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Ab initio variational approach for evaluating lattice thermal conductivity
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We present a first-principles theoretical approach for evaluating the lattice thermal conductivity based on
the exact solution of the Boltzmann transport equation. We use the variational principle and the conjugate
gradient scheme, which provide us with an algorithm faster than the one previously used in literature and able
to always converge to the exact solution [Omini and Sparavigna, Physica B: Condens. Matter 212, 101 (1995)].
Three-phonon normal and umklapp collisions, isotope scattering, and border effects are rigorously treated in the
calculation. Good agreement with experimental data for diamond is found. Moreover we show that by growing
more enriched diamond samples it is possible to achieve values of thermal conductivity up to three times larger
than those commonly observed in isotopically enriched diamond samples with 99.93% C12 and 0.07 C13.
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I. INTRODUCTION

Thermal conductivity is one of the most important param-
eters used to characterize transport phenomena in solid state
systems. A predictive theory for evaluating thermal conduc-
tivity is essential for the design of new materials for efficient
thermoelectric refrigeration and power generation1 and it could
help in understanding heat dissipation in microelectronics and
nanoelectronics devices.2

When heat is mostly carried by lattice vibrations, such as in
semiconductors and insulators, a correct theoretical prediction
of thermal transport properties cannot leave aside an accurate
description of the phonon-phonon interactions and lifetimes.
These quantities are related to second- and third-order
derivatives of the ground-state energy with respect to atomic
displacements. Specifically the harmonic interatomic force
constants determine phonon frequencies, group velocities, and
phonon populations while the anharmonic interatomic force
constants determine phonon scattering rates and linewidths.

A first microscopic description of the thermal conductivity
in semiconductors and insulators has been formulated in 1929
by Peierls and it has become known as Boltzmann transport
equation (BTE). This equation involves the unknown perturbed
population of a phonon mode and it describes how the
perturbation due to a gradient of temperature is balanced by the
change in the phonon population due to scattering processes. A
good predictive theory requires then a good knowledge of the
harmonic and anharmonic interatomic force constants (IFCs).
and the perturbed phonon population obtained as solution of
the BTE.

Both these issues have nontrivial solutions. The first issue
can be addressed in the framework of density functional
perturbation theory (DFPT)3 evaluating the interatomic force
constants fully ab initio using the “2n + 1” theorem.4–6

An efficient implementation of this method, extended to
metallic systems, exists in the QUANTUM ESPRESSO package7

for zone-centered modes.5 A generalization for metallic
systems and arbitrary phonons has recently been developed
and implemented in the the QUANTUM ESPRESSO package.8

The second issue, lying in solving the BTE equation ex-
actly, is due to the complexity of the scattering term. The
change in the phonon population numbers of each single
state involved in the scattering term depends, in turn, on

the change in the occupation number of the other states
involved.

Several theoretical studies, instead of attempting to solve
the BTE, employ a common approximation, namely the single
mode phonon relaxation time approximation (SMA).9–11 This
approximation describes rigorously the depopulation of the
phonon states but not the corresponding repopulation, which
is assumed to have no memory of the initial phonon distri-
bution. The momentum-conserving character of the normal
(N) processes gives then rise to a conceptual inadequacy of
the SMA description and its use becomes questionable in
particular in the range of low temperatures where the umklapp
(U) processes are frozen out and N processes dominate the
phonon relaxation.12

Improved approximate techniques involve the use of a
variational procedure.13,14 In such a kind of approach, orig-
inally introduced by Hamilton and Parrott,15 the thermal
conductivity is found by variationally optimizing a trial
function describing the nonequilibrium phonon distribution
function. Unfortunately the less the system is symmetric and
isotropic the more the result and the accuracy will be affected
by the form adopted for the trial function.

A first approach to solve exactly the linearized BTE has
been introduced by Omini and Sparavigna.16 The numerical
solution evaluated on a reciprocal space discrete grid is ob-
tained via a self-consistent iterative procedure, but as indicated
by the authors16 there is no general proof that convergence
will always be obtained with this approach. In particular the
method shows an instability that prevents it from reaching the
exact solution in the range where N phonon scattering pro-
cesses dominate and the other scattering processes are weak.
Nevertheless until now the Omini-Sparavigna (OS) iterative
procedure has represented the only numerically exact method
used to solve the BTE and evaluate the thermal conductivity
with17–20 and without21,22 IFCs from ab initio approaches. The
method scales as the square of the number of grid points and it
requires very dense grids to converge the thermal conductivity.
As a consequence, the time required to solve the BTE could
dominate over the time required to compute the IFCs even
when these are evaluated by first principles.

In this paper we present an approach for solving exactly
the linearized BTE. This method joins together the variational
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principle and the resolution on a discrete grid. More specif-
ically, by using the variational principle and the conjugate
gradient method, we present a stable algorithm, faster than the
one previously proposed and able to always converge to the
exact solution.16

In particular the mathematical stability assures the pos-
sibility to use the present method for evaluating the thermal
conductivity in all the possible ranges of temperatures, without
the problems16 found by the previous method. These properties
assure the flexibility of the present approach in treating any
structure without any a priori knowledge.

Moreover, even in the case where both of the methods are
stable, the present scheme assures to reach the convergence
one order of magnitude more rapidly than the OS, opening the
possibility to treat more complex systems.

As a first application we use this algorithm for studying
the lattice thermal conductivity in naturally occurring and
isotopically enriched diamond. Diamond thermal conductiv-
ity is the highest known among bulk materials. At room
temperature its value is more than an order of magnitude
higher than in other semiconductor materials, exceeding
3000 W/m-K.23–25 Diamond, and in general carbon systems,
have strong covalent bonding and light atomic masses, which
lead to high phonon frequencies, high acoustic velocities, and a
very small phase space for umklapp scattering when compared
with other common semiconductors. As a consequence, large
amounts of heat are transferred by acoustic phonons with high
velocities, giving these systems their high values of thermal
conductivity.18,26–28 Weak umklapp phonon scattering makes
the system very sensitive to small changes in the isotopic
content at low temperatures. Different data are available
for a large temperature range and for a wide range of C13

isotope concentrations.23–26,29–32 In our case this has the double
advantage of enabling us to: (i) test the stability of the present
algorithm with respect to the OS method, even in cases where
N scattering processes are dominant with respect to the other
scattering events such as in isotopically enriched diamond;
and, physically more interesting, (ii) give a theoretical limit
based on the exact solution of the BTE of the maximum lattice
thermal conductivity reachable in isotopically pure diamond
samples.

II. BOLTZMANN TRANSPORT EQUATION

When a gradient of temperature ∇T is established in a
system, a subsequent heat flux will start propagating in the
medium. Without loss of generality we assume the gradient
of temperature to be along the direction x. The flux of heat,
collinear to the temperature gradient, can be written in terms
of phonon energies h̄ωqj , phonon group velocities cqj in the x

direction, and the perturbed phonon population nqj

1

N0�

∑
qj

h̄ωqj cqj nqj = −k
∂T

∂x
. (1)

On the left-hand side ωqj is the angular frequency of
the phonon mode with vector q and branch index j , �

is the volume of the unit cell, and the sum runs over a
uniform mesh of N0 q points. On the right-hand side k is
the diagonal component of the thermal conductivity in the

temperature-gradient direction. Knowledge of the perturbed
phonon population allows heat flux and subsequently thermal
conductivity to be evaluated.

Unlike phonon scattering by defects, impurities, and bound-
aries, anharmonic scattering represents an intrinsic resistive
process and in high-quality samples, at room temperature, it
dominates the behavior of lattice thermal conductivity balanc-
ing the perturbation due to the gradient of temperature. The
balance equation, namely the Boltzmann transport equation
(BTE), formulated by Peierls33 is

− cqj

∂T

∂x

(
∂nqj

∂T

)
+ ∂nqj

∂t

∣∣∣∣
scatt

= 0 (2)

with the first term indicating the phonon diffusion due to the
temperature gradient and the second term the scattering rate
due to all the scattering processes. This equation has to be
solved self consistently. In the general approach,11 for small
perturbation from the equilibrium, the temperature gradient
of the perturbed phonon population is replaced with the
temperature gradient of the equilibrium phonon population
∂nqj /∂T = ∂n̄qj /∂T , where n̄qj = (eh̄ωqj /kBT − 1)−1; while
for the scattering term it can be expanded about its equilibrium
value in terms of a first-order perturbation f EX:

nqj � n̄qj + n̄qj (n̄qj + 1)
∂T

∂x
f EX

qj . (3)

The linearized BTE can then be written in the following
form:34

−cqj

(
∂n̄qj

∂T

)
=

∑
q′j ′,q′′j ′′

[
P

q′′j ′′
qj,q′j ′

(
f EX

qj + f EX
q′j ′ − f EX

q′′j ′′
)

+ 1

2
P

q′j ′,q′′j ′′
qj

(
f EX

qj − f EX
q′j ′ − f EX

q′′j ′′
)]

+
∑
q′j ′

P isot
qj,q′j ′

(
f EX

qj − f EX
q′j ′

) + P be
qj f

EX
qj ,

(4)

where the sum on q′ and q′′ is performed in the Brillouin zone
(BZ). The EX superscript of the first-order perturbation f EX

denotes the exact solution of the BTE, to be distinguished from
the approximated solutions that we will discuss later.

In Eq. (4) the anharmonic scattering processes as well as
the scattering with the isotopic impurities and the border effect
are considered. More specifically (see Fig. 1) P

q′′j ′′
qj,q′j ′ is the

scattering rate at the equilibrium of a process where a phonon
mode qj scatters by absorbing another mode q′j ′ to generate
a third phonon mode q′′j ′′. While P

q′j ′,q′′j ′′
qj is the scattering

rate at the equilibrium of a process where a phonon mode qj

decays in two modes q′j ′ and q′′j ′′.
The two scattering rates have the forms

P
q′′j ′′
qj,q′j ′ = 2π

N0h̄
2

∑
G

|V (3)(qj,q′j ′,−q′′j ′′)|2

× n̄qj n̄q′j ′(n̄q′′j ′′ + 1)δq+q′−q′′,G

× δ(h̄ωqj + h̄ωq′j ′ − h̄ωq′′j ′′ ), (5)
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FIG. 1. (Color online) Phonon scattering processes in a finite-size
anharmonic crystal in presence of isotopic impurities.

P
q′j ′,q′′j ′′
qj = 2π

N0h̄
2

∑
G

|V (3)(qj,−q′j ′,−q′′j ′′)|2

× n̄qj (n̄q′j ′+1)(n̄q′′j ′′+1)δq−q′−q′′,G

× δ(h̄ωqj − h̄ωq′j ′ − h̄ωq′′j ′′ ) (6)

with G the reciprocal lattice vectors. In order to evaluate them
it is necessary to compute the third derivative V (3) of the total
energy of the crystal E tot({usα(Rl)}), with respect to the atomic
displacement usα(Rl), from the equilibrium position, of the
sth atom, along the α Cartesian coordinate in the crystal cell
identified by the lattice vector Rl

V (3)(qj,q′j ′,q′′j ′′) = ∂3Ecell

∂Xqj ,∂Xq′j ′ ,∂Xq′′j ′′
, (7)

where Ecell is the energy per unit cell. The nondimensional
quantity Xqj is defined by

Xqj = 1

N0

∑
l,s,α

√
2Msωqj

h̄
zsα∗

qj usα(Rl)e
−iq·Rl , (8)

zsα
qj being the orthogonal phonon eigenmodes normalized on

the unit cell and Ms the atomic masses.
The rate of the elastic scattering with isotopic impurities

(see Fig. 1) has the form35

P isot
qj,q′j ′ = π

2N0
ωqjωq′j ′

[
n̄qj n̄q′j ′ + n̄qj + n̄q′j ′

2

]

×
∑

s

gs
2

∣∣∣∣∣
∑

α

zsα∗
qj · zsα

q′j ′

∣∣∣∣∣
2

δ(ωqj − ωq′j ′ ), (9)

where gs
2 = (Ms−〈Ms 〉)2

〈Ms 〉2 is the average over the mass distribution
of the atom of type s. In presence of two isotopes Ms and Ms ′ it
can be written in terms of the concentration ε and mass change
	Ms = Ms ′ − Ms

gs
2 = ε(1 − ε)

|	Ms |
〈Ms〉 (10)

with 〈Ms〉 = Ms + ε	Ms .

Eventually, in a system of finite size, P be
qj describes the

reflection of a phonon from the border (see Fig. 1)

P be
qj = cqj

LF
n̄qj (n̄qj + 1), (11)

where L is the Casimir length of the sample and F a correction
factor depending on the width to length ratio of the sample.
Following the literature36–38 the border scattering is treated in
the relaxation time approximation and it results in a process
in which a phonon from a specific state(qj ) is reemitted from
the surface contributing only to the equilibrium distribution.

For the sake of clarity we will contract from here on the
vector q and branch index j in a single mode index ν. The BTE
of Eq. (4) can be written as a linear system in matrix form

AfEX = b (12)

with the vector bν ′ = −cν ′h̄ων ′ n̄ν ′(n̄ν ′ + 1) and the matrix

Aν,ν ′ =
[ ∑

ν ′′,ν ′′′

(
P ν ′′

ν,ν ′′′+P ν
ν ′′′,ν ′′

2

)
+

∑
ν ′′

P isot
ν,ν ′′+P be

ν

]
δν,ν ′

−
∑
ν ′′

(
P ν ′

ν,ν ′′ − P ν ′′
ν,ν ′ + P ν

ν ′,ν ′′
) + P isot

ν,ν ′ , (13)

where we have used P ν ′,ν ′′
ν = P ν

ν ′,ν ′′ from the detailed balance
condition n̄ν(n̄ν ′ + 1)(n̄ν ′′ + 1) = (n̄ν + 1)n̄ν ′ n̄ν ′′ (valid under
the assumption h̄ω = h̄ω′ + h̄ω′′). In this form the matrix
is symmetric and positive semidefinite (see Appendix A for
demonstrations) and it can be decomposed in A = Aout + Ain,
where

Aout
ν,ν ′ = n̄ν(n̄ν + 1)

τT
ν

δν,ν ′ (14)

Ain
ν,ν ′ = −

∑
ν ′′

(
P ν ′

ν,ν ′′ − P ν ′′
ν,ν ′ + P ν

ν ′,ν ′′
) + P isot

ν,ν ′ , (15)

τT
ν being the phonon relaxation time (see Appendix B). The

Aout diagonal matrix describes the depopulation of phonon
states due to the scattering mechanisms while the Ain matrix
describes their repopulation due to the incoming scattered
phonons.

The solution of the linear system in Eq. (12) is obtained
formally by inverting the matrix A

fEX = 1

A
b (16)

and subsequently the thermal conductivity will be evaluated
as

k = λb · fEX = − h̄

N0�kBT 2

∑
ν

cνωνn̄ν(n̄ν + 1)f EX
ν (17)

with λ = 1/(N0�kBT 2).

III. SOLUTIONS OF THE BOLTZMANN
TRANSPORT EQUATION

The complexity of the BTE lies in the need of explicitly
computing, storing, and inverting the large matrix A. In the
SMA the BTE is solved for the nν neglecting the role of the
repopulation by means setting Ain to zero

fSMA = 1

Aout
b. (18)
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Storing and inverting Aout is trivial due to its diagonal form.
The lattice thermal conductivity in SMA is then

kSMA = λb · fSMA = h̄2

N0�kBT 2

∑
ν

c2
νω

2
ν n̄ν(n̄ν + 1)τT

ν .

(19)
Such approximation is exact if the repopulation loses memory
of the initial phonon distribution and if it is proportional
to the equilibrium population of ν. It remains anyway a
good approximation if the repopulation is isotropic. An exact
solution of Eq. (12), which does not imply either storing or the
explicit inversion of matrix A, has been proposed by Omini
and Sparavigna21 by converging with respect to the iteration i

the following:

fi+1 = 1

Aout
b − 1

Aout
Ainfi (20)

with the iteration zero consisting in the SMA f0 = fSMA. This
procedure requires, as for the SMA, only the trivial inversion
of the diagonal matrix Aout. Instead of storing and inverting
A, it just requires the evaluation of Ain fi , at each iteration i of
the OS method, which is an operation computationally much
less demanding.

Once the convergence is obtained the thermal conductivity
is evaluated by

kNV(fi) = λb · fi . (21)

From a mathematical point of views the OS iterative procedure
can be written as a geometric series

fi =
∑
j=0,i

(
− 1

Aout
Ain

)j 1

Aout
b, (22)

thus, only if the absolute value of the ratio [(Aout)−1Ain] is
smaller than one, the series converges to a solution of the
linear system in Eq. (12).

An alternative approach consists in using the properties of
the matrix A (see Appendix A) to find the exact solution of
the linearized BTE, via the variational principle. Indeed the
solution of the BTE is the vector fEX, which makes stationary
the quadratic form10,15

F(f) = 1
2 f · Af − b · f (23)

for a generic vector f. Since A is positive the stationary point
is the global and single minimum of this functional. One can
then define a variational conductivity functional

kV(f) = −2λF(f), (24)

which has the property kV(fEX) = k, while any other value of
kV(f) underestimates k. In other words, finding the minimum
of the quadratic form is equivalent to maximizing the thermal
conductivity functional. As a consequence an error δf =
f − fEX results in an error in conductivity, linear in δf if the
functional is written in Eq. (21) form, and quadratic if the
variational form [Eq. (24)] is used.

In literature,15 due to the complexity of the numerical
calculations, the variational scheme was used together with
a trial function for describing the nonequilibrium phonon
distribution function affecting then the accuracy of the final
result with the form of the specific probe function chosen.

In our scheme we avoid the use of trial function and we
solve Eq. (12) on a grid (as in OS procedure) by using the
conjugate gradient method,39 as reported in Appendix C, to
obtain the exact solution of the BTE equation. In order to
speed up the convergence of the conjugate gradient we take
advantage of the diagonal and dominant role of Aout and
we use a preconditioned conjugate gradient. Formally, this
corresponds to use in the minimization the rescaled variable

f̃ =
√

Aoutf (25)

and then, with respect to this new variable, minimize the
quadratic form F̃(f̃) = F(f), where

F̃(f̃) = 1

2
f̃ · Ãf̃ − b̃ · f̃ (26)

and

Ã = 1√
Aout

A
1√
Aout

(27)

b̃ = 1√
Aout

b. (28)

Notice that f̃SMA = b̃. The square root evaluation of Aout is
trivial due to its diagonal form. The computational cost per
iteration of the conjugate gradient scheme is equivalent to the
OS one, but it always converges and requires a smaller number
of iterations.

IV. COMPUTATIONAL DETAILS

In order to compute the thermal conductivity the only inputs
required are the second- and third-order IFCs. Both of them
were calculated by using the QUANTUM ESPRESSO package7

within a linear response approach3–6 following the method
explained by Paulatto et al.8 The first BZ is discretized into
a uniform grid of q points centered at 
, in such a way that
if q and q′ belong to the mesh, also q ± q′ belongs to the
mesh, assuring a perfect momentum conservation. At any q
the phonon frequencies are evaluated from the second-order
force constants and the phonon group velocities are computed
from the derivative of the phonon dispersion ∂ω/∂q, using
the Hellmann-Feynman theorem and obtaining the following
velocity matrix directly from the dynamical matrix D:

Cjj ′ =
∑
αα′ss ′

1

2
√

MsMs ′ωqj

zsα∗
qj

∂Dαα′
ss ′

∂qx

zs ′α′
qj ′ . (29)

In the nondegenerate case cqj = Cjj , while in the degenerate
one we use the phonon polarization vectors that diagonalize the
matrix in the degenerate subspace. To compute the scattering
rates, the BZ is again discretized into a grid of q′ points
centered in 
. The δ function for the energy conservation
is replaced by a Gaussian

δ(h̄ω) = 1√
πσ

exp (−(h̄ω/σ )2). (30)

It is important to note that when the δ function is substituted
with a Gaussian the detailed balance condition is only valid
under approximation. This means that the OS definition of
matrix A given in Ref. 21 and our definition, in Eq. (13), are not
equivalent anymore. Our definition has the advantage to keep,
for any finite σ in Eq. (30), the symmetric and non-negative
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character of the A matrix thanks to the symmetric definition of
the scattering rate with the isotopic impurities given in Eq. (9)
and the replacement of P ν ′,ν ′′

ν with P ν
ν ′,ν ′′ .

For diamond calculations: a smearing σ = 20 cm−1 along
the q′ mesh of 30 × 30 × 30 has been found to lead to
converged relaxation times (see Appendix D). For border
scattering we used a Casimir length L = 0.3 cm and a shape
factor F = 0.5.36,38

A norm-conserving pseudopotential40 with cutoff radii of
1.2 a.u. and core correction has been used for C. The exchange
correlation energy is calculated in the framework of the local
density approximation (LDA).41 A plane-wave kinetic energy
cutoff of 90 Ry and of 360 Ry for the charge density have been
used. We used a 8 × 8 × 8 Monkhorst-Pack mesh in the BZ
for the electronic k-point sampling.

Anharmonic forces have been computed on a 4 × 4 × 4
q-point phonon grid on the BZ, Fourier interpolated with a
finer 30 × 30 × 30 mesh for the Boltzmann calculations.

V. RESULTS AND DISCUSSION

In Fig. 2 a comparison between the convergence trend
obtained via the OS iteration scheme or the conjugate gradient
is reported for the case of bulk diamond at 100 K. The OS
standard iterative scheme shows a numerical instability after 77
iterations meaning that (Aout−1

Ain) of Eq. (22) has eigenvalues
larger than one in modulus. This instability prevents the
scheme from approaching the exact solution k with a precision
higher than ∼300 W m−1 K−1. A higher precision is achievable
with the conjugate gradient method after just four iterations.

As expected, if the variational definition of k [Eq. (24)] is
used in the OS iterative scheme, half the number of iterations
are necessary to reach the same precision and the numerical
instability appears after 41 iterations. The convergence trend
of the conjugate gradient scheme without preconditioning is

40
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FIG. 2. (Color online) Lattice thermal conductivity of diamond
at 100 K (top panel) and absolute error δk (bottom panel) compared
to the exact solution k for: the iterative scheme in the Omini-
Sparavigna standard definition (solid line), the iterative scheme in
the variational definition given in Eq. (24) (dash-dotted line), and the
conjugate gradient method with (dashed line) and without (dotted
line) preconditioning, as a function of the order of iteration.

reported in the same graph to show how preconditioning is
necessary to ensure a fast convergence.

We also considered an infinite diamond sample. The
removal of the border effects does not change the conjugate
gradient convergence while the OS standard iterative proce-
dure shows a numerical instability after 91 iterations with an
error with respect to the exact solution of ∼3000 W m−1 K−1.
This indicates how the OS method becomes more unstable
when scattering processes that do not conserve the crystal
momentum (resistive processes) are small. Note that even with
the most efficient conjugate gradient approach, the CPU time
required for obtaining the results shown in this paper has been
two orders of magnitude larger than CPU time used for the
IFCs ab initio calculation. Therefore the gain in speed, with
respect to the OS method, results in a real increase in speed in
the thermal conductivity calculations.

We have chosen for the comparison a temperature of
100 K close to the maximum value of thermal conductivity
obtainable in finite-size diamond samples.18,25,37 In this range
of temperatures, where the U processes are a few and the
border effects are not dominant, it is important to have a stable
algorithm able to well characterize the few scattering processes
that drive the lattice thermal conductivity in order to obtain the
correct result.

The top panel of Fig. 3 compares the lattice thermal
conductivity of isotopically enriched and naturally occurring
diamond, obtained by solving exactly the BTE equation, with
the experimental results as a function of temperatures. The
circles25 and squares24 represent the measured values for
isotopically enriched diamond with 99.93% C12, 0.07%C13

and 99.9% C12, 0.1% C13 respectively, while opened42 and
closed triangles25 represent naturally occurring diamond with
98.9% C12 and 1.1% C13. Our curves are in good agreement
with experiments and with the previous theoretical results,18

presented for T � 150 K. As reported in Fig. 3 there can be
some discrepancies between different experiments due to the
real dimension of the sample and to the presence of point
defects, with the first playing a role in the low-temperature
regime, and the second becoming more relevant for higher
temperatures. From Fig. 3 it is possible to infer that, in the
case of naturally occurring diamond, the open triangles42

could be associated to samples with higher crystalline purity
than the closed triangles25 and, as expected, theoretical
results, not considering the presence of structural defects,
will always be more in agreement with high-purity samples.
In the same picture is also indicated with a dashed line
the thermal conductivity in total absence of C13. This value
gives a theoretical limit of the maximum lattice thermal
conductivity reachable for an isotopically pure C12 sample.
In the picture it is easy to notice that where the lattice thermal
conductivity takes its maximum values k0%C13 � 3k0.07%C13 .
This means that there is still a significant increment in thermal
conductivity achievable by growing more enriched diamond
samples.

As the temperature increases, the values for the naturally
occurring and isotopically pure samples become smaller. This
is due to the U scattering becoming stronger and consequently
driving the thermal conductivity as the temperature increases.
For temperatures lower than 80 K the border effects become
dominant.
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FIG. 3. (Color online) Lattice thermal conductivity of isotopi-
cally enriched and naturally occurring diamond as a function of
temperature. (Top) Experimental values [circles (Ref. 25), squares
(Ref. 24), and triangles (Refs. 25 and 42)] at different C13 percentages
(0.07%, 0.1%, and 1.1%) are compared with the results of our ab
initio calculations (solid, dash-dotted, and dash with two dots lines).
As indication of the theoretical limit a dashed line for the case in
total absence of C13 is reported. (Bottom) Ratio between the exact
and the SMA solution as a function of temperature at different C13

percentages.

The bottom panel of Fig. 3 shows the ratio between
the thermal conductivity obtained by solving exactly BTE
equation and by using the SMA as a function of temperatures.
The lower the temperature and the less the C13 abundance
the bigger becomes the ratio between the exact solution and
the SMA solution. In other words, the less are the events of
scattering that do not conserve the momentum (i.e., umklapp,
isotopes, and border scattering), the less the SMA is able to
give a good description of the process. In Fig. 3 is shown
also the case with 99.995% C12 and 0.005% C13 as a further
indication of how even small changes in the sample enrichment
can give rise to sensible differences in the thermal transport
properties of the material.

In Fig. 4 this last concept is more heightened. Diamond
thermal conductivity is represented as a function of isotopic
presence for two different temperatures 100 K and 300 K. At
T = 100 K, for a finite-size diamond sample, the range of
thermal conductivity explored by changing the percentage of
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FIG. 4. (Color online) Diamond lattice thermal conductivity as a
function of isotopic presence for an infinite-size diamond sample at
100 K (left) and for a sample with L = 0.3 cm at 100 K (central) and
300 K (right). The values obtained by solving the BTE are indicated
by circles while the SMA solutions by squares. The value of the
thermal conductivity with 0% C13 is represented, for each case, by a
dotted horizontal line. At 300 K experimental values are indicated by
diamonds (Ref. 23) and triangles (Refs. 30–32).

C13 from 0 to 1% spans one order of magnitude while at 300 K
the ratio is simply 1.5. If, at 100 K, an infinite-size sample is
considered, the thermal-conductivity dependence with respect
to the isotopic content is enhanced. In particular, in the case
of the finite-size sample, for isotopic percentages below 0.01
the lattice thermal conductivity tends to a plateau, while in the
infinite-size sample the curve does not show any deflection.
This behavior can be understood considering that umklapp,
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FIG. 5. (Color online) Diamond lattice thermal conductivity as a
function of temperature for different sample dimensions in naturally
occurring diamond. Experimental values are indicated by open
(Ref. 42) and closed triangles (Ref. 25).
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isotope, and border scattering are resistive processes that make
finite the value of thermal conductivity. At 100 K, where a few
umklapp scattering are activated and the border effects are
nondominant, the thermal conductivity value becomes very
sensitive to even tiny variations of the isotopic content. This
behavior is enhanced when the border effects are completely
removed. At 300 K, as described above, the U processes are
dominant with respect to the other nonmomentum conserving
processes, so the lattice thermal conductivity shows a weaker
dependence on the isotopic content. Equivalent experimental
studies23,30–32 have been done at 300 K. The experimental
points, as shown in Fig. 4, present the same trend of our results
but their values are slightly below our curve. Their lower value,
as mentioned by the authors themselves,23 could arise from
the level of crystallinity of the samples. In this respect, our
calculations have the power to predict the effect of the isotopic
content in the limit of perfectly crystalline samples.

Furthermore, in order to show the role played by the
dimension of the sample, in Fig. 5 we report the lattice thermal
conductivity, for naturally occurring diamond, as a function
of temperature for different diamond sizes. As described
above the boundary scattering processes play a role in the
low-temperature regime. So, as it is possible to see in Fig. 5, the
larger the diamond domain, the higher the maximum thermal
conductivity achievable, with the limit of infinite k for T → 0
in infinite-size diamond. The theoretical curve obtained with
L = 0.5mm perfectly matches Berman et al.42 results obtained
on mm-size samples.

VI. CONCLUSION

In this paper we have presented a numerical approach for
solving exactly the linearized BTE. We have shown that by
joining the variational principle approach and the resolution
on a grid it is possible to always converge to the exact solution
even in systems with very high thermal conductivity where
resistive processes are weak. Moreover the preconditioned
conjugate gradient scheme with the line minimization assures
a significantly faster convergence than the method previously
proposed by Omini and Sparavigna16 with an equivalent
computational cost per iteration, allowing us to deal with larger
grids than those accessible by the OS method.

As a first application of our method we have computed
the lattice thermal conductivity of isotopically enriched and
naturally occurring diamond by evaluating the harmonic and
anharmonic IFCs fully ab initio in the framework of DFPT
using a recent general implementation of the 2n + 1 theorem
in the QUANTUM ESPRESSO package combined with an exact
solution of the linearized phonon BTE.

In agreement with what was previously shown in
literature18,36 we have demonstrated the inadequacy of the
commonly used SMA in the range of temperature T < 300 K
for isotopically enriched diamond samples. In this range
of temperatures, the lattice thermal conductivity shows a
high sensitivity to the isotopic enrichment23,24,26 and our
calculations suggest that by growing more enriched diamond
samples it is possible to achieve values of thermal conductivity
up to three times larger than the commonly observed in
isotopically enriched diamond samples with 99.93% C12 and
0.07 C13.
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APPENDIX A: PROPERTIES OF MATRIX A

It is easy to prove that the matrix A is symmetric Aν,ν ′ −
Aν ′,ν = 0 by using the properties: P ν ′′

ν,ν ′ = P ν ′′
ν ′,ν and P isot

ν,ν ′ =
P isot

ν ′,ν in the definition of Aν,ν ′ given in Eq. (13). It is also
possible to prove that it is positive semidefinite. In order to
show that, the matrix A in Eq. (13) can be written as

A =
∑
ν,ν ′

P ν ′′
ν,ν ′Dν ′′

ν,ν ′ +
∑
ν,ν ′

P isot
ν,ν ′ Dν,ν ′ +

∑
ν

P be
ν Dν, (A1)

where Dν ′′
ν,ν ′ is a matrix with all the element equal to zero apart

those involving the triplets {ν,ν ′,ν ′′}

Dν ′′
ν,ν ′ =

ν

ν ′
ν ′′

ν ν ′ ν ′′⎛
⎝ 1 1 −1

1 1 −1
−1 −1 1

⎞
⎠ , (A2)

whose eigenvalues are 0, 0, and 3.
For the part representing the elastic scattering with the

isotopes: Dν,ν ′ is a matrix with all the elements equal to zero
apart those involving the couples {ν,ν ′}

Dν,ν ′ = ν

ν ′

ν ν ′(
1 −1

−1 1

)
(A3)

with eigenvalues 0 and 2.
Finally for the border effect, Dν is a matrix with all the

elements equal to zero apart those involving {ν,ν}

Dν =
ν

ν ( 1 ). (A4)

Since P ν ′′
ν,ν ′ , P isot

ν,ν ′ , and P be
ν , are non-negative then the

total matrix is positive semidefinite because sum of positive
semidefinite matrices.

APPENDIX B: PHONON RELAXATION TIMES

When different events of scattering are present such as
anharmonic scattering, scattering with isotopic impurities and
border effects the total phonon relaxation time τT

qj is expressed
by the Matthiessen’s rule as(

τT
qj

)−1 = (τqj )−1 + (
τ be

qj

)−1 + (
τ isot

qj

)−1
, (B1)

where

(τqj )−1 = 2
qj = π

h̄2N0

∑
q′j ′,j ′′

|V (3)(qj,q′j ′,q′′j ′′)|2

× [2(n̄q′j ′ − n̄q′′j ′′ )δ(h̄ωqs + h̄ωq′j ′ − h̄ωq′′j ′′ )

+ (1 + n̄q′j ′ + n̄q′′j ′′ )δ(h̄ωqj − h̄ωq′j ′ − h̄ωq′′j ′′ )]

(B2)
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is the relaxation time due to the anharmonic scattering
processes with 
qj half width at half maximum of the
corresponding phonon broadening, while(

τ be
qj

)−1 = cqj

LF
(B3)

is the relaxation time due to the border effects and

(
τ isot

qj

)−1 = π

2N0
ω2

qj

∑
q′j ′

δ(h̄ωqj − h̄ωq′j ′ )

×
∑

s

gs
2

∣∣∣∣∣
∑

α

zsα∗
qj zsα

q′j ′

∣∣∣∣∣
2

, (B4)

the relaxation time associated to the elastic scattering with
isotopic impurities.

APPENDIX C: CONJUGATE GRADIENT METHOD

The conjugate gradient minimization39 of Eq. (23) or
Eq. (26) requires the evaluation of the gradient gi = Afi − b
and a line minimization. Since the form is quadratic the line
minimization can be done analytically and exactly. Moreover
the information required by the line minimization at iteration
i can be recycled to compute the gradient at the next iteration
i + 1. Starting with an the initial vector f0 = fSMA, initial
gradient g0 = Af0 − fSMA and letting h0 = −g0, the conjugate
gradient method can be summarized with the recurrence

ti = Ahi (C1)

fi+1 = fi − gi · hi

hi · ti
hi (C2)

gi+1 = gi − gi · hi

hi · ti
ti (C3)

hi+1 = −gi+1 + gi+1 · gi+1

gi · gi

hi , (C4)
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FIG. 6. (Color online) Diamond lattice thermal conductivity as a
function of the number N0 of the q-grid points (N0 × N0 × N0) at
100 K for different values (different curves) of the energy-Gaussian
smearing σ .

where hi is the search direction and ti is an auxiliary vector.
Notice that each iteration requires only one application of
the matrix A on the vector hi as in the OS method. This is
the computationally more demanding part of the conjugate
gradient step.

APPENDIX D: GRID AND SMEARING DEPENDENCE

In Fig. 6 dependence of the lattice thermal conductivity
at 100 K of an infinite-size diamond sample with 0% C13

content, with respect to different energy-Gaussian smearing
σ and number N0 of q-grid points used. Notice that for the
smaller grids the OS method shows numerical instability16

from the very first steps while the conjugate gradient does not
present any slow down in convergence.
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