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We present a unified hydroelectrodynamical approach to study electron dynamics in a laser field in cold metal
nanoparticles with a general nonspherical surface. This is the generalization to complex shapes of the model used
earlier to study both linear and nonlinear plasmon excitations in thin metal films and spherical nanoparticles.
Along with a general formulation allowing a direct nonlinear extension of the model for nanoparticles with
nonspherical shapes, the linear plasmon excitations in metal cubic and rectangular parallelepiped nanoparticles
are calculated as an example of using the hydrodynamic model in a cold charge-compensated electron plasma
approximation. The results obtained for the cubic and parallelepipedlike nanoparticles are analyzed and compared
with the ones of earlier approaches such as the discrete dipole approximation.
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I. INTRODUCTION

Collective electron excitations in metal nanoparticles (plas-
mons) play an important role in physics, material science,
biology, nanoelectronics, and numerous applications.1 The
dipole (i.e., the strongest) resonance at some frequency ωd

that is usually quite different from the bulk plasmon frequency
of the metal ωp can be excited by a laser beam with
frequency ω ≈ ωd in the linear regime with respect to the
laser intensity. The classical plasmon (the Mie resonance
at ωd = ωp/

√
3) corresponds to a giant dipole resonance,

where the conduction electrons oscillate in unison in spherical
metal particle in vacuum like an incompressible charged fluid
confined by the positive potential of ion core. In nonspherical
(or, more specifically, in nonellipsoidal nanoparticles) the
incompressibility approximation of the charged fluid is no
longer supported.2 Additionally, the restoring force on the
electrons in nanoparticles is generally nonlinear due to
the presence of a sharp particle surface, including that for the
spherical one. As a result, higher harmonics can be excited,
too, depending on the laser field strength. If the particle has
a center of inversion (like a sphere or a cube, but not, e.g., a
tetrahedron), the force would be odd with respect to inversion,
so the third harmonic will be the strongest in the far field,
while both odd and even harmonics will be present in the near
field. One expects very strong interplay between these two
effects, plasmonic resonance and nonlinear restoring force,
leading to a giant enhancement of nth-order harmonic at a
resonance condition nω = ωd , n � 1. This will generate an
extremely strong nth-order harmonic field in the vicinity of the
particle. In turn, this can be used to excite very strong Raman
scattering from molecules near the particle3 very useful for
sensing, or generate very high-order harmonics in extreme UV
range 20–120 nm by injecting noble gas into the nanostructures
with high field concentration due to plasmon excitation,4 and
in many other applications of nonlinear plasmonics.5

Now, the problem for plasmon excitations in metal
nanoparticles is generally considered either in a quasistatic
approximation6,7 or in a popular discrete dipole approximation
(DDA) accounting for retardation8 (cf. also Refs. 2, 3, 9, 10
and 11, and references therein), finite difference time domain
(e.g., Ref. 12), or finite element methods (e.g., Ref. 13). In the
present paper, the coupled hydrodynamic and electrodynamic
approach will be developed to study the plasmon resonances
in general nonspherical subwavelength nanoparticles. This
is the generalization to complex shapes of the electron’s
hydrodynamic model developed earlier to study the linear
and nonlinear plasmon excitations in thin metal films and
spherical nanoparticles with diffuse surfaces.14,15 The method
will be shown to be fast and versatile as it allows direct
nonlinear expansion to treat linear and nonlinear effects in
metal nanoparticles and their assemblies on equal footing that
is hard to obtain in other approaches such as DDA, LDA, etc.
Quite unexpectedly, however, it occurs that in order to get a
closed set of hydro/electrodynamical equations even for small
(subwavelength) particles of any shape including the spherical
one, one needs to retain the magnetic field usually neglected in
customarily used quasistatic approximation. As a first example
of its applicability to particles with nonspherical shapes, we
shall apply it here to study a linear electromagnetic response
of the perfect cube/parallelepipedlike metal nanoparticles. In
the case of a cube discussed below, it apparently brings about
some differences with, e.g., standard DDA calculations even
in a linear regime.2 The results for nonlinear plasmon response
of cubelike nanoparticles will be presented in a separate
paper. Here, we would like to stress that among other things
the present formalism opens up the possibility for consistent
calculations of both linear and nonlinear responses in particles
of practically arbitrary shape not available before. Note that
prior attempts to solve nonlinear problems were usually limited
to the simplest geometries such as spherical particles16–19 and
used various crude approximations such as an incompressible
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electron fluid, infinite confinement potential, etc. (see, e.g.
Ref. 19, and references therein).

The paper is organized as follows. In Sec. II the unified
hydrodynamic model, which permits direct expansion for
calculation of both a linear and a nonlinear electromagnetic
response of a nanoparticle with a general surface shape is
described, along with the boundary conditions for both electric
potential and magnetic field on the arbitrary surface of the
nanoparticle. In Sec. III, we present first results of the calcula-
tions within our model of the linear electromagnetic response
of the perfect cubelike nanoparticles as an example both in
the far-field and in the near-field ranges. The rectangular
parallelepipeds are also considered to discuss the results and
to compare them with previous methods. Finally, Sec. IV gives
a summary of the results.

II. MODEL

Consider the dynamics of the electrons of a nanoparticle
starting from the collisionless hydrodynamic equations:

∂ne

∂t
+ div q = 0, (1a)

∂qα

∂t
+ γωpqα + ∂(Pαβ/me + qαqβ/ne)

∂xβ

+ ene

me

(
Eα + EL

α

)
+ e

mec
eαβγ qβ

(
Hγ + HL

γ

) = 0, (1b)

∂Pαβ

∂t
+ 1

ne

(q · ∇)Pαβ + Pαγ

∂(qβ/ne)

∂xγ

+ Pβγ

∂(qα/ne)

∂xγ

+Pαβdiv(q/ne) + e

mec
(eαγ δPβγ + eβγ δPαγ )

(
Hδ + HL

δ

)
= 0, (1c)

with ne(t,r) the electron density, q(t,r) the electron flux
density, and Pαβ(t,r) the electron pressure tensor.20 In Eqs.
(1a)–(1c), me is the electron mass, e is the absolute value
of the electron charge, c is the speed of light, EL(t,r)
and HL(t,r) are the electric and magnetic components of
the external electromagnetic field acting on electrons in the
nanoparticle, and E(t,r) and H(t,r) the self-consistent electric
and magnetic fields of the ions and electrons. Although
the above equations can generally be obtained from the
collisionless Vlasov kinetic equation,20 the second (relaxation)
term in Eq. (1b) with the dimensionless relaxation constant
γ , which is normalized to the bulk plasma frequency ωp =√

4πe2zinion/me, was introduced phenomenologically. Here,
zi is the mean ionic charge and nion is the reference bulk ion
density of the nanoparticle substance. This collisionlike term
simulates weak binary collisions. For their solution, the above
hydrodynamic equations should be solved simultaneously with
the Maxwell equations

div E = 4πe(zini − ne), div H = 0, (2a)

curl E = −1

c

∂ H
∂t

, curl H = 1

c

∂ E
∂t

− 4πeq
c

. (2b)

In Eqs. (2a) and (2b), ni(r) is the spatial density of the positive
ions in the arbitrary-shaped nanoparticle with a generally
diffuse surface.

Contrary to the Maxwell equations, the hydrodynamic
equations (1a)–(1c) are essentially nonlinear. Applying the

perturbation theory with respect to the monochromatic inci-
dent laser wave with frequency ω, as well as the steady-state
approximation, all the quantities can be expanded into the
power series with respect to the incident laser field inside the
nanoparticle, which is specified in the dipole approximation
by the homogeneous complex fields EL(t) and HL(t) propor-
tional to e−iωt . Perturbation expansion of the electron density
has the form

ne(t, r) = n(0)
e (r) + 2 Re

∞∑
n=1

n∑
l=0

n(nl)
e (r)e−i(n−l)ωt , (3)

where n marks the order of nonlinearity with respect to
the incident field. For a monochromatic external field, each
nth-order term can be Fourier expanded. The corresponding
summation index is denoted by l, where 0 � l � n for the
nth-order term. The same can be written down for all other
dynamic quantities, that is, for electron flux density and
electron pressure, as well as the self-consistent electric and
magnetic fields. For the order n in the laser field nonlinearity,
the nth-order harmonic frequency nω corresponds to the
amplitudes with l = 0, but the nth-order lower frequency
amplitudes with nonzero l � n can also be generally present
in Eq. (3) and its analogs for other quantities.

By substituting Eq. (3) and its analogs into Eqs. (1a)–(1c)
and collecting the same order of nonlinearity n and the
same time dependence e−i(n−l)ωt simultaneously, a set of
equations for the amplitudes with different n and l can be
obtained. The amplitudes with l = 0 form a closed system of
equations, which is independent of the amplitudes with l �= 0.
The latter amplitudes describe only higher-order corrections
to the main nonlinear contributions. To obtain the system
of equations for the main amplitudes with l = 0 and with
n � 1, which describe nth-order harmonic generation, it is
convenient to rewrite Eqs. (1a)–(1c) and (2a) and (2b) in
dimensionless form by introducing new dimensionless
variables, namely, ρ = r/R0, Nn = n(n0)

e /(zinion),
pnαβ = P

(n0)
αβ /P0, and qn = q(n0)/(zinionωR0), as well as

En = E(n0)/(4πezinionR0) and Hn = H (n0)/(4πezinionR0).
The same can be done with the external electric and magnetic
laser fields EL(t) ≡ ELeze

−iωt = EL(t)/(4πezinionR0)
and HL(t) ≡ −HLeye

−iωt = HL(t)/(4πezinionR0), with
EL = EL/(4πezinionR0) and HL = √

ε1E0/(4πezinionR0).
Here, R0 is the characteristic size of the nanoparticle, P0 is
the characteristic electron pressure, E0 is the electric field
amplitude of the laser wave, and EL is the external electric
field amplitude inside the nanoparticle, which is (2 + ε1)E0/3
in the spherical approximation.21 We assume that the
nanoparticle can be surrounded by a dielectric medium with
the linear dielectric permittivity ε1. Then, from Eqs. (1a)–(1c)
we obtain the following dimensionless inhomogeneous linear
equations for the nth-order quantities:

−inNn + div qn = 0, (4a)

N 2
0

{(
− in + γ

ω̃

)
qnα + A

ω̃2

∂pnαβ

∂ρβ

+ N0
(
Enα + δ1nEL

α

) + NnE0α

ω̃2

}
= Vnα, (4b)
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− inN 2
0 pnαβ + N0

∂p0

∂ργ

qnγ δαβ

+N0p0

(
∂qnβ

∂ρα

+ ∂qnα

∂ρβ

+ ∂qnγ

∂ργ

δαβ

)

−p0

(
qnβ

∂N0

∂ρα

+ qnα

∂N0

∂ρβ

+ qnγ

∂N0

∂ργ

δαβ

)
= Tnαβ. (4c)

The dimensionless form of the Maxwell equations inside the
nanoparticle is

div En = −Nn, curl En = inω̃R̃0Hn, (5a)

div Hn = 0, curl Hn = −ω̃R̃0(inEn + qn). (5b)

Here, ω̃ = ω/ωp is the reduced laser frequency with respect
to the plasma frequency, and R̃0 = ωpR0/c is the reduced
nanoparticle size playing the role of the dipole-approximation
parameter. The vector term Vnα and the tensor term Tnαβ

on the right-hand sides of Eqs. (4b) and (4c), respectively,
contain only nonlinear contributions of orders less than n.
Therefore, they act as source terms from the lower orders for
the nth-order quantities (see details in Ref. 15).

The dimensionless parameter A, which occurs in Eq. (4b),
is generally defined as A = P0/[4πe2z2

i n
2
ionR

2
0], with P0

the zero-temperature pressure of the degenerate electron
Fermi gas for the current case of cold metal nanopar-
ticles. It can be presented as A = (lQ/R0)2, with lQ =
31/3π1/6h̄/[e

√
20me(zinion)1/6]. Typical values of the quantum

length lQ are in the range of 0.01–0.1 nm. This is smaller
than even the minimal possible surface diffuseness, which
is of the order of the interatomic distance in metals (about
0.3 nm). It is definitely much smaller than the nanoparticle
linear size, which typically is of the order of R0 ∼ 10–100
nm for the subwavelength nanoparticles, which we consider
here. Thus, the parameter A is very small, A ∼ 10−5. Hence,
to a first approximation the parameter A can be disregarded.
In the case of A = 0, the dimensionless static (zeroth-order)
equations for the electron density and the electric field inside
the nanoparticle have the trivial solution N0(ρ) = ni(ρ)/nion,
E0(ρ) = 0, if we consider neutral nanoparticles. This means
that in this case exact local compensation of positive and
negative charges occurs throughout the whole nanoparticle
volume. For this reason, the case of A = 0 is referred to as
the charge compensation approximation (CCA).15 Note that
the CCA is formally equivalent to the approximation of a
cold plasma, which is widely used in conventional plasma
physics, but in the context of this study the interpretation of
the case A = 0 as the CCA seems more relevant for the plasma
confined in the nanoparticle. It should be noted, however, that
in the CCA we obviously ignore the so-called and well-known
spill-out effect,22,23 which results in a weak redshift of the Mie
plasmon resonance in small spherical nanoparticles. However,
this effect is really important only for very small nanoparticles
with a number of atoms �1000, and is definitely always small
in comparison with modification of the resonance structure of
plasmon excitations due to deformation of the surface shape
of the nanoparticles which we consider. Also, ignoring spill
out we obviously should exclude from general consideration
within the CCA some specific cases of nanoparticle surfaces
with very sharp concavities and/or convexities, where more
sophisticated models should be used.

Equations (4a)–(4c) and (5a) and (5b) constitute the
complete set of equations, from which nth-order harmonic
generation by the nanoparticle can be determined, at least
in principle. They contain the dimensionless parameter R̃0,
whose smallness is the criterion of applicability of the dipole
approximation. The condition R̃0 � 1 will be used in the
solution of these equations for subwavelength nanoparticles.
In this case, Maxwell’s equations (5a) for the electric field can
be approximated by curl En = 0. Hence, the harmonic electric
field En can be derived from a potential ϕn, which satisfies the
Poisson equation

En = −∇ϕn, ∇2ϕn = Nn. (6)

The continuity equation (4a), together with the electrostatic
equations (6), is equivalent to the equation

qn + inEn = −curl hn. (7)

This is just the curl equation from Eqs. (5b), in which
the magnetic vector function hn ≡ Hn/(ω̃R̃0) satisfying the
condition div hn = 0 should be defined self-consistently.

While solving Eqs. (4b) and (4c), we should discriminate
between two cases, A = 0 and A �= 0.14,15 As mentioned
above, we shall consider only the approximation A = 0 (the
CCA). Then, the term with the electron pressure tensor pnαβ

vanishes in Eq. (4b), and Eq. (4c) becomes superfluous. Hence,
with the help of Eq. (4b) the electron flux density qn can be
explicitly expressed as

qn = iω̃2V n

N 2
0 (nω̃2 + iγ ω̃)

+ N0(En + δ1nEL) + NnE0

i(nω̃2 + iγ ω̃)
, (8)

and using Eq. (7), we obtain the principal equation,

i(N0 − n2ω̃2 − inγ ω̃)En + iN0δ1nEL + iNnE0

nω̃2 + iγ ω̃

= iω̃2V n

N 2
0 (nω̃2 + iγ ω̃)

+ curl hn, (9)

which should be solved together with Eqs. (6), the condition
div hn = 0, and with the corresponding boundary conditions
for the electric potential ϕn and the magnetic vector function hn

at the nanoparticle surface. If we assume that the nanoparticle
is surrounded by a transparent nonmagnetic dielectric, we
should introduce the real dielectric permittivities εn ≡ ε(nω)
of the surrounding for different harmonics. For arbitrary-
shaped nanoparticles, the first boundary condition at the
nanoparticle boundary defined by the condition ρ = ρ lim, with
ρ lim dependent on the position on the boundary surface, can
be found from the expression for the self-consistent electric
potential outside the nanoparticle at ρ > ρlim:

ϕn(ρ) = − 1

4πεn

∫
d3ρ ′ Nn(ρ ′)

|ρ − ρ ′| = − 1

4πεn

∫
d3ρ ′ ∇2ϕn(ρ ′)

|ρ − ρ ′|
= 1

4πεn

∮
dS′

(
ϕn

ρ − ρ ′

|ρ − ρ ′|3 − 1

|ρ − ρ ′|∇ϕn

)
. (10)

Assuming ρ → ρlim in Eq. (10), where the surface integration
should be performed over the nanoparticle boundary, and
requiring the continuity of the full electric potential together
with the potential of the external laser field on both sides of the
nanoparticle surface, we obtain the first boundary condition.
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If we set ρ = ρ lim, we should take into account the additional
integration in Eq. (10) over an infinitely small hemisphere
around the point ρ = ρ lim, and then this boundary condition
reads

1

4πεn

∮
dS′

{
[ϕn(ρ ′) − ϕn(ρ)]

ρ − ρ ′

|ρ − ρ ′|3 − ∇ϕn(ρ ′)
|ρ − ρ ′|

}

= ϕn(ρ) − δ1n

ε1 − 1

ε1 + 2
(E L · ρ). (11)

The other boundary condition corresponds to continuity of
the magnetic hn function at the nanoparticle boundary. It can
be obtained analogously to Eq. (11) and yields

hn(ρ) + 1

4π

∮
[(ρ − ρ ′) × {dS′ × [hn(ρ ′) − hn(ρ)]}]

|ρ − ρ ′|3

−
∮

[dS′×curl hn(ρ ′)]
4π |ρ − ρ ′| − 1

4π

∫
d3ρ ′[hnβ(ρ ′) − hnβ(ρ)]

× 3(ρ − ρ ′)α(ρ − ρ ′)β − δαβ |ρ − ρ ′|2
|ρ − ρ ′|5 = 0. (12)

However, in this specific form these boundary conditions are
applicable only to the nanoparticle with diffuse surface, when
all the quantities including the ion density vary smoothly at
the nanoparticle surface. In the opposite limiting case of the
sharp nanoparticle boundary with the steplike static electron
density N0(ρ), additional conditions following from Eq. (9)
should be taken into consideration to allow for the steplike
and higher singularities in the quantities ∇ϕn and curl hn on
the sharp nanoparticle surface.

Then, if Eq. (9) is successively solved for all orders in
nonlinearity up to n, the nanoparticle dimensionless dipole
moment of the nth order in nonlinearity can be calculated as

dn = −
∫

ρ Nn

d3ρ

4π
= −

∫
ρ ∇2ϕn

d3ρ

4π

= 1

4π

∮
{ϕn dS − ρ (dS · ∇)ϕn}, (13)

where the integration is taken only over the nanoparticle
limiting boundary. The higher multipole moments can be
expressed in the same vein. They define both the scattering and
the absorbing properties of the nanoparticle. For a nanoparticle
with an arbitrary shape, we can solve these equations for the
laser electric field applied in any direction, if we set EL = ELn,
where n is the unit vector in the direction of the applied linearly
polarized laser field, and EL is its module. Then, we can seek
the solution of all the equations as expansion in series with
respect to the laser electric field module EL. In this, however,
the solution will generally depend on the laser electric field
direction n.

But even in the case of the CCA, Eq. (9) with the
corresponding extra conditions is rather complicated for a
general solution, in particular, due to the cumbersome right-
hand term with Vnα in Eq. (4b) [cf. Ref. 15]. However, at
least the problems of low-order (second- and third-order)
harmonic generation by the nanoparticle, which is important
for various applications can be investigated. Here, to demon-
strate the applicability of this approach for the nonspherical
case we consider only the linear case of n = 1 for perfect
cube/parallelepiped like nanoparticles with the steplike surface

as an example, which is of interest in itself and for comparison
with the previous approaches such as the DDA, and which will
also serve as a first step in solving the nonlinear problems that
will be considered elsewhere.

III. LINEAR RESPONSE FOR CUBELIKE
NANOPARTICLES

In the linear case, from its definition we obviously have
V 1 ≡ 0. Also, for the neutral nanoparticles in the CCA, the
condition E0 = 0 holds exactly, as was established before.
Then, the linear equations read

i(N0 − ω̃2 − iγ ω̃)E1 + iN0EL

ω̃2 + iγ ω̃
= curl h1, (14a)

E1 = −∇ϕ1, div h1 = 0,

(14b)

with the expression N1 = ∇2ϕ1 of the linear approximation for
the first-order electron density. Equations (14a) and (14b), as
is also the general case of Eq. (9) for arbitrary nonlinearity of
the nth order, are four first-order differential equations for four
quantities, that is, for three components of the magnetic vector
function h1 and the scalar potential ϕ1. From these equations
the magnetic field H1 = (ω̃R̃0)h1 neither can be eliminated
nor neglected, so even in the dipole approximation ω̃R̃0 � 1
all this cannot be reduced to the simpler case of the electrostatic
approximation. Being much smaller than the electric field, the
magnetic field participates in Eqs. (14a) and (14b) with the
electric field on the same footing through the magnetic h1

function, and both first-order counterparts of Eqs. (11) and (12)
should be used as the boundary conditions to Eqs. (14a) and
(14b) to complete their electromagnetic, in essence, solution.

The first-order dipole moment of the nanoparticle with the
general surface shape can be written in general tensor form
as d1α = α1αβEL

β . For a cube, the tensor α1αβ is diagonal,
i.e., α1αβ = α1δαβ , with α1 the scalar dipole polarizability.
So, for the cubic nanoparticles the dipole moment is always
proportional to the applied electric field, d1 = α1EL. The
calculations for the cubic nanoparticle in the linear regime have
been performed on the three-dimensional 26×26×26 cubic
grid, where the results were well converged, with the whole
cube located at −0.5 � ρx,ρy,ρz � 0.5 (the normalization
length R0 was chosen as the cube edge length: R0 = ax ≡
ay ≡ az). In this case, the electric potential and three magnetic
field components in the cube bulk were given on the cubic
grid points themselves, on the vertices of the cubic grid unit
cells, while three outside surface electric field components
were given on the centers of the cubic grid cell faces sited just
on the whole cube surface. All these quantities constitute the
complete set of variables, which satisfy a closed set of field
equations together with the boundary conditions for a perfect
cube. In this grid representation, the sharpness of the cube
edges and corners is governed only by the cubic grid spacing
that is monitored by convergence of the numerical results.
The results for the cube scattering and absorption coefficients
corresponding to its far-field electromagnetic response that
can be expressed through its polarizability α1 are presented in
Figs. 1 and 2. They were checked by fulfillment of the dipole
sum rule for the absorption coefficient that follows from the
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FIG. 1. (Color online) The laser frequency dependence of the normalized linear scattering (a) and absorption (b) coefficients for cubic
(solid lines) and spherical (dashed lines) nanoparticles of the same volume in vacuum. The damping constant is γ = 0.03.

Kramers-Kronig dispersion relations:21

∫ ∞

0
dω ω Im α1(ω) = −π

2
lim

ω→∞ ω2Re α1(ω)

= 1

8

3

2 + ε1
. (15)

It is instructive to compare the cubic nanoparticle with the
spherical one of the same volume, with the dimensionless
dipole polarizability in vacuum α1 sphere(ω̃) = 3

4π
[1 − 3(ω̃2 +

iγ ω̃)]−1 (see Fig. 1). The spherical nanoparticle shows very
prominent standard plasmon Mie resonance in both scattering
and absorption, which sits at ωp/

√
3 ≈ 0.577ωp in vacuum,

and these classical results are precisely reproduced by our
model.15 On a logarithmic scale, the cube nanoparticle demon-
strates a quasiplateau behavior of both scattering and absorp-
tion in the frequency range of the spherical Mie resonance,

as compared with the corresponding results for the spherical
particle. The Mie plasmon resonance is redshifted in the
surrounding medium with increasing dielectric permittivity ε1

proportional to ε
−1/2
1 ,15 and this universal behavior is also seen

for the cubic nanoparticles (see Fig. 2). In a normal scale, we
see that our calculations of the linear scattering and absorption
coefficients of a cubic nanoparticle are qualitatively close
to, but quantitatively somewhat different from those of prior
authors mainly using the DDA method.2,9,11–13 In vacuum,
the frequency dependence of both scattering and absorption
coefficients displays six peaks, from which there are three
dominant peaks located approximately at 0.43ωp, 0.49ωp, and
0.79ωp. Note that the first two close low-frequency peaks,
especially for a cube in a dielectric environment, can be
qualitatively interpreted as a single double-split resonance
mode. Our results reproduce well the global structure of
six resonances that were first obtained in Refs. 2 and 9,

FIG. 2. (Color online) The laser frequency [(a) and (b)] and laser wavelength [(c) and (d)] dependence of the normalized linear scattering
[(a) and (c)] and absorption [(b) and (d)] coefficients for cubic nanoparticles at different dielectric surrounding permittivities ε1 = 1 (solid
lines), ε1 = 2 (dashed lines), and ε1 = 3 (dotted lines). The damping constant is γ = 0.03.
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FIG. 3. (Color online) The laser frequency dependence of the normalized linear scattering [(a) and (c)] and absorption [(b) and (d)]
coefficients in vacuum for nanoparticles in the form of cube (solid lines) and rectangular parallelepipeds of the same volume (dash-dotted,
dashed, and dotted lines) for different ratios ax/ay ≡ ax/az for their sides. In the panels (a) and (b) the laser field is directed along the x axis
associated with the shortest dimension, while for panels (c) and (d) the laser field is directed along the y axis associated with the long dimension
of the square parallelepiped. The damping constant is γ = 0.03. The gray blocks mark the main pick for a cubic particle (square) and thin slab
(rectangle).

although some resonance positions and the relative strengths
are quantitatively different. It concerns especially the position
of the higher-frequency resonance, which is at 0.79ωp in the
current paper, and with the relative strength of two neighboring
dominant low-frequency resonances. But our results presented
as a function of laser wavelength λ = 2πc/ω in Figs. 2(c)
and 2(d) are in a very good agreement with the results for
a cube presented in Ref. 11. Also, there is a qualitative
agreement with the results presented in Refs. 12 and 13 in
the restricted wavelength range of 300–500 nm for different
smoothed silver cubes, where, however, only one dominant
peak with the single low-wavelength/high-frequency satellite
is present even for a perfect cube. It corresponds to our results
in Fig. 2(d) for laser absorption in the range around λ/λp = 2,
with λp ≡ 2πc/ωp, corresponding to the central dominant
peak with the single short-wavelength satellite, too. However,
the right long-wavelength resonance presented in our results in
Fig. 2(d) for laser absorption, as well as in the results of Refs. 2
and 11, is not seen in the results of Ref. 13. The reasons for
this could be either a restricted range of wavelength where
these results are presented, with a loss of this long-wavelength
resonance, or merging of two right dominant resonances in
a single one in a still imperfect cube, due to smoothing of
the cube edges and corners. In any case, the latter reason can
be applied to the similar corresponding experimental results
presented also in Ref. 13. However, we would like to also stress

that our results can be directly applied only to nanoparticles of
simple metals with well-defined plasma frequency ωp, while
for noble metals such as silver or gold due to deviations
from the simple Drude models it should be partially modified
in order to account for different roles of s electrons and d

electrons, as well as the interband transitions.24,25

For an additional check of our results, and also for a
deeper understanding of the origin of these resonance peaks
in the scattering and absorption dispersion curves of the
cube nanoparticle, we have also carried out calculations of
the polarizability of rectangular parallelepipeds of the same
volume, but with the shorter edge size ax along the x axis,
which is reduced with respect to the other two equal edge
sizes (ay = az) with the coefficients 2/3, 1/3, and 1/10,
respectively. In this case, we should discriminate between
the polarizability tensor components α1xx and α1yy ≡ α1zz.
The results for the corresponding scattering and absorption
coefficients in vacuum are shown in Fig. 3 along with the
results for an ideal cube. From Figs. 3(a) and 3(b), it is
clearly seen that the cubic plasmon resonance with the highest
frequency 0.79ωp is a direct descendant of the single dominant
plasmon resonance just near the plasma frequency in a thin
metal plate, when the laser electric field is directed along the
x axis, perpendicularly to the plate. This is not unexpected,
because transformation of a sphere to a cube makes it closer to
a slab, for which the resonance frequency in the perpendicular
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FIG. 4. (Color online) The laser frequency dependence of the normalized amplitudes of the total electric field directed along the laser
electric field: (a) just above the center of the cube face (at ρx = 0.6, ρy = ρz = 0) oriented perpendicularly to the laser electric field directed
along the x axis and (b) just above the center of the cube face (at ρy = −0.6, ρx = ρz = 0) oriented parallel to the laser electric field. The
permittivities of the dielectric surrounding are ε1 = 1 (solid lines), ε1 = 2 (dashed lines), and ε1 = 3 (dotted lines). The damping constant is
γ = 0.03.

direction is just the plasma frequency ωp,14 so the intermediate
position of this high-frequency resonance for the cube between
those for the sphere and the slab is rather natural. On the other
hand, the results presented in Figs. 3(c) and 3(d) show that the
cubic plasmon resonance with the lowest frequency 0.43ωp is a
descendant of the low-frequency plasmon resonance in a slab,
in the case when the laser electric field is directed along the
y axis parallel to the slab. In the same vein, one may suppose
that the central dominant resonance of a cube nanoparticle at
0.49ωp is a direct descendant of the plasmon Mie resonance
in a sphere, which is strongly redshifted from the position
for a sphere at ≈0.577ωp. Note that this point of view is
well supported by calculations of this plasmon resonance by
the DDA in Refs. 11 and 13 for cubes with smoothed edges
and corners, when the resonance gradually loses its satellites,
increases in amplitude, and is simultaneously shifted to lower
wavelengths with increased edge smoothness.

For a cube, we have also inspected the near-electric-field
resonance behavior just above the two different cube faces
in its centers (see Fig. 4), as well as just near the vertex of
the cube along the cube diagonal (see Fig. 5). It appears that
the resonance behavior of the total electric field in all these
points is quite different. While the almost single dominant
resonance peak in the total electric field near the cube face

perpendicular to the applied laser electric field is located in
vacuum at high frequency ≈0.71ωp [together with the only
close weaker satellite at ≈0.79ωp; see Fig. 4 (a)], several
resonances in a wide range of frequencies are present in the
total electric field near the cube face parallel to the applied
laser electric field [see Fig. 4(b)].

On the other hand, the position of the single dominant
resonance in the total electric field near the cube vertex,
for all its components, is located in vacuum at ≈0.43ωp,
which is in the range of low-frequency plasmon resonance
(cf. Fig. 5 with Fig. 4). All this supports the view that the
cube can be considered as an intermediate shape between a
sphere and a slab. The considerable difference in the resonant
behavior of the electric near field in the different points near
the nanoparticle surface (for example, near the different cube
faces in its centers, and near the cube vertices) can be important
for the different nanoplasmonics applications.

IV. CONCLUSION

In summary, the self-consistent hydrodynamic plus electro-
dynamic model has been developed for plasmon excitations
in metal nanoparticles with general nonspherical shapes in
the dipole approximation. In addition, the model allows one

FIG. 5. (Color online) The laser frequency dependence of the normalized amplitudes of the total electric field components just near the
vertex of the cube along the cube diagonal (at ρx = ρz = 0.558, ρy = −0.558): (a) along the laser electric field directed along the x axis and
(b) perpendicularly to the laser electric field (along the y axis). The permittivities of the surrounding dielectric are ε1 = 1 (solid lines), ε1 = 2
(dashed lines), and ε1 = 3 (dotted lines). The damping constant is γ = 0.03.
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to consider both linear and nonlinear plasmon excitations in
such nanoparticles. Importantly, the magnetic field is involved
in the theory on the same footing as the electric field even
for subwavelength nanoparticles in the dipole approximation.
The diffusive surface was incorporated into the theory, which is
decisively important for the nonlinear plasmon excitation in the
charge compensation approximation. In the current paper, the
model was first applied to cubic and rectangular parallelepiped

nanoparticles in the linear regime, and a comparison with
other approaches such as the DDA developed earlier has been
performed. As a proof of concept, we have shown that the
linear regime is well described by the present method, and
this opens up the possibility of calculating the linear, as well
as the nonlinear responses of cubelike and more complex
nanoparticles and their assemblies that will be addressed
elsewhere.
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