that are in many ways functionally identical
to hydrogen adatoms. These adsorbates can form periodic
patterns;6,9 for example, a 2 × 2 supercell has been observed
experimentally following diazonium functionalization

Functionalization changes graphene properties dramati-
cally in many respects.10–12 First is the geometry and band
structure. Theoretically, hydrogenated graphene has been
studied in the most detail,13–19 and some of the changes
are understood. Generally, hydrogen atoms distort the local
geometry of graphene by locally rehybridizing the bonding20

from pz + sp2 to sp3, and the potential of the H+ ionic
core causes the gap to open. Fully hydrogenated graphene
(graphane) has a predicted LDA gap of 3.4 eV21 and a GW0 gap
of 5.0 eV. The stable half-hydrogenated graphene (graphone)
acquires a stable structure by attaching hydrogen on both sides
alternatively, which gives an LDA gap of 3.5 eV.19 Choi14

investigated the band structure of hydrogenated graphene with
different hydrogen coverage, and found the band gap satisfies
the “1/3 rule”22 and is proportional to the square root of
the hydrogen coverage. Some of these structures have been
synthesized and measured.5,23,24

Functionalization can play an important role in transport
properties25,26 and spintronics.27 With orbital rehybridization,
the spin-orbit coupling can be enhanced by orders of magni-
tude around the Dirac points,27 which may be the reason for
the unexpected spin relaxation rates observed in experiments.
For structures where functionalization only appears on one
carbon site of graphene, an important result is the appearance
of a spin-polarized gap,20 and the localization of magnetism

on the other carbon site with an unpaired electron. Unlike most
magnetic materials, the magnetism in functionalized graphene
involves the 2p orbital, and it has been suggested that it
could be important for applications in spintronics. Yazyov
et al.10,28,29 investigated these magnetic properties with both
ab initio calculations and a Hubbard model.

In this paper, we consider the ferromagnetic ground states
of hydrogen-functionalized graphene. After reinvestigating
the band structures of supercells with different hydrogen
coverage, we calculate optical conductivities, which show
an enhancement and a fine structure around the band edge.
We also find that for majority spins the lowest energy
optical transitions are between the impurity band and the
π∗ band of graphene, whereas for minority spins they are
between the π band of graphene and the impurity band.
Furthermore, introducing the spin-orbit coupling, we find that
these structures show Kerr and Faraday effects without an
external magnetic field. This response could be taken as one
of the signatures of ferromagnetic ground states.

Our paper is organized as follows: We introduce our model
and some numerical details in Sec. II, and then present the
calculated band structures for different supercells in Sec. III.
With wave functions from ab initio calculations and the
associated velocity matrix elements, we calculate the diagonal
components of the optical conductivity tensor, ignoring the
spin-orbit coupling, in Sec. IV. Then we treat the spin-orbit
coupling perturbatively and calculate the off-diagonal terms
of the optical conductivity tensor in Sec. V. Our conclusions
are given in Sec. VI.

II. MODEL AND CALCULATION METHOD

We model functionalized graphene as a supercell formed
by n × n graphene unit cells in which one hydrogen atom is
chemisorbed on top of one A-site carbon atom [denoted as
A0; see Fig. 1(c)], with a hydrogen coverage of 1/n2. In our
calculations, n is taken as

√
3, 2, 3, 4, and 5. Illustrations

of the
√

3 × √
3 and 2 × 2 supercells are shown from a top

view in Figs. 1(a) and 1(b). The hydrogen atom distorts
the graphene lattice by lifting carbon atoms at the A0 site
out of the plane and rehybridizing the pz + sp2 orbitals to
sp3 [see Fig. 1(c)]. The distortion also makes other carbon
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FIG. 1. (Color online) Top view of supercells of (a)
√

3 × √
3

and (b) 2 × 2 functionalized graphene structures. Red/black dots are
the A/B sites, blue dots indicate hydrogen atoms. (c) The front view
of the local distortion around A0 sites.

atoms buckle slightly out of the graphene plane. Due to
bonding between the hydrogen atom and the A0 carbon atom,
there exists one unpaired electron on the B-site carbon atom,
which can lead to the nonzero magnetism.20 Both ab initio
and Hubbard model10,28,29 calculations have shown that the
ground states of these structures have magnetic ordering.
Supercells for magnetic ground states do not coincide with
the geometric supercell in general, except in the ferromagnetic
phase. For simplicity, we only consider the ferromagnetic and
nonmagnetic ground states here.

The optimum geometries and ground states are determined
from density-functional theory (DFT) calculations using the
freely available ABINIT code,30 where the local-density ap-
proximation to the exchange-correlation density functional is
used; we employ Troullier-Martins pseudopotentials. In our
DFT calculations, we checked that the spin-orbit coupling
leads to minor corrections to the ground state; we treat it
perturbatively later. We take the energy cutoff as 30 hartrees
and the length of the supercell along the z direction as
20 bohrs. In our structure optimizations, the in-plane position
of each atom is fixed, and the z components are relaxed
using the Broyden-Fletcher-Goldfarb-Shanno minimization
method. The unit cell information, the parameters used in the
calculation, and the results are listed in Table I.

In the structure optimization, our calculations are per-
formed for both ferromagnetic and nonmagnetic ground states,
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FIG. 2. (Color online) Band structures and density of states near
the band gap for (a)

√
3 × √

3 supercell, (b) 2 × 2 supercell, and
(c) pristine graphene. Dashed red curves: spin-up bands; solid blue
curves: spin-down bands.

which give the same results: The carbon-hydrogen bond length
is about 1.14 Å for all cases, and the A0 site carbon atom
is lifted out of the graphene plane by about 0.35 Å in the z

direction, which is associated with the rehybridization towards
sp3 orbitals. The stability of the ground states can be identified
by the adsorption energy, which is defined as

Eads = −Etot(graphene + H) + Etot(graphene) + Etot(H).

(1)

Both calculations give similar Eads, which is about 0.8–1 eV
for all structures, but the ferromagnetic ground state has a
lower energy by about 50–170 meV.

III. BAND STRUCTURES

LDA calculations show that all structures have nonzero
band gaps for both majority and minority spin branches.
Table I lists the band gap for each spin branch. Because
DFT calculations usually underestimate the band gap, the real
band gap in functionalized graphene may be larger, and GW

calculations are necessary to take into account many-body
effects. Band structures and densities of states (DOS) are
plotted for

√
3 × √

3 and 2 × 2 supercells in Fig. 2 and for
3 × 3, 4 × 4, and 5 × 5 supercells in Fig. 3. The effect of
adsorbing a hydrogen atom is obvious: (i) Considering the

TABLE I. Parameters used in the geometry optimization and part of the results. Here a′
1 = a0

2 (
√

3, − 1) and a′
2 = a0

2 (
√

3,1) are the primitive
lattice vectors of graphene, with the experimental value a0 = 4.6487 bohrs, b′

i = 2π

a0
( 1√

3
, − 1) and b′

2 = 2π

a0
( 1√

3
, − 1) are the reciprocal primitive

vectors of graphene, ai and bi are the corresponding quantities in functionalized graphene, zH is the C-H bond length, and −zB is the lifting
of A0 carbon atoms; Eads (Eads + δEads) is the adsorption energy of the ferromagnetic/nonmagnetic ground states; and Eg is the direct gap for
majority and minority spin branches, respectively.

√
3 × √

3 3 × 3 3 × 6 2 × 2 4 × 4 5 × 5

a1 2a′
1 − a′

2 3a′
1 6a′

1 2a′
1 4a′

1 5a′
1

a2 −a′
1 + 2a′

2 3a′
2 3a′

2 2a′
2 4a′

2 5a′
2

b1
2
3 b′

1 + 1
3 b′

2
1
3 b′

1
1
6 b′

1
1
2 b′

1
1
4 b′

1
1
5 b′

1

b2
1
3 b′

1 + 2
3 b′

2
1
3 b′

2
1
5 b′

2
1
3 b′

2
1
2 b′

2
1
4 b′

2

k grid 14 × 14 × 1 10 × 10 × 1 5 × 10 × 1 10 × 10 × 1 10 × 10 × 1 6 × 6 × 1
zH (Å) 1.147 1.141 1.141 1.143 1.141 1.140
zB (Å) −0.352 −0.356 −0.359 −0.343 −0.357 −0.357
Eads (eV) 0.81 0.924 0.945 0.92 0.959 0.982
δEads (eV) 0.174 0.082 0.061 0.140 0.058 0.045
Eg (eV) 0.281,0.534 0.158,0.165 0.088,0.083 1.921,2.085 0.682,0.679 0.595,0.554
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FIG. 3. (Color online) Band structures and density of states near
band gap for (a) 3 × 3, (b) 4 × 4, and (c) 5 × 5 supercells, labeled as
in Fig. 2.

ferromagnetic ground state, the majority and minority band
degeneracy is broken, and insulator band structures result
for both spin branches. For larger supercells, the difference
between these two branches decreases. (ii) The hydrogen atom
introduces two spin-dependent impurity bands located around
the Fermi energy, with one filled and the other empty. For later
use, we note that the band index of impurity bands is 13 for the√

3 × √
3 supercell and 17 for the 2 × 2 supercell. The widths

of the impurity bands are narrow (<0.5 eV) and decrease with
increasing supercell size, which can be clearly seen in DOS.
The narrow impurity bands are the source of the magnetism in
functionalized graphene. (iii) Band gaps show an interesting
dependence on the supercell size, and can be divided into
two classes: One class has small band gaps, and includes the√

3 × √
3 and 3 × 3 supercells, as well as the 3 × 6 supercell

which was calculated for confirmation; the other has large band
gaps, and includes 2 × 2, 4 × 4, and 5 × 5 supercells. In each
class, the band gap always decreases with increasing supercell
size, naturally enough because the effect of the hydrogen atom
decreases with increasing supercell size. But gaps in the first
class are always smaller than those in the second class. The
size dependence of the band gap is similar to the “1/3 rule”
found in carbon nanotubes.22

To understand these features better, we consider how the
graphene π and π∗ bands are connected to the functionalized
graphene states under the effect of hydrogen adsorption. This
connection originates from the Brillouin zone (BZ) folding.
Each κ point in the BZ of functionalized graphene (blue
rhombus in Fig. 4) is associated with n2 points {ki ,i =
1, · · · ,n2} in the BZ of graphene (black rhombus) that are
folded to it.

Considering only the pz orbitals, the tight-binding Hamil-
tonian is written as

H = t
∑
〈ij〉

c
†
A;icB;j + εH

2

∑
A0

h
†
A0

hA0 + �
∑
A0

h
†
A0

cA0 + H.c.

(2)

Here t is the coupling strength between the A and B carbon
atoms, εH is the s orbital energy of the hydrogen atom, � is the
coupling strength between the hydrogen atom and the A0-site
carbon atom. In terms of Fourier-transformed operators the
Hamiltonian is written as

H = t
∑

κ

∑
j

[
fkj

c
†
A;kj

cB;kj
+ H.c.

] + εH

∑
κ

h†
κhκ

+ �

n

∑
κ ;j

[
h†

κcA;kj
+ H.c.

]
(3)

K

K ′

(a)

K

K ′

(b)

FIG. 4. (Color online) BZ fold for the
√

3 × √
3 (a) and 2 × 2

(b) supercells. The BZ for graphene and functionalized graphene
are expressed by gray and blue rhombus, respectively. The two big
gray dots are Dirac points in graphene. All red points are folded
into the same κ = � (a) or κ = K (b) point in the functionalized
graphene BZ.

with fk = 1 + e−ik·b′
1 + e−ik·b′

2 . Focusing on the changes of
the graphene states at the Dirac points, we have the following:
(i) The coupling strength �/n implies that the gap has square
root dependence of the hydrogen coverage. (ii) For any n,
the two states |ψ〉 = c

†
B;K |vac〉 and |ψ ′〉 = c

†
B;K ′ |vac〉 are still

eigenstates with zero energies. (iii) For the
√

3 × √
3, 3 × 3,

and 3 × 6 supercells where the “1/3 rule” is applied, both
Dirac points are folded to � points, and the state |ψ ′′〉 =

1√
2
(c†A;K − c

†
A;K ′)|vac〉 is another eigenstate with zero energy.

Thus, in the first class, there exists a threefold degeneracy at
zero energy, which results in a zero gap in this approximated
model. The small gap in our calculations comes from the
distortion of the sp2 hybrid orbitals.

IV. OPTICAL RESPONSE

We have calculated the optical conductivity of these
structures, where the in-plane response is given as J a(ω) =
σab(ω)Eb(ω) with a,b = x,y and

σab(ω)= ie2

h̄

∑
cvk

[
va

vckv
b
cvk

ωcvk(ω − ωcvk + iδ)
− {c ↔ v}

]
, (4)

where h̄ωcvk = εck − εvk gives the transition energy between
the conduction and valence band, with εnk being the nth band
energy, and va

cvk the interband velocity matrix elements. The
velocity matrix elements are interpolated from ABINIT results
by using the method described in the Appendix.

To evaluate this expression numerically, we use (ω −
ωcvk + iδ)−1 = P (ω − ωcvk)−1 − iπδ(ω − ωcvk) and rewrite
the conductivity as σab(ω) = σab

1 (ω) + iσ ab
2 (ω), where

σab
1 (ω) and σab

2 (ω) are real,

σab
1 (ω) = πe2

h̄

∑
cvk

[
va

vckr
b
cvkδ(ω − ωcvk) − {c ↔ v}], (5)

and σab
2 (ω) is calculated using the Kramers-Krönig rela-

tion. We calculate σab
1 (ω) by the linear analytic tetrahedral
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FIG. 5. (Color online) Real part of the optical conductivity for√
3 × √

3 supercell (a), 2 × 2 supercell (b), and pristine graphene
(c). Red dotted (blue dashed) curves are the contribution from the
majority (minority) spin branch; black solid curves are the total.

integration method on a homogeneous grid over the whole
BZ. Without spin-orbit coupling, the system has D3 symmetry,
which gives σxx = σyy and σxy = σyx = 0. The absorption is
determined by σxx

1 . In Fig. 5 we plot the real part of the optical
conductivity for the

√
3 × √

3 (a) and 2 × 2 (b) supercell, as
well as pristine graphene (c) as a reference. Due to dramatic
changes in the band structure at both low and high energies,
the conductivity in functionalized graphene shows a behavior
totally different from pristine graphene: (i) A gap appears;
(ii) two spin channels give different optical conductivities
and show fine structures for band edge transitions; (iii) the
absorption peak induced by the Van Hove singularity around
the M point in pristine graphene is redshifted in functionalized
graphene; (iv) the optical conductivity is enhanced at the
band edge. To understand these features, we give the band-
resolved transitions between impurity bands and graphene
π/π∗ bands in Fig. 6. Unlike the transition in pristine graphene,
which is between the π and π∗ bands, here it is from the filled
impurity band to the π∗ band for the majority spin branch
(from the π band to the empty impurity band for the minority
spin branch). Due to the narrow impurity bands, the large
DOS enhances the absorption around the band edge. Because
the energy of the impurity bands is between π and π∗ bands,
the characteristic energy for the absorption peak also shifts.

The optical conductivities for the 3 × 3, 4 × 4, and 5 × 5
supercells are given in Fig. 7.
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FIG. 6. (Color online) Band-resolved contribution to the optical
conductivity for

√
3 × √

3 (a) and 2 × 2 (b) supercells. The impurity
bands are labeled by 13 and 17, respectively. We use ↑ (↓) to indicate
the majority (minority) bands.
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FIG. 7. (Color online) Optical conductivity for (a) 3 × 3, (b) 4 ×
4, and (c) 5 × 5 supercells, labeled as in Fig. 5.

V. SPIN-ORBIT COUPLING

Because both carbon and hydrogen are very light elements,
their spin orbit coupling is weak and can be treated perturba-
tively. For the hydrogen s orbital, the spin-orbit coupling can
be ignored; for the carbon 2p orbital we take the form widely
used in the empirical pseudopotential calculation31

vso(r) = λθ (r − 2aB)L̂ · σ̂P1, (6)

where L̂ is the angular momentum operator and Pl is the
projector on the orbital momentum state l. The crystal potential
induced by this term is Vso(r) = ∑

R vso(r − R), with R being
the position of a carbon atom nucleus. The coupling parameter
λ = −3.78 × 10−3 eV is fitted to the spin split energy at the �

point of graphene, which is about 9 meV, as obtained from a
spinor LDA calculation.32 With the inclusion of the spin-orbit
coupling, we rediagonalize the total Hamiltonian to obtain the
new eigenstates and eigenenergies. The symmetry of the elec-
tronic states is reduced to C3, which gives σxy(ω) = −σyx(ω)
for the off-diagonal components of the conductivity tensor; the
calculated σxx(ω) is the same as before. In calculating σxy(ω),
a nonzero damping of δ = 0.05 eV is used to make the plot
smooth. Results are given in Fig. 8 for the

√
3 × √

3 and 2 × 2
supercells. The magnitude of the off-diagonal terms is about
two orders smaller than the diagonal terms.

We turn to the possibility of experimentally detecting such a
small response. The off-diagonal response σxy(ω) = −σyx(ω)
implies that Kerr and Faraday effects could in principle be
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100 × Re[σxy]
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�ω (eV)
543210

12

8

4

0

-4

100 × Im[σxy]
100 × Re[σxy]

Re[σxx]

σ
x
y
(×

e 4�
)

(a)

�ω (eV)
543210

4

0

FIG. 8. (Color online) Off-diagonal components of the conduc-
tivity tensor σ xy(ω). The real and imaginary parts are given by red
dashed (blue chain) curves for (a)

√
3 × √

3 and (b) 2 × 2 supercells.
A damping of δ = 0.05 eV is used in the calculation. The black curves
are the real part of the diagonal component σxx(ω).
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seen in functionalized graphene without an external magnetic
field. The Kerr or Faraday rotation angle33 for normally
incident light is about 2Re[σxy]/(n2

r − 1 + 2Re[σxx]) or
Re[σxy]/(nr + 1), with nr being the refractive index of the
substrate. For functionalized graphene on a substrate, both
angles are about 10−4 rad. In an extreme case for a freestanding
functionalized graphene in air, the Kerr rotation angle can be
as large as 10−2 rad.

VI. CONCLUSION

We use ab initio calculations to study the geometry,
band structure, and optical response of hydrogen function-
alized graphene with different supercells. Ferromagnetically
electronic structures have lower energies than nonmagnetic
electronic structures. In the ground states, the band structures
are spin polarized with nonzero gap for both spin branches.
The hydrogen atom behaves as an impurity to form two
impurity bands with one filled (majority) and the other empty
(minority), and breaks the degeneracy of the π and π∗ bands
of graphene at the Dirac points. The dominant contributions
to the optical conductivity are transitions between the filled
impurity band and π∗ band, and between the π band and the
empty impurity band, and they show enhancement and fine
structure at band edge. Including the spin-orbit coupling, these
structures are predicted to exhibit Kerr and Faraday effects
without an external magnetic field, which could be taken as an
experimental signature of the ferromagnetic ground states in
functionalized graphene.
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APPENDIX: VELOCITY MATRIX ELEMENTS
FROM ABINIT

With the converged ground state, we can use ABINIT

to produce the Kohn-Sham eigenstates and eigenenergies
by non-self-consistent calculations. An eigen wave function
ψnk(r) is expanded in a plane wave basis as ψnk(r) =

1√
V

eik·r ∑
G Cnk(G)eiG·r with G standing for the reciprocal

lattice vectors, and its corresponding eigenenergy is εnk. In the
plane wave basis, the wave function can also be expressed by
the column vector Cnk.

In calculating the optical conductivities, the velocity matrix
elements vnmk between states ψnk and ψmk are necessary. A
widely used method (A) is to approximate the velocity operator
as v̂ = p̂/m0, with p̂ being the momentum operator; the
matrix elements can be calculated immediately once the wave
functions are obtained.34,35 In this method, the contributions
from the nonlocal part of the self-consistent potential and
the spin-orbit coupling are only partially included. A more
accurate method (B) is to extract the velocity matrix elements
from ABINIT by performing response function calculations
of the effect of a homogeneous electric field, at the cost of
a large increase in computation time. These two methods

are compared for the majority spin branch in
√

3 × √
3

functionalized graphene: For the matrix elements between the
impurity, the π , and the π∗ bands, only minor differences
are found; for other components, the difference can be large.
However, the calculated optical conductivities are almost the
same in the interesting photon energy range because the main
contributions are from these three bands.

DFT calculations become very time-consuming for large
supercells and dense k-point grids. This makes it difficult to
check the convergence of the optical conductivity, for which
a grid finer than the one used in the ground state calculation
is required. One systematic interpolation method based on the
ground-state calculation uses the maximally localized Wannier
functions.36 Instead, for simplicity we use a direct interpolation
method based on the k · p theory for which only ψnk and εnk

obtained from ABINIT on a coarse grid are needed. Around k0,
the Hamiltonian at k is written as

Hk = UkεkU
†
k, (A1)

where Uk is a unitary matrix with elements Umnk =
〈ψmk0 |ψnk〉 = C

†
mk0

Cnk, and εk is a diagonal matrix for
eigenenergies. Equation (A1) is exact taking into account
the infinity number of bands. Considering only N bands,
the unitarity of Uk is broken, but it can be recovered by
approximating it as Ũk = TkQk, where Tk and Qk are the
left and right eigenvalues of Uk = Tk�kQk in the singular
value decomposition. We then make the interpolation

H̃k = H0 +
∑

i

Viki + 1

2

∑
ij

Mij kikj , (A2)

where H0, Vi , and Mij are N × N matrices. The fitting is
performed taking points at the vertices and the edge midpoints
of a triangle in reciprocal space with vertices {ki ,i = 0,1,2}.
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FIG. 9. (Color online) Comparison of the energy (a) and
velocity matrix elements |vnmk| [(b), (c)] between the interpolated
Hamiltonian and the results from ABINIT. The interpolation is for the
majority branch of the

√
3 × √

3 supercell on a 4 × 4 interpolation
grid of 40 bands.
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Corresponding to this Hamiltonian, the velocity operator is
approximated as Vi . The comparisons between this interpola-

tion, method A, and method B (taken as the exact result) are
given in Fig. 9.
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Rev. Lett. 101, 196803 (2008).

26K. Pi, W. Han, K. M. McCreary, A. G. Swartz, Y. Li, and R. K.
Kawakami, Phys. Rev. Lett. 104, 187201 (2010).

27M. Gmitra, D. Kochan, and J. Fabian, Phys. Rev. Lett. 110, 246602
(2013) .

28O. V. Yazyev and L. Helm, Phys. Rev. B 75, 125408 (2007).
29O. V. Yazyev, Phys. Rev. Lett. 101, 037203 (2008).
30X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin,

P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté,
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