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We study different aspects of quantum von Neumann and Rényi entanglement entropy of one-dimensional
long-range harmonic oscillators that can be described by well-defined nonlocal field theories. We show that
the entanglement entropy of one interval with respect to the rest changes logarithmically with the number of
oscillators inside the subsystem. This is true also in the presence of different boundary conditions. We show that
the coefficients of the logarithms coming from different boundary conditions can be reduced to just two different
universal coefficients. We also study the effect of the mass and temperature on the entanglement entropy of the
system in different situations. The universality of our results is also confirmed by changing different parameters
in the coupled harmonic oscillators. We also show that more general interactions coming from general singular
Toeplitz matrices can be decomposed to our long-range harmonic oscillators. Despite the long-range nature of the
couplings, we show that the area law is valid in two dimensions and the universal logarithmic terms appear if we
consider subregions with sharp corners. Finally, we study analytically different aspects of the mutual information
such as its logarithmic dependence to the subsystem, effect of mass, and influence of the boundary. We also
generalize our results in this case to general singular Toeplitz matrices and higher dimensions.
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I. INTRODUCTION

Quantum entanglement entropy as an interesting quantity
in many-body systems has been studied in many different
locally interacting systems by using different techniques, see
the reviews in Refs. 1–6 and references therein. Among the
most important results (which are related to this work), one
can list the classical work of Bombelli et al.,7 where they
compute the entanglement entropy of free field theory by
using the discrete version of the field theory, which is simply
coupled harmonic oscillators. The result was rediscovered in
Ref. 8 and used to introduce the area law. In Ref. 9, the result
was generalized to the Rényi entropy and the validity of the
replica trick is checked. This method is also used to study
free fermionic systems in a series of papers by Peschel and
collaborators in Refs. 6 and 10. The techniques used in these
works are applicable in any dimension. In two dimensions
for the short-range interacting systems, one can also derive
exact formulas for the entanglement entropy using Euclidean
methods.5 In the especial cases when one has integrable
models, one can use the form factor techniques and calculate
the entanglement entropy.11 Finally, at the quantum critical
point when we use conformal field theory, many explicit results
are known, see Ref. 4 and references therein.

Although in short-range interacting systems numerous
results have been discovered in the last ten years, there are
just few results concerning long-range interacting systems.
The main difficulty is the lack of exact solution in most of
this kind of systems. The entanglement entropy in Lipkin-
Meshkov-Glick (LMG) model, where all spins interact among
themselves, is studied numerically and analytically in Refs. 12
and 13. In Ref. 14, the static and the dynamical properties
of the entanglement entropy are studied in a long-range
Ising type model without an external magnetic field. In the
same direction, the entanglement entropy is also calculated
numerically for the antiferromagnetic long-range Ising chain

in Ref. 15. In an interesting work, see Ref. 16, a logarithmically
divergent geometric entropy is found in free fermions with
long-range unshielded Coulomb interaction. Plenio et al.,17–19

see also Refs. 20 and 21, studied the general properties of
the entanglement entropy for coupled harmonic oscillators
and found an interesting bound for the entanglement entropy.
Finally, using the matrix product states, it was argued in Ref. 22
that for those long-range systems that one can not approximate
the ground state of the model with the ground state of another
short-range model, we expect larger entanglement. One can
find some other results concerning entanglement entropy in
long-range systems in Ref. 23.

Recently, using the methods of Refs. 7 and 9, we studied
the entanglement entropy of a block of long-range coupled
harmonic oscillators.24 We showed that the entanglement
of the gapless system is logarithmically dependent on the
system size, and we calculated the prefactor of the logarithm
in different situations. The idea of studying this particular
nonlocal system is manyfold: firstly, the Hamiltonian (1),
which we are going to study, is a simple discretization
of fractional Laplacian, and therefore, it has a very clean
continuum limit. This is useful because then we can claim
that we are actually studying the entanglement entropy of
a nonlocal field theory. This field theory is a well-known
field theory, which also appears in the study of long-range
Ising model,25 so in principle, any analytical understanding of
the entanglement entropy of long-range Ising model will be
based on the system that we are studying. Having the above
motivations in mind, we extended our study in many different
directions.

The organization of the paper is as follows. In Sec. II, we
present the model and give the definitions of the quantities
that we are going to study. In Sec. III, we study different
aspects of von Neumann and Rényi entanglement entropy
in long-range harmonic oscillators. We first summarize the
main formulas that we need to calculate the entanglement
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entropy. Most of the formulas are in the discrete level but
we also provide the eigenvalue problems in the continuum
limit. Then we study the entanglement entropy numerically
both at the purely discrete level and also at the level of
discretization of the eigenvalue problem. This part of the
paper is the extension of the work done in Ref. 24. Then
we study the finite size effects in different kinds of situations
such as, periodic and Dirichlet boundary conditions. Then,
we compare the results with the massive coupled long-range
oscillators. After that, we study the effect of temperature on
the entanglement entropy of our system. Our main result
will be presented at the end of this section, which concerns
the universality of our results. In this section, we will show
that the results presented in the previous sections are robust
against many small changes in the form of the interaction.
We will also show that one can calculate the entanglement
entropy of a larger set of coupled oscillators, to be specific,
oscillators coupled with singular Toeplitz interactions, to the
cases that we studied in previous sections. We will conclude
this section with some comments about the entanglement
entropy in higher dimensions, especially, in the presence of
polygonal regions. Finally, in Sec. IV, we will study different
aspects of the classical mutual information in long-range
harmonic oscillators. We will presents two definitions, and
then using the Fisher-Hartwig theorem, we will show that in
contrast to the von Neumann entanglement entropy one can
actually analytically calculate these quantities. In this section,
we also address the finite size effects and also the massive
case. The generalization to the singular Toeplitz matrices will
be also discussed.

II. DEFINITIONS AND SETTINGS

We start by describing the coupled harmonic oscillators,
perhaps the simplest lattice model available where the Hamil-
tonian is a quadratic form:

H = 1

2

N∑
n=1

π2
n + 1

2

N∑
n,n′=1

φnKnn′φn′ . (1)

We would like to study coupled harmonic oscillators with
long-range interaction. To define the K matrix for the long-
range harmonic oscillator problem, one can use the fractional
operator. In principle, there are many ways to write a long-
range K matrix, however, we are interested in those that
have a very simple continuum counterpart. In principle, in
the continuum, the fractional Laplacian is usually defined by
its Fourier transform |q|α or (q2)

α
2 , where q2 is just the Fourier

transform of a simple Laplacian. Since the Fourier transform
of the discrete Laplacian is 2 − 2 cos q, one may use some
powers of this to define the discrete fractional Laplacian. Then,
the elements of the matrix K , representing the discretized
fractional Laplacian, are

Kl,m = −
∫ 2π

0

dq

2π
eiq(l−m)

( {2[1 − cos(q)]} α
2 + Mα

)

= �
( − α

2 + n
)
�(α + 1)

π�
(
1 + α

2 + n
) sin

(
α

2
π

)
+ Mαδl,m, (2)

where n = |l − m| and fractional order α > 0. In the future, M
will play the role of the mass of the fractional field theory. In
the special case α = 2, the K matrix is equal to the simple
Laplacian. When α/2 is an integer, the elements K(n) =
(−1)α−n+1Cα, α

2 +n for n � α/2 and K(n) = 0 for n > α/2,
where Cα, α

2 +n are binomial coefficients.26

For a sufficiently large one-dimensional system, K and the
two-point correlator matrices K±1/2 are Toeplitz matrices, and
all their off-diagonal elements are identical. The elements of
K

±1/2
l,m can be expressed as a Fourier series

K
±1/2
l,m = K±1/2(n)

= −
∫ 2π

0

dq

2π
eiq(l−m)( {2[1 − cos(q)]} α

2 + Mα
)±1/2

.

(3)

The matrix K−1/2 corresponds to the spatial correlation of
an oscillator system 〈φlφm〉, and for the system with periodic
boundary condition, one can find the spatial correlation length
ξs as27

ξ−1
s ≡ − lim

n→∞
1

n
log |〈φlφl+n〉|

= − lim
n→∞

1

n
log |K−1/2(n)|. (4)

For the massless system, ξ−1
s = − limn→∞ 1

n

log |�(n+α/4)�(1−α/2)
π�(1−α/4+n) sin( α

4 π )| = 0 and for the massive

case, ξ−1
s ∝ M . We note that for M = 0, the correlation

length ξs is infinite and the system is gapless, and for nonzero
value of M , the system is gapped.

The K matrix in the continuum limit has the following
form:

1

2

N∑
n,n′=1

φnKnn′φn′

→
∫ [

−1

2
φ(x)(−∇)α/2φ(x) + 1

2
Mαφ2(x)

]
dx, (5)

where −(−∇)α/2 is defined by its Fourier transform |q|α .
We are now in a position to introduce the entanglement

entropy and its value in two-dimensional conformal field
theories (CFT’s). Here, we shall only discuss the von Neumann
and Rényi entanglement entropies. Nevertheless, there are
many other measures that have been explored1–3.

Consider a system with the density matrix of a pure state
ρ, which is divided into two subsystems A and B. Then
the entanglement may be characterized by the properties of
the reduced density matrix ρA of the subsystem A. Density
matrix ρA is obtained by tracing out the remaining degrees of
freedom ρA = trBρ. The von Neumann entanglement entropy
associated to the local density matrix ρA reduced to a region
A of the space is

S(A) = −tr[ρA log(ρA)]. (6)

Another measure, related to the local density matrix, is a family
of functions called the Rényi entropies:

Sn(A) = 1

1 − n
log

(
trρn

A

)
, n � 0, n 
= 1. (7)
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The Rényi entropy Sn has similar properties as the entangle-
ment entropy S.

For general quantum field theories in d spatial dimensions,
the entanglement entropy is always divergent in a continuum
system and the coefficient of the leading divergence term is
proportional to the area of the boundary of the subsystem A,
and it is given by the simple formula5

S(A) = gd−1

(
l

ε

)d−1

+ · · · + g1

(
l

ε

)1

+ g0 log(l/ε) + S0(A), (8)

where {gd−1, . . . ,g1} and S0 are nonuniversal constants that
depend on the system. The coefficient g0 of the logarithm term
is expected to be universal, ld is the volume in d-dimensional
space, and ε is a short distance cutoff (or a lattice spacing).
The simple area law, however, can not describe the scaling
of the entanglement entropy in generic cases. Indeed, the
entanglement entropy of conformal field theory in one special
dimension scales logarithmically with respect to the size of the
subsystem l. If the total system is infinitely long, it is given by
the simple formula

S = c

3
log

l

ε
, (9)

where c is the central charge of the CFT28. In 1 + 1-
dimensional conformal invariant systems, the Reńyi entropy
is31

Sn = c

6

(
1 + 1

n

)
log

l

ε
. (10)

It is also worth mentioning that at zero temperature and
one special dimension, for a finite system of length L with
boundary divided into two pieces of lengths l and L − l, the
Rényi entropy obeys

Sn = c

12

(
1 + 1

n

)
log[(L/πa) sin(πl/L)] + c′

1. (11)

The above formulas are a few among many others that are
known for different cases in two-dimensional CFT’s, see
Ref. 4. In the next sections, we will introduce many of them as
the limiting behavior of our long-range harmonic oscillators.

In the next section, we will review a method where one can
use it to calculate ρA and consequently S and Sn for generic
quadratic bosonic systems. Then, we will hire this technique
to study our particular long-range system.

III. VON NEUMANN AND RÉNYI ENTANGLEMENT
ENTROPY

A. Hamiltonian approach

A useful method to obtain entanglement entropy is intro-
duced in Ref. 7, rediscovered in Ref. 8, and generalized to
Rényi entropy in Ref. 9. In this method, one would like to
measure the quantum entanglement entropy of the ground state
of the free field {φ}, generated by tracing over fields inside the
region of the boundary surface. To fix the notation and for later
use, we give here a brief summary of the work described in
more detail in Refs. 7 and 9. The ground-state wave functional

is given by


0({φ}) ∝ (det�)
1
4 exp

(
−

N∑
n,n′=1

φn�nn′φn′

)
, (12)

where {φ} denotes the collection of all φ’s, one for each
oscillator and � = K1/2.

Now consider a subregion in the total space and split the
field variables into inside ({φ}A) and outside ({φ}B) parts, then
one can rewrite the ground-state wave function as


0 ∝ exp

[
−({φ}A{φ}B)

(
�AA �AB

�BA �BB

)(
{φ}A
{φ}B

)]
, (13)

where �⊕⊗ (⊕ = {A,B} and ⊗ = {A,B}) denotes the kernel
matrix restricted to the inside or the outside.

For the fields {φ1,2}A, which are defined in the inside region,
the ground-state density matrix ρA({φ1}A,{φ2}A) is given by

ρA({φ1}A; {φ2}A) ∝ (det(�AA)−1)
1
2 exp

[
−1

2
({φ1}A{φ2}A)

×
(

A 2B
2B A

)(
{φ1}A
{φ2}A

)]
, (14)

where

A = 2
[
�AA − 1

2�AB(�BB)−1�BA

]
,

(15)

B = −1

2
�AB(�BB)−1�BA.

From now on, one can follow two different methods to get the
entanglement entropy: one is based on direct diagonalization
of the above reduced density matrix and the other based on
using a replica trick. For later use, we will summarize the
results for both of them. Using appropriate transformations,7

one can write the reduced density matrix as

ρA({φ1}A; {φ2}A) =
∏

i

1√
π

exp

[
−1

2

(
φ1

nφ
1n + φ2

nφ
2n

)

− 1

4
Ei(φ

1 − φ2)n(φ1 − φ2)n
]

, (16)

where Ei’s are the eigenvalues of the matrix � with the
following simple form:

� ≡ −(�−1)AB�BA. (17)

The interesting point about Eq. (16) is that it has the form of
the reduced density matrix of a two-body harmonic oscillator.
In other words, for the ground state of a coupled harmonic
oscillator, the problem of calculating the entanglement entropy
can be reduced to the problem of calculating the entanglement
entropy of two coupled harmonic oscillators. One can then
show that the entropy can be expressed in terms of the
eigenvalues Ei of � as7

S =
∑

i

[
log

√
Ei

2
+

√
1 + Ei log

(
1√
Ei

+
√

1 + 1

Ei

)]
.

(18)
It is worth mentioning that having larger coupling between
two oscillators leads to larger E and, consequently, larger
entanglement entropy.
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The second method, which is also useful to get the Rényi
entropy, is based on the replica trick. Using Eq. (14) and
rescaling the reduced density matrix, one can calculate trρn

A

and ultimately the entropy9 as the following sum:

S = lim
n→1

1

1 − n
log

(
trρn

A

) = −
l∑

i=1

[
ln(1 − ξi)+ ξi

1 − ξi

lnξi

]
,

(19)
where ξi is related to the eigenvalue of the matrix C =
−2A−1B by Ci = 2ξi

1+ξ 2
i

.

It is also useful to consider the matrix � = (1 − P)−1P
where P ≡ �−1

AA�AB�−1
BB�BA, which has also the simple

form (17) and write Eq. (19) in terms of eigenvalues of the
matrix � as Eq. (18). The eigenvalues Ei of the matrix � are
positive and related to ξi by

ξi =
√

1 + Ei − 1√
1 + Ei + 1

. (20)

It is also straightforward to write the Rényi entropy Sn in
term of ξi as

Sn = 1

n − 1

∑
i

[
log

(
1 − ξn

i

) − n log(1 − ξi)
]
. (21)

In order to compute the entanglement entropy obtained by
tracing over the fields in the region A for a given problem,
one should find the eigenvalues of the matrix �. For a given
Hamiltonian H, one can easily find the operators K and,
consequently, � and �−1. In the continuum limit, the operator
� is obtained after integration over the oscillators in the region
B as

�(x,y) = −
∫

B

dz�−1(x,z)�(z,y). (22)

The eigenvalue problem to be solved is then∫
dy�(x,y)ψ(y) = Eψ(x), (23)

where ψ(x) is an eigenfunction with eigenvalue E.
It is worth mentioning that for the general Hamiltonian (1),

one can calculate the two-point correlators XA = tr(ρAφiφj )
and PA = tr(ρAπiπj ) using the K matrix by

1

2
K−1/2 =

(
XA XAB

XT
AB XB

)
,

1

2
K1/2 =

(
PA PAB

P T
AB PB

)
.

(24)

Then one can define matrix C = √
XAPA, which has the

eigenvalues5

νi = coth

[
− log

(√
1 + Ei − 1√
1 + Ei + 1

) /
2

]
, (25)

where νi are the eigenvalues of C. With respect to the new
operators, the entropy is given by

S = tr

[(
C + 1

2

)
log

(
C + 1

2

)
−

(
C − 1

2

)
log

(
C − 1

2

)]

=
l∑

i=1

[(
νi + 1

2

)
log

(
νi + 1

2

)
−

(
νi − 1

2

)
log

(
νi − 1

2

)]
.

(26)

We also have

Sn = 1

n − 1
tr

{
log

[(
C + 1

2

)n

−
(

C − 1

2

)n]}

= 1

n − 1

l∑
i=1

{
log

[(
νi + 1

2

)n

−
(

νi − 1

2

)n]}
, (27)

where l is the size of the subsystem A. In this formulation, we
need only the correlators inside the region A, to calculate S

and Sn.
In order to clarify the Hamiltonian approach in the contin-

uum limit, we briefly review the procedure followed in Ref. 9
to find an approximate analytical solution for the harmonic
oscillator system with short-range interaction. This method is
introduced in order to determine E and also S by using the
eigenvalue problem (23). They considered a one-dimensional
coupled harmonic oscillator with mass M , confined to the
region −L < x < L and the subsystem is taken to be half of
a finite system.

To calculate the eigenvalue E, for a system of harmonic
oscillators with short-range interactions, it is better to first
consider a system with infinite size L → ∞. At this limit, the
kernels �±1 needed to construct E have the following forms:

�(x,y) = MK1[M(x − y)]/[π (x − y)],
(28)

�−1(x,y) = K0[M(x − y)]/π,

where M is the mass term. In the M → 0 limit, it is easy to
show that ψ = exp(ıω ln x) is an eigensolution of the Eq. (23)
with eigenvalue

E = sinh−2(πω). (29)

To discretize the spectrum and calculate the entropy, one needs
to impose Dirichlet boundary conditions at some large x =
L and further Dirichlet condition at some small x = ε. The
eigenvalues and eigenvectors are then

ψ(x) = sin[ω(E) ln(x/ε)], ω(Ei) ln(L/ε) = πi. (30)

It is useful to note that the density of states per unit ω

interval is constant. Now one can rewrite the continuum limit
of the Rényi entropy (21) and the entanglement entropy as an
integral over ω,

Sn = log L

π (n − 1)

∫ ∞

0
dω[log(1 − ξn) − n log(1 − ξ )], (31)

S = log L

π

∫ ∞

0
dω

[
ξ

ξ − 1
log(ξ ) − log(1 − ξ )

]
, (32)

where ξ (ω) is defined in Eq. (20).
As discussed before, conformal invariance implies univer-

sal properties for the entanglement entropy. The entanglement
entropy and also the Réyni entropy for these models, diverge
logarithmically with the subsystem size with prefactors pro-
portional to c and cn, respectively.

By using Eq. (32) and also Eqs. (20) and (29), one can
find the entanglement entropy S for the harmonic oscillator
problem, giving the result S = 1

6 log(L/ε), which is consistent
with c = 1. In addition, using Eq. (31), one can also find
the Rényi entropy Sn = 1

12 (1 + 1
n

) ln(L/ε) consistent with the
CFT predictions.31
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Next, we consider a short-range harmonic oscillator with
infinite size and a subsystem with length l. This kind of
configuration is completely different from Ref. 9. We should
remember that Eqs. (29) and (30) are no longer true in this
configuration. We proceed with Eq. (22). To evaluate this
integral, we must consider B ∈ (−∞ < z < 0) ∪ (l < z <

∞) as the complement of the subregion l. The matrix �

becomes

�(x,y) = − 1

π2

∫
B

ln(x + z)

(z + y)2
dz

= 1

π2

[
(l − x) log(l − x) − (l − y) log(l − y)

(l − y)(y − x)

− x log(x) − y log(y)

(y − x)y

]
. (33)

Therefore, according to Eq. (23), the eigenvalues Ei and
the corresponding eigenfunctions ψi(x) can be obtained by
diagonalizing the � matrix. Unfortunately, we were unable to
find Ei analytically. One can numerically evaluate Ei and ψi

using direct diagonalization of the matrix �, then try to guess
the formula for eigenvalues and eigenfunctions. We shall come
to this problem in the next section by means of numerical
calculations.

We are now ready to speak more about the long-range
harmonic oscillator (LRHO) with α < 2. To determine E and
ψ for LRHO, we calculated first the matrices � = K1/2 and
�−1 = K−1/2. The continuum limit of the matrices � and �−1

has the following forms:

�±1(x,y) = 1

2π

∫ ∞

−∞
dk(|k|α + Mα)±1/2eik.(x−y)

= 1

2�(∓α/2)

1

|r|1±α/2

×H
1,2
3,2

(
(M|r|)α

∣∣∣∣ (1,1)
( ∓ α

2 ,1
)( ∓ α

4 , α
2

)
( ∓ α

2 ,1
)( ∓ α

4 , α
2

)
)

= 1

2�(∓α/2) cos
(

πα
4

) 1

|r|1±α/2
+ O(Mα), (34)

where r = x − y and H
1,2
3,2 is the Fox H function. Then,

in a similar way as in Eq. (22), we found the matrix �

by multiplying � and �−1 in the complement region B ∈
(−∞ < z < 0) ∪ (l < z < ∞) as

�(x,y) = A

{
2
[(

l−x
l−y

)α/2 − (
x
y

)α/2]
α(x − y)

}
(α < 2), (35)

where A = 1
4�(−α/2)�(α/2) cos2( πα

4 ) . Unfortunately, the exact solu-
tions of the eigenvalues and the corresponding eigenfunctions
for Eq. (35) are not known and remain an open problem. It
is nonetheless both possible and interesting to investigate the
properties of the E and ψ , for LRHO problem, numerically.
In the next section, we will discuss our numerical findings.

It is worth mentioning that, Eq. (35) is only true for
an infinitely large system compared to the subsystem size.
However, one can also study LRHO problem in the presence
of a boundary but since the boundary of the finite system
breaks the translational invariance, we have not been able
to find �±1 explicitly because we are not allowed to use a

FIG. 1. (Color online) Different configurations of systems and
subsystems.

Fourier transform for the finite systems. Therefore we studied
this case just numerically, and we will present the results
in the next sections. As explained above, we can find the
eigenvalues E and the corresponding eigenvectors ψ(x) for a
given matrix K , and we can also study the scaling behaviors
of the entanglement entropy S and the Rényi entropy Sn.

In the next section, we will speak more about our results
but here we will discuss different configurations for the system
and also subsystem that we used in our study. In this work, we
consider five main kinds of configurations depicted in Fig. 1
for a system and a subsystem. In the massless case:

C1: The system is very large, and A is a small subsystem
with length l.

C2: The system with periodic boundary condition has finite
size L, and A is a subsystem with length l.

C3: The system with size L has boundary and is divided to
two adjacent parts. The first part is a subsystem with length
l < L and the second part is the complement with size L − l.

C4: The system with size 2L has boundary and is divided
to two adjacent equal intervals with length l = L where one
of them is the subsystem.

In the massive case:
C5: The system is very large, and A is a subsystem with

length l.

B. Numerical evaluation

We now numerically evaluate the von Neumann entangle-
ment entropy S and the Rényi entropy Sn for LRHO problem in
different cases (Ci,i = 1, . . . ,5), by using Eqs. (18) and (21),
or equivalently, Eqs. (26) and (27), which was first studied
in Ref. 24. In this respect, we follow the method explained
in the last section. We will measure the eigenvalues Ei and
the eigenfunctions ψi(x) in Eq. (23) numerically, and then
we will introduce an expression for E and ψ , which matches
to the numerical simulations. Our motivation to study these
quantities with full detail is related to our interest in better
understanding the operator (35), whose eigenvalues provide
the entanglement entropy. We should here stress that we
calculate the entanglement entropy using the numerical �

matrix and not by discretizing operator (35). However, we will
confirm that these two operators are very close to each other if
we consider large systems and consequently can approximate
each other.

In order to calculate E and ψ , we first need to construct
the matrix � for a given K matrix. Numerically, one can
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FIG. 2. (Color online) Eigenvalues log(Ei) vs ωi for HO with
short-range interaction with the configuration C4 . The blue stars
correspond to E = 1/ sinh(πω)2, where ω = nπ/ log(L).

find the matrix � ≡ −�−1
+−�−+ by multiplying �−1 and �,

where � = K1/2 and �−1 = K−1/2. For example, we applied
this method to the LRHO with a very large system size and
small subregion l. There is a very good agreement between
numerical � and the matrix �(x,y) coming from Eqs. (33)
and (35), when the distances are more than four lattice sizes.

To obtain a better understanding of the long-range harmonic
oscillator problem, we studied first the eigenvalues Ei and the
eigenfunctions ψi of the short-range harmonic oscillator. We
considered a system with size 2L and the subsystem is taken
to be half of the system size (C4). Then, using the numerical
methods, we diagonalized the matrix � to find Ei and ψi .
In Fig. 2, we sketched a logarithm of the eigenvalues Ei

with respect to ω(Ei). As can be seen, the result obtained
from Eq. (29) has similar asymptotic behavior as numerical
simulations. In addition, the eigenvectors ψ(x) for the first
and second largest eigenvalues, E1 and E2 verify the behavior
predicted in Eq. (30). We have also calculated the prefactor
c numerically and our result is consistent with the theoretical
prediction. The numerical results of entanglement entropy for
LRHO (α < 2) for the systems with boundary, e.g., C3 and
C4, are summarized in the next sections.

Next we discuss the case where the subsystem is very small
with length l and the system is very large (C1). For this
configuration, as a first step, we have studied the properties
of Ei and ψi for the harmonic oscillator problem with short-
range interaction by a direct diagonalization of the matrix �.
Numerical results are shown in Fig. 3. It is interesting to note
that, when we choose ω(Ei) = πi/2[log(l) + ζ ] (ζ = 1.3),
apart from a constant, which appears ubiquitously in this kind
of studies10, the behavior of the eigenvalues Ei is in very
good agreement with E(ω) = 1/ sinh2(πω) (see Fig. 2). Let
us remark that ω(E) for the configuration C1, differs from
Ref. 9 by a factor two and a constant ζ . We studied the scaling
of S versus the logarithm of the subsystem size, log l, and
compared with Eq. (10). Our result agrees with c = 1.

The next step is to analyze the eigenvalues E of the
Eq. (35) for LRHO with α < 2. As we remarked before,
if we consider very small subregion of LRHO with α = 2
and very large system size (C1), we expect Ei ∼ sinh−2(πωi)
and ω(Ei) = iπ/2[log(l) + ζ ]. For other values of α, the
eigenvalues behavior can be seen in Fig. 4, where we compared
log(E) versus ω for various α’s. Let us first address the

FIG. 3. (Color online) Eigenvalues log(Ei) vs ωi for HO with
short-range interactions with the configuration C1 . The blue stars
correspond to E = 1/ sinh(πω)2, where ω = nπ/2[log(l) + ζ ] and
ζ = 1.3.

behavior of small eigenvalues Ei (large i, i.e., i > 3). Our
results show that the small eigenvalues are independent of α,
and log(Ei) is linearly dependent to ωi by a scaling factor
−2π . Then, one can get the asymptotic behavior Ei ∝ e−2πωi

for i > 3 and from our previous knowledge about Ei for α = 2,
one can conjecture the simple behavior Ei ∝ sinh−2(πωi). In
our numerical simulations, we used ωi = iπ/2[log(l) + ζ ],
where ζ is an α-dependent parameter (ζ ∈ [1.0,2.0]), to get
the best fit to numerical data. We may use this behavior and
guess the asymptotic expression for the eigenvalue E as

E(ω) = a(α)

sinh2(πω) + b(α)
. (36)

The best fit parameters to our numerical data were a(α) =
α
2 sin2(πα

4 ) and b(α) = 0.12α + 0.19α2 − 0.20α3 + 0.04α4.
The value of b(α) is zero at α = 0 and 2 and it has a maximum
at α = 1.

Next, we studied the eigenvector ψi(x) of the matrix � for
LRHO numerically. By diagonalizing �, we can also find the
eigenvalues Ei . The eigenvector ψi can then be computed for
each Ei by �ψi = Eiψi . A typical example is shown in Fig. 5
where one can see that the eigenfunctions ψi(x) are symmetric
around x = l/2 for odd i and antisymmetric for even i. We

FIG. 4. (Color online) Eigenvalues log(Ei) vs ωi for LRHO with
the configuration C1 and different α’s. The small eigenvalues (large
ωi) are independent of α, and log(Ei) is linearly dependent to ωi by
a scaling factor −2π .
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FIG. 5. (Color online) (Top) Eigenvalues log(Ei) vs ωi for
LRHO (α = 1) with the configuration C1 . The blue stars correspond
to E = a(1)

sinh2(πω)+b(1)
, where ω = nπ/2[log(l) + ζ ] (ζ = 1.26) and

a(1) = 0.25 and also b(1) = 0.14. (Middle) The eigenfunction ψ1(x)
corresponds to the first eigenvalue E1. (Bottom) The eigenfunction
ψ2(x) corresponds to E2. Solid red lines correspond to the normalized
form of Eq. (37) (b = −0.26 and −0.34 for n = 1 and 2, respec-
tively).

found that the best fit to the eigenvectors ψi(x) is

ψi(x) = 1

N {(xıωi+b + x−ıωi+b)

− (−1)i[(l − x)ıωi+b + (l − x)−ıωi+b]}, (37)

where N is the normalization coefficient and b ∈ [−1,0] is
the free parameter to get the best fit to the numerical data.
In Eq. (37), we used ωi = iπ

2(log l+ζ ) . The values of the free
parameters b and ζ , in general, depend on α. In Fig. 5, the
behavior of the ψ for LRHO problem with α = 1 and the best
fit to Eq. (37) are shown as a function of x.

As argued before, we studied the eigenvalue problem (23)
for LRHO, in order to find the eigenfunction ψi(x) and the

corresponding eigenvalue Ei . The von Neumann entanglement
entropy S and the Rényi entropy Sn can be obtained as
functions of E [see Eq. (21)]. It is possible to find S and
also Sn using Eqs. (26) and (27), respectively.

Finally, we discuss the goodness of Eq. (36). For arbitrary
values of the long-range interaction α, the von Neumann
entanglement entropy S and the Rényi entropy Sn can in
practice be obtained by (i) evaluating Eq. (2) numerically for
a system with total size L and compute XA and PA from K

matrix [see Eq. (24)], (ii) diagonalizing C to obtain νi , and
(iii) evaluating Eqs. (26) and (27), where l is the number of
lattice sites in the subsystem A.

We observe that, in the LRHO problem, the entanglement
and the Rényi entropies increase logarithmically with the
subsystem size as

S ∼ c̃(α)

3
log l (38)

and

Sn ∼ c̃n(α)

3
log l, (39)

respectively. By studying the scaling behavior of S and also
Sn versus log l, one can find the scaling parameters c̃(α) and
c̃n(α). We display the resulting quantities for different values
of α and n, in Fig. 6.

For arbitrary values of α and n, according to Eqs. (31)
and (32) and also Eq. (36), one can find the prefactors c̃(α)
and c̃n(α). We have depicted the results coming from these
formulas in Fig. 6, and we found perfect agreement between
our results, confirming the validity of the Eq. (36). There
are some comments in order: the fact that the coefficient
of the logarithm is an increasing function of α is somehow
counter intuitive because we know that for bigger α’s, the
interaction get weaker by the distance faster than the smaller
α’s. There are some ways to roughly understand this result:
from mathematical point of view, one might argue that the
entanglement entropy is actually related to the eigenvalues
of the matrix � and those eigenvalues are smaller when
we take smaller α’s. This can be seen easily by looking
at Eq. (35). These eigenvalues are also the parameters that
appear after mapping the many-body harmonic oscillator to
the two-body case in Eq. (16). Stronger couplings between
two oscillators leads to bigger E and, consequently, bigger
entanglement among them. The fact that after diagonalization,
we have smaller Ei’s for smaller α’s shows that although the
interactions between oscillators far from each other is much
stronger for smaller α’s, that still does not guaranty bigger
entanglement entropy. One might understand these phenomena
as follows: based on Eq. (2) in the range 0 < α < 2, one
can see that K(1), which is related to the nearest-neighbor
interaction, is an increasing function with respect to α but
K(n) with n > 1 first increases with α and then decreases. It
seems like the value of Ei is mostly dependent on the value of
the nearest-neighbor interaction and follows the same trend.
So although in some range of α’s the next nearest-neighbor
interaction for bigger α is smaller, the entanglement after
considering the nearest-neighbor interaction is bigger. This
also explains qualitatively why we get an increasing function
of a(α) in Eq. (36). This reasoning is consistent with the area
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FIG. 6. (Color online) (Top) Prefactor c̃(α) for discrete system
with size L = 6000 with the configuration C1 . The prefactor is
measured using the scaling relation S with log l in the region
0 < l < L/100. The red line represents the same quantity coming
from the continuum limit approximation. (Bottom) c̃n(α) vs n for
different α’s (from top to bottom: α = 2.0,1.8,1.6,1.4. The red lines
come from the continuum limit approximation. (Inset) A and B

coefficients vs α.

law observation in the massive case and also higher dimensions
that we are going to discuss later.

We now turn to determine the behavior of c̃n(α) with respect
to n. Interestingly, we find that the best fit to c̃n is

c̃n(α) = c̃(α)

2

[
A(α) + B(α)

n

]
. (40)

The coefficients A(α) and B(α) are functions of α (see Fig. 6),
which indicates that LRHO is not conformally invariant [notice
that by definition A(α) + B(α) = 2]. In conformal invariant
systems, c̃n = c

2 (1 + 1
n

), where c is the central charge of the
system. At this point, it is worth mentioning that one can also
calculate the single copy entanglement introduced in Ref. 29.
Since this quantity is equivalent to the Rényi entropy with
n → ∞, see Ref. 30, we get simply the result S∞ = c̃(α)

6 A(α),
which shows that in this case, in contrast to the short-range
case, the single copy entanglement is not just half of the von
Neumann entanglement entropy.

In the next section, we will report the results of LRHO in
the case of a system that has finite size and also we will report
the effect of boundary on the entanglement entropy.

C. Finite-size effects

Until now, to avoid any finite size effect, we concentrated
on very large system size L → ∞ and small subsystem size l

(configuration C1). As mentioned previously, the entanglement
entropy S and the Rényi entropy Sn, scale logarithmically
with the size of the subregion l (l � L). However, from the
numerical computation of c̃n(α), we argued that the LRHO is
not conformally invariant except at α = 2.

We shall now present a computation of the entanglement
entropy for systems with finite size. Conformal field theory
predicts44 the following formulas for the Rényi entropy and
the von Neumann entropy of conformally invariant systems
with periodic BC’s:

SCFT(L,l) = c

3
log

[
L

π
sin

(
πl

L

)]
+ c′, (41)

SCFT
n (L,l) = c

6

(
1 + 1

n

)
log

[
L

π
sin

(
πl

L

)]
+ c′

n, (42)

where c is the central charge and c′ and c′
n are nonuniversal

constants. Note that Eqs. (41) and (42) are symmetric under
l → L − l and they are maximal when l = L/2. For infinite
system size, L → ∞ and also the finite one with the condition
l � L, the entanglement entropy scales like Eq. (10).31 Notice
that Eqs. (41) and (42) are only true for conformally invariant
systems, and we expect different function in our system.

Here, we will discuss the effect of boundary on the
entanglement and Rényi entropies of the LRHO problem. We
are interested to study the case in which we take a finite system
with half of it as the subsystem. We considered a system with
total size 2L, and the subsystem size L (C4). The important
subtlety here is the definition of the K matrix. Since we have a
finite system, the fractional Laplacian can not be easily defined
by its Fourier transform (for more details see Ref. 26). One way
to define the fractional Laplacian is based on nonlocal integrals
in bounded domain.34 Although this approach is precise, it is
difficult to use it in discrete level for numerical evaluations. We
will follow the simpler path, the so-called absorbing boundary
condition considered in Ref. 26.

The main difference between K matrix in the finite system
with boundary and the infinite one, defined in Ref. 26, is
that the K matrix for the system with boundary is defined
by throwing away the elements of the infinite matrix that are
in the region outside the system.

Let us now consider the � matrix and its eigenvalues E for
the configuration C4. For the short-range interaction problem
(α = 2.0), the eigenvalues are described by E = sinh−2(πω)
with ω = nπ/ log(L) [see Eq. (29)]. Our calculations for other
cases α < 2 show that the small eigenvalues are independent
of α (see Fig. 7). We found that E = a(α)/[sinh2(πω) + b(α)]
[see also Eq. (36)] is a good approximation for the eigenvalues
of � with a(α) = α

2 sin2(πα
4 ) and b(α) = 0.32α − 0.08α2 −

0.16α3 + 0.06α4 as the best numerical fit parameters to our
data. The parameter b(α) for the configuration C4 differs from
the same quantity for the configuration C1 except at α = 2.

Numerical measurement shows that the entanglement en-

tropy S and the Rényi entropy Sn follow S ∼ c̃F
4 (α)
6 log L and

Sn ∼ c̃F
4n(α)

6 log L, respectively, where the index 4 indicates
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FIG. 7. (Color online) Eigenvalues log(Ei) vs ωi for LRHO with
the configuration C4 and different αs. The small eigenvalues (large
ωi) are independent of α and also log(Ei) is linearly dependent to ωi .

the case that we study. In Fig. 8, we report the numerically
calculated values c̃F

4 (α) and c̃F
4n(α) for several values of α

and n.
These prefactors are generally different from c̃(α) and

c̃n(α) except at the point α = 2. Finally, we found that

c̃F
4n(α) = c̃F

4 (α)
6 [AF (α) + BF (α)/n] is the best fit to c̃F

4n(α) with
respect to n [notice that by definition AF (α) + BF (α) = 2].
The coefficients AF and also BF are functions of α (see Fig. 8).

FIG. 8. (Color online) (Top) Scaling prefactor c̃F
4 (α) for discrete

system with configuration C4 . The red line represents the same
quantity coming from the continuum limit approximation. (Bottom)
c̃4

4n(α) for the system with the configuration C4 vs n for different
α’s (from top to bottom: α = 2.0,1.8,1.6,1.4). The red lines are the

best fit with c̃F
4n(α) = c̃F

4 (α)
2 [AF (α) + BF (α)/n]. (Inset) AF and BF

coefficients vs α.

FIG. 9. (Color online) Scaling prefactor c̃F
i (α) for discrete sys-

tems with configurations C2 , C3 , and C4 .

One can do the same calculations also for the configurations

C2 (in this case, we considered l = L/2 and S ∼ c̃F
2 (α)
3 log L)

and C3 (where we take S ∼ c̃F
3 (α)
6 log L). In Fig. 9, we sketched

c̃F (α). It is clear that the results for different configurations C2,
C3, and C4 are similar. In other words,

cF (α) = cF
2 (α) = cF

3 (α) = cF
4 (α). (43)

In the next section, we will discus this similarity and we
will show that these results are also the same as the massive
systems. In case C3, to have an idea about the function that
controls the finite size effect, we first realized that one can fit
the data to the following function:

S = cF
3 (α)

6
log

[
Lf3α

(
l

L

)]
, (44)

where fα(x → 0) ∼ x and fα( 1
2 ) ∼ 1. One can determine the

function fα by using the formula

f3α

(
l

L

)
= e

6
cF3 (α)

[Sα (l)−Sα ( L
2 )]

. (45)

As one can see in Fig. 10, the function is smoothly α dependent.
At the same Fig. 10, we also depicted the same function for the

case C2 where we define f2α( l
L

) = e
3

cF2 (α)
[Sα (l)−Sα ( L

2 )]
. It seems

that except at the α = 2, the forms of the functions are different
in two different configurations.

FIG. 10. (Color online) Function fα(x) (x = l

L
) for systems with

configurations C2 and C3 .
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D. Massive LRHO

As noted before, the entanglement entropy S and the Rényi
entropy Sn, in massless LRHO (for all configurations C1, C2,
C3, and C4), increases logarithmically with the subsystem size.
We also calculated the prefactors of the logarithms, c̃(α) and
c̃n(α) for the case C1 and c̃F (α) and c̃F

n (α) for other cases, as
a function of the long-range parameter α and n. Here, we are
interested in characterizing the massive long-range interacting
harmonic oscillators.

First, we consider a finite interval of length l in a massive
system (configuration C5). Following an argument given
by Calabrese and Cardy,31 the entanglement entropy for
such a system gets saturated by a mass scale and increases
logarithmically S = −κ c

6 log M , where c is the central charge
of the system and it is equal to one for short-range harmonic
oscillators and M is the mass of the system. The prefactor κ

is the number of boundary points between subsystem A and
its complement with κ = 1 for a system with boundary and
κ = 2 for a system with periodic boundary condition.4

We now consider the LRHO problem, Eq. (2) with mass
M > 0. As discussed before, we are again going to calculate
the entropy S numerically. The results clearly show that S satu-
rates in the l → ∞ and the entropy S changes logarithmically
with respect to the mass

S = − c̃g(α)

3
log M. (46)

Using such scaling form, we have obtained the prefactor c̃g(α),
as illustrated in Fig. 11, as a function of α. Surprisingly, we
found that the prefactor is the same as the prefactor of the
system with periodic boundary condition when we take half of
the system (see Fig. 11). We also considered a massive system
with boundary and the numerical results perfectly agree with
S = − c̃g (α)

6 log M .
Next, we turn to speak more about the Rényi entropy Sn

for the massive case. Our analysis shows that Sn has also
logarithmic scaling with the subsystem size and we measured
the prefactor c̃

g
n(α). Interestingly, we found that this exponent

is the same as c̃F
n (α). This is shown in Fig. 11. To have an

understanding of this equality, we note that we generated the
K matrix for the system with boundary (M = 0) by throwing
away those elements of the infinite system that are not inside
the corresponding finite system. In this case, the summation
of every row of the K matrix is nonzero. This corresponds
to an effective mass in the system and the system will be
gapped. This effective mass is equivalent to the correlation
length ξt = 1

mα/2 . Therefore this argument hints that the results
of massive LRHO should be similar to the massless one when
the system has boundary.

E. Finite temperature

In this section, we present numerical results for the coupled
harmonic oscillators with long-range interaction in thermal
states. Consider the Hamiltonian H at some temperature
T > 0. The Gibbs state corresponding to this temperature,
associated with the canonical ensemble, is given by

ρ(β) = exp(−βH)/tr[exp(−βH)], (47)

FIG. 11. (Color online) (Top) Prefactor c̃g(α) compared with
c̃F (α) as a function of α. (Bottom) Prefactor c̃g

n(α) for massive LRHO
with the configuration C5 is the same as c̃F

n (α) for a massless one with
the configurations C2 , C3 , and C4 .

where β = 1/T . Similar to the zero temperature case, one
can obtain the covariance matrix C(β) and also two-point
correlators P (β) and X(β) of the state ρ(β) in the basis in
which the Hamiltonian matrix is diagonal. These matrices are
given by18

P (β) = 1
2K1/2W (T ), X(β) = 1

2K−1/2W (T ), (48)

and

C2(β) = 1
4 [K−1/2W (T )] ⊕ [K1/2W (T )], (49)

where W (T ) := I + 2[exp(K1/2/T ) − I]−1. It is worth men-
tioning that the entropy of the subsystem with length l at
temperature T for CFT is given by the formula31

S = c

3
log

(
β

π
sinh

πl

β

)
+ c′

1. (50)

As expected, in the zero- and high-temperature limits, the
von Neumann entropy reduces to S = c

3 log l + c′
1 and S =

πc
3β

l + c′
1, respectively. In the high-temperature limit, the von

Neumann entropy has an extensive form and it reduces to the
standard CFT and agrees with the Gibbs entropy of an isolated
system of length l.31

As in previous cases, our aim is to study the properties of the
von Neumann entropy of a system of harmonic oscillators with
the long-range interaction at finite temperature. For simplicity,
we focus on the high-temperature limit. In order to measure the
von Neumann entropy, we needed to restrict the system size to
the finite values with total size L, and subsystem size 1 � l �
L, to avoid the finite size problem. In order to calculate the
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FIG. 12. (Color online) Von Neumann entropy for LRHO (α =
1.4) with the system size L = 5000, in the finite temperature
T = 1/β.

von Neumann in this state, we need to consider the covariance
matrix (49) associated with the reduced state of an interval
with length l. Thus we calculated C(β) at some particular
values T = 1/β and then performed the diagonalization of the
covariance matrix to find S(T ,l).

As shown in Fig. 12, in the high-temperature limit, S(T ,l)
for various values of T and α is a linear function of l, so in
this case, one has

S ∼ λlT ξ , (51)

where λ and ξ are functions of α. The log-log plot S/l with
respect to T is shown in Fig. 13. The scaling parameter
ξ and the prefactor λ are shown in Fig. 13. The scaling
exponent ξ and the quantity 2/α are the same, and one can
nicely interpolate ξ = 2/α. This is not surprising because it
is well known that in the long-range systems the dynamical
exponent is z = α

2 , and this exponent controls the relative
scaling of time and space leading to the invariant form lT 1/z.35

In general, the thermal entropy for the theories with the
dynamical exponent z 
= 1 scales as lT 1/z, which follows
from the requirement of dimensionlessness and extensivity.35

Returning to our LRHO problem, we can conclude that the
entropy in the high-temperature limit should follow the simple
form S ∝ lT 2/α .

It is interesting to note that the Rényi entropy Sn for finite
temperature LRHO, in the high-temperature limit is

Sn ∼ λnlT
ξ . (52)

In Fig. 13, we show the prefactor λn as a function of n for
several α’s. It is worth mentioning that all the curves have
similar behavior at large n (λ∞ = π/6).

F. Universality

In the previous sections, we studied a particular case of
long-range harmonic oscillator that leads to a well-defined
continuum limit field theory. This is a hint to believe that
probably the results that we found are robust and valid for
larger set of harmonic oscillators. In this section, we would
like to address this question by first studying a long-range
harmonic oscillator in the presence of a short-range harmonic

FIG. 13. (Color online) (Top) Entanglement entropy for LRHO
with finite temperature shows the scaling behavior S(T ,l)/l ∼ λT ξ ,
in the high-temperature limit. (Middle) Scaling exponent ξ as a
function of α. The solid red line represents ξ = 2/α. The parameter
λ is shown in the inset. (Bottom) Parameter λn for the Rényi entropy
of LRHO with finite temperature in the high-temperature limit.

oscillator and then by investigating a larger set of interactions
that can be decomposed into our studied systems.

1. Long-range HO in the presence of short-range HO

So far, we have only considered the harmonic oscillator
systems with the long-range interaction. In the last section,
we studied LRHO by means of the eigenvalue problem
and we computed the eigenvalue E and the eigenfunction
ψ numerically. In a similar way, we will try to do the
same calculation for harmonic oscillator systems with long-
range plus short-range interactions. Then, we will study the
logarithmic scaling of the entanglement entropy S and also
Rényi entropy Sn for this model. Finally, we are going to
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FIG. 14. (Color online) Green (Dark gray) circles represent c̃(α)
for the system of harmonic oscillator with long-range plus short-range
interactions with the configuration C1 . The prefactor c̃(α) is measured
using the scaling relation S with log l in the region 0 < l < L/100 for
the system size L = 6000. The red line represents the same quantity
for the pure LRHO.

analyze the scaling coefficient c̃(α) and c̃n(α) as functions
of α.

Consider the Hamiltonian (1), with long-range plus short-
range interactions:

K = KLR + KSR, (53)

where KLR is again defined as Eq. (2), and KSR is just a simple
Laplacian. We have only considered the massless system with
M = 0 but one can also generalize them to m 
= 0.

We have carried out simulations for 0 < α < 4. For each
value of α, we have determined the matrix K for a large enough
system size with L = 6000 with the subsystem size less than
L/100. The entanglement entropy grows logarithmically with
the subsystem size as S = c̃(α)

3 log(l), where c̃(α) is a function
of α. We have depicted c̃(α) versus α in Fig. 14, where the
solid line comes from LRHO case. It is also interesting to note
the similarity of c̃(α) in the range α < 2 with the results of
a harmonic oscillator (HO) with pure long-range interaction
and also α � 2 with the result of an HO with pure short-
range interaction (see Fig. 14). The entanglement entropy of
a harmonic oscillator system with long-range plus shot-range
interactions with the exponent α < 2 (α � 2) is the same as a
harmonic oscillator system with pure long-range (short-range)
interaction. This might look not surprising because we know
that from the renormalization group point of view the short-
range interaction is irrelevant as far as α < 2. In our numerical
calculation, the reason of discrepancy in the region 2 < α �
2.5 is unclear to us.

We also calculated the Rényi entropy Sn for coupled har-
monic oscillators with long-range plus short range couplings.
To get Sn numerically, we used Eq. (21). We found that
for l � L the Rényi entropy also logarithmically increases
with the system size as Sn = c̃n(α)

3 log(l), where the prefactor
c̃n(α) is a function of n and also α. The best fit is c̃n(α) =
c̃(α)

2 [A(α) + B(α)/n]. The resulting values of A(α) and B(α)
as a function of α are represented in Fig. 15. We remark that, for
α < 2, the data are in excellent agreement with the LRHO,24

whereas for α � 2 they agree with the short-range prediction.
On the other hand, the system is conformally invariant for
α � 2 where we have A = B = 1.

FIG. 15. (Color online) A(α) and B(α) coefficients vs α for
system of harmonic oscillator with long-range plus short-range
interactions.

We now consider the entanglement entropy of a system of
long-range harmonic oscillator with K = Kα

LR + Kα′
LR, where

Kα
LR is defined as in Eq. (2). The entanglement entropy grows

logarithmically with the subsystem size and the prefactor is
equal to c̃ ∼ min{c̃(α),c̃(α′)}. The results of the prefactor c̃

are depicted in Fig. 16. For α � α′, we expect c̃ ∼ c̃(α′) but
when α ∼ α′, we observe a large discrepancy in the numerical
results.

2. Generalization to singular Toeplitz matrices

In this section, we would like to address how one can
relate the entanglement entropy of more general harmonic
oscillators to the entanglement entropy of the studied long-
range harmonic oscillators. Although our conclusion is based
on just numerical evaluations we will show in the section
dedicated to the mutual information that in some particular
cases one can derive the results analytically. We define the
Hamiltonian of the harmonic oscillator with the following K

matrix:

Kl,m = −
∫ 2π

0

dq

2π
eiq(l−m)b(q)

R∏
r=1

u(αr,q − qr ), (54)

FIG. 16. (Color online) Prefactor c̃(α) for the system of a
harmonic oscillator with a long-range interaction with exponent α

plus another long-range interaction with the exponent α′. It seems
that c̃ ∼ min{c̃(α),c̃(α′)}. The prefactor c̃(α) is measured using the
scaling relation S with log l in the region 0 < l < L/100 for the
system size L = 6000.
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FIG. 17. (Color online) Prefactor of logarithm for the entangle-
ment entropy for nontrivial b(q) function. For g > 1, the prefactor is
independent of the b(q) function.

where b(q) : S1 → C is a smooth nonvanishing function with
zero winding number and

u(α,q) = (2 − 2 cos q)
α
2 . (55)

The above Toeplitz matrices are usually called singular
Toeplitz matrices. For our purpose, we need to also consider
some particular restrictions on qr to have real interactions
between harmonic oscillators. From now on, we will consider
just those qr ’s that eiqr ’s are either real or the complex
conjugate of each other for every αr . Harmonic oscillators with
the above interactions are critical and one can simply show that
ξ−1 = 0. The above interactions are natural generalizations of
the ones that we considered in previous sections. One way to
see this is by considering 2m − 2 cos q instead of 2 − cos q

in Eq. (2). For m = cos qr , one can simply show that |2m −
2 cos q| = [2 − 2 cos(q + qr )]

1
2 [2 − 2 cos(q − qr )]

1
2 , which is

in the form of Eq. (54). It is worth mentioning that for m > 1
the system is gapped and otherwise it is gapless.

Using the techniques of the previous sections, one can
calculate easily the entanglement entropy of these harmonic
oscillators. The entanglement entropy changes logarithmically
with the subsystem size and the prefactor of the logarithm
is a function that is independent of b(q) and qr but it is
strongly dependent on the αr ’s. To show that the results are
b(q) independent, we took b(q) = 2g − 2 cos(q) with g > 1
for several g for R = 1. The results are shown in the Figs. 17
and 18 where one can see that the prefactor of the logarithm

FIG. 18. (Color online) Prefactor of logarithm in the presence
of boundary for nontrivial b(q) function. For g > 2, the prefactor is
independent of the b(q) function.

TABLE I. Numerical values of the prefactor c̃ for different values
of αr and qr .

q1 q2 q3 q4 q5 q6 α1 α2 α3 α4 α5 α6 c̃/2

π

3
−π

3 0 0 0 0 1 1 0 0 0 0 0.33(0.01)
π

6
−π

6 0 0 0 0 1 1 0 0 0 0 0.33(0.01)
0 0 π

3
−π

3 0 0 0 0 1.5 1.5 0 0 0.60(0.01)
0 0 0 0 π

3
−π

3 0 0 0 0 2 2 0.99(0.01)
π

3
−π

3
π

6
−π

6 0 0 1 1 1.5 1.5 0 0 0.92(0.01)
π

3
−π

3
π

6
−π

6 0 0 1 1 1.5 1.5 2 2 1.91(0.01)
π

3
−π

3
π

6
−π

6
π

4
−π

4 1 1 1.5 1.5 2 2 1.93(0.01)

is the same in all the different cases. We conjecture that
the prefactor of the logarithm is independent of the form of
the function b(q). Next, we calculated the prefactor of the
logarithm for different values of αr and qr . The results are
shown in Table I.

It is easy to see that first, the results are independent of qr ’s,
and second, one can get the results of the last three rows by just
summing the results of the first four rows. Based on the results
of the table, one can conjecture that for the interaction (54),
the following result is valid for the prefactor of the logarithm:

c̃(α1,α1,α3,α3, . . . ,αR−1,αR−1)

= c̃(α1,α1, . . . ,0) + c̃(0,0,α2,α2, . . . ,0)

+ · · · + c̃(0,0, . . . ,αR−1,αR−1). (56)

In other words, one can get the prefactor of the logarithm
in the model (54) by just having the same quantities for the
long-range harmonic oscillator that we have discussed in the
previous sections

G. Two dimensions: area law and logarithmic term
for polygonal region

It was shown in Ref. 8 that the area law is valid for
short-range harmonic oscillator if we consider a sphere like
region in higher dimensions. The coefficient of the area
term is a nonuniversal number. For example, if we take a
squarelike subregion, then the coefficient of the area term will
be dependent to the orientation of the polygon with respect
to the symmetry axes of the lattice. Later, it was shown in
Ref. 36 that if we consider a region with sharp corners, then
in the entanglement entropy there will be also some extra
logarithmic terms with universal coefficients. In other words,
one can write the entanglement entropy of a polygon as

S(θ ) = a0 + a1L + a−1L
−1 + a−2L

−2 − s(θ,α) log L, (57)

where L is the size of the system and θ is the vertex angle of
the polygon. Following the same procedure as in previous
sections, we first found the entanglement entropy of the
squarelike regions for different values of α’s and confirmed
that the leading term is the area law. The coefficient a1 was
an increasing function of α [see Fig. 19). Using Eq. (57),
we found s(θ,α) for different values of θ , θ = π

4 , π
2 , 3π

4 , and
different values of α. The results are depicted in Fig. 19. We
also showed that the coefficients s(θ,α) are independent of
the orientation of the subregion with respect to the symmetry
axes of the lattice. One can summarize this section as follows:
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FIG. 19. (Color online) s(θ,α) as a function of α for subsystems
with different vertex angles θ . (Inset) Nonuniversal coefficient of the
area term a1 with respect to different values of α.

the entanglement entropy of a polygonal region for long-range
harmonic oscillators follows the same formula as the short-
range one but with different coefficients. We also confirmed
that the same kind of behavior is also valid for Rényi entropy.

IV. MUTUAL INFORMATION

In the previous sections, we studied the von Neumann
entropy S and the Rényi entropy Sn for long-range harmonic
oscillators with different configurations of systems and sub-
systems. It is also of considerable interest to quantify the
Shannon’s classical mutual information37 for a system of
harmonic oscillators with short- and long-range interactions.
The Shannon information for spin systems was first studied
in Ref. 38 and much more investigated in Refs. 39–42 for
different quantum systems. Here, we focus to the definitions
given in Refs. 18, 27, and 42.

Consider a chain of L harmonic oscillators described by
canonical variables (φi,πi), i = 1,2, . . . ,L, and the system is
divided in two parts A and B with l and L − l oscillators,
respectively. The oscillators are coupled by a quadratic
Hamiltonian (1). Let us now consider �A = (φ1,φ2, . . . ,φl)
and �B = (φl+1,φl+2, . . . ,φL) the position vectors of the
subsystems A and B and �A,B the respective momentum
vectors. The classical mutual information can be defined
as

I (A,b) = SA + SB − S(A+B), (58)

where S is the Shannon’s classical entropy. There are in fact
two different definitions to evaluate Shannon’s mutual infor-
mation. The difference comes from the source of probabilities
that we use to define the entropy. In the first case, we use
the ground state of the quantum system as the source of
the probabilities for appearing different configurations and in
the second case it will be just the Gibbs distribution. The
first definition, which has recently found many interesting
applications in the study of spin chains,38,40–42 can be defined
in the context of harmonic oscillators as follows: the Shannon’s
classical mutual information I (A : B) between two regions A

and B is

I1(A : B) =
∫

dN�p(�A,�B) ln
p(�A,�B)

p(�A)p(�B)
, (59)

where p(�A,�B) = |
0|2 is the total and p(�A) =∫
[
∏

m∈(B) dφm]|
0|2 and p(�B) = ∫
[
∏

m∈(A) dφm]|
0|2 are
the reduced probability densities in position space [
0 is the
ground-state wave function, i.e., Eq. (12)].27

The mutual information I (A : B) or I (A : B) quantifies
how correlated the two parts are when the system is in the
ground state and for harmonic oscillators has the following
simple form:

I1(A : B) = 1

2
ln

(det 2XA)(det 2XB )

det K−1/2

= 1

2
ln

(det 2PA)(det 2PB)

det K1/2

= 1

2
ln(det 4XAPA) =

l∑
i=1

ln 2νi, (60)

where XA and PA are l-dimensional matrices describing
correlations within a compact block of l oscillators (subsystem
A) and νi is the eigenvalue of the matrix C = √

XAPA and XB

and PB are (L − l) × (L − l) matrices describing correlations
within subsystem B, and the matrices XAB and PAB describe
the correlations between them [see Eq. (24)].27 It is worth
mentioning that the mutual information I1 is the lower bound
to the quantum entanglement entropy S.27 Note that Shannon’s
mutual information I1 [see Eq. (60)] is equal to the Rényi
entropy Sn [see Eq. (27)] when n = 2.42

According to Eqs. (2) and (3), K and K±1/2 matrices, for
a translational invariant system, are Toeplitz matrices. There-
fore, to compute the Shannon’s classical mutual information
Eq. (59), we need to compute the Teoplitz determinants.
As shown by Fisher-Hartwig and proved later by Widom43

(see Appendix), the asymptotic behavior of the Toeplitz
determinants det(PA) for the massless system, i.e., Eq. (3),
with subsystem size l � 1 is

det PA ∝ lα
2/16. (61)

It is also possible to apply the Fisher-Hartwig theorem to XA

when α < 2. Then one can find the power-law behavior

det XA ∝ lα
2/16. (62)

We have numerically calculated XA for α = 2 and found an
agreement with Eq. (62).

Equations (61) and (62) provide an explicit way to find the
logarithmic behavior of the mutual information I1 in terms of
the system size. In the case where the system is very large and
the subsystem has small size l, the mutual information I1 can
be obtained:

I1 = α2

16
ln l + c0. (63)

Numerical simulation results (see Fig. 20), in a wide range
of α, are in good agreement with Eq. (63), but when 1.5 <

α < 2, we observe small discrepancy in the numerical results.
The reason of this discrepancy is unclear to us.

Here, we also focus on the other definition considered by
Cramer et al.18 to evaluate Shannon’s mutual information.
They determined the classical Shannon entropy of the total
lattice S(A+B), as well as the entropy SA and SB determined
by the reduced densities describing the two regions A and
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FIG. 20. (Color online) Prefactor of the logarithmic scaling of the
mutual information I1 for LRHO with configuration C1 .

B, respectively. The classical Shannon entropy for harmonic
oscillator at finite temperature T = 1/β is

S⊕ = −1

2
ln det (K|⊕)−1 + v(⊕) ln

2π

β
+ v(⊕), (64)

where ⊕ ∈ {A,B,(A + B)} and K|⊕ denotes the K matrix
associated with the corresponding region ⊕ and v is the size
of the region. Then for a Hamiltonian of the form (1), one can
compute the Shannon’s mutual information by the following
formula:

I2 = 1

2
ln

(det K|A)(det K|B)

det K
= 1

2
ln(det K|AK−1|A), (65)

where K−1|A denotes the K−1 matrix associated with the
interior region A. It is worth mentioning that the mutual
information I2 is independent of temperature.

Using Fisher-Hartwig theorem, one can get the asymptotic
behavior of the Toeplitz determinants det(K|A) for the mass-
less system, i.e., Eq. (2) as

det K|A ∝ lα
2/4. (66)

We will now discuss our numerical calculations. First,
suppose a very large system and a very small subsystem
size (configuration C1). In order to compute the mutual
information, we have numerically calculated the K|A and
K−1|A matrices. Then we calculated the eigenvalues of the
matrix product K|AK−1|A and we measured the mutual
information I2 by the Eq. (65). Our results show the mutual
information for LRHO increases logarithmically with the
subsystem size as

I2 = α2

8
ln l + c0. (67)

We then measured the prefactor of the logarithm and our results
are shown in the Fig. 21. As we shall discuss in the next
sections, it is easy to extend our numerical computation to
general configurations of systems and subsystems, i.e., the
configurations C2, C3, and C4.

A. Finite systems

Here, we focus on the effect of the finite size system on
the mutual information. Hence we shall first consider the
mutual information I1. Consider the case when the system
has size L and the subsystem has size l = L/2 (configuration

FIG. 21. (Color online) Prefactor of the logarithmic scaling of the
mutual information I2 for LRHO with configuration C1 .

C2 and C4). The mutual information I1 for systems with size L

and subsystem size l = L/2 with periodic boundary condition
(configuration C2) follows:27

I1 = α2

16
ln L + c0, (68)

where α is the scaling exponent for the LRHO, L is the size
of the system, and c0 is the nonuniversal constant.27

Then consider the case with configuration C4. In this case,
the mutual information I1 follows:

I1 = α2

32
ln L + c0. (69)

The numerical results of the prefactor of the logarithmic
scaling Eqs. (68) and (69) for various α’s are displayed in
Fig. 22. The agreement between the theoretical results given
by Eqs. (68) and (69) and the numerical results is fairly
good.

Now we are interested to find the mutual information I2

for systems with finite size. First, consider configuration C2,
when the subsystem has size 1 < l < L/2 and the system has
periodic boundary condition. Finite size effects bend down the
mutual information when the size of the subsystem approaches
half of the system size.

Recall from Eq. (66) that det K|A ∝ lα
2/4 and det K|B ∝

(L − l)α
2/4 for a subsystem of length l in a finite system of

FIG. 22. (Color online) Prefactor of the logarithmic scaling of the
mutual information I1 for LRHO for a system with periodic boundary
condition and configuration C2 . (Inset) The same quantity for system
with boundary and configuration C4 .
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FIG. 23. (Color online) (Top) Mutual information for LRHO
(α = 1.0) with the configuration C2 . The solid line represents
I2 = 1

8 ln(l(L − l)) + c′
0. (Bottom) The prefactor of the logarithmic

scaling of the mutual information I2 for LRHO for a system with
periodic boundary condition and configuration C2 when l = L/2.

length L with periodic boundary condition. It is then natural
to expect that the mutual information I2 [see Eq. (65)] for
systems with finite size, obeys the following formula:

I2 = α2

8
ln[l(L − l)] + c′

0. (70)

We notice that the logarithmic scaling (67) can be recovered
from Eq. (70) for l � L. The numerical computation of the
mutual information I2 in this case can be easily achieved using
Eq. (65). The results are shown in Fig. 23 obtaining excellent
agreement between the numerical data and Eq. (70).

The mutual information I2 for a system with periodic
boundary condition and subsystem with size l = L/2 changes
logarithmically as

I2 = α2

4
ln L + c′

0. (71)

The numerical results are shown in Fig. 23. We obtain good
agreement with the available theoretical prediction.

We also studied I2 [see Eq. (65)] for the long-range
harmonic oscillator with configuration C3. Here, we examine
the behavior of the mutual information I2 for harmonic
oscillator with long-range interaction, when the system has
boundary. The boundary breaks translational symmetry and it
is not therefore possible to use the method followed in Ref. 27.
However, it is possible to find the K matrix and then we can
use numerical diagonalization of the matrix K|AK−1|A to find
the eigenvalues and calculate the mutual information I2. In this

FIG. 24. (Color online) (Top) Mutual information for LRHO
(α = 1.0) with the configuration C3 . The solid line represents
I2 = 1

8 ln[l(L − l)] − 1
8 ln(L) + c′

0. (Bottom) The prefactor of the
logarithmic scaling of the mutual information I2 for LRHO with
configuration C4 .

case, we observe that

I2 = α2

8
ln[l(L − l)] − α2

8
ln(L) + c′

0, (72)

where in our numerical simulations, we found good agreement
with our prediction (see Fig. 24). It is interesting to note that
the mutual information I2 for LRHO with configuration C4

grows logarithmically with L:

I2 = α2

8
ln L + c0, (73)

where this simple behavior is expected from Eq. (72) when
l = L/2. In Fig. 24, we show our numerical results for the
prefactor of the logarithmic term of the mutual information.

B. Massive systems

In this section, we consider massive LRHO with M >

0 (configuration C5). For the massive case, we study the
behavior of the mutual information I1 and I2 numerically.
It is interesting to note that the mutual information I1 and I2

increase logarithmically with the mass and obey the following
formula:

I1 = −α2

16
ln M, I2 = −α2

4
ln M. (74)

In Fig. 25, we report the results of the simulation of the
mutual information I1 and I2 for the massive LRHO, where
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FIG. 25. (Color online) (Top) Prefactor of the logarithmic scaling
of the mutual information I1 for massive LRHO with configuration
C5 . (Bottom) The same quantity for the mutual information I2.

we calculated the prefactor of the logarithm, which is in good
agreement with Eq. (74).

C. Generalized singular Toeplitz matrices

In this section, we generalize our results to the general
Toeplitz matrices that we have studied in Sec. III F2. For I1,
the discussion follows the argument given in Ref. 27, which is
based on the Fisher-Hartwig theorem. It is very simple to see
that since PA and XA are Topelitz matrices, for αr < 2, one
can simply get the following results for the prefactor of the
logarithm of the mutual information c̃I1 of the subsystem:

c̃I1 (α1,α1,α3,α3, . . . ,αR)

= c̃I1 (α1,α1, . . . ,0) + c̃I1 (0,0,α2,α2, . . . ,0)

+ · · · + c̃I1 (0,0, . . . ,αR−1,αR−1). (75)

TABLE II. Numerical values of the prefactor c̃I1 for different
values of αr and qr .

q1 q2 q3 q4 q5 q6 α1 α2 α3 α4 α5 α6 c̃I1/2

π

3
−π

3 0 0 0 0 1 1 0 0 0 0 0.059(0.001)
π

6
−π

6 0 0 0 0 1 1 0 0 0 0 0.059(0.001)
0 0 π

3
−π

3 0 0 0 0 1.5 1.5 0 0 0.13(0.01)
0 0 0 0 π

3
−π

3 0 0 0 0 2 2 0.24(0.01)
π

3
−π

3
π

6
−π

6 0 0 1 1 1.5 1.5 0 0 0.19(0.01)
π

3
−π

3
π

6
−π

6 0 0 1 1 1.5 1.5 2 2 0.44(0.02)
π

3
−π

3
π

6
−π

6
π

4
−π

4 1 1 1.5 1.5 2 2 0.44(0.02)

TABLE III. Numerical values of the prefactor c̃I2 for different
values of αr and qr .

q1 q2 q3 q4 q5 q6 α1 α2 α3 α4 α5 α6 c̃I2/2

π

3
−π

3 0 0 0 0 1 1 0 0 0 0 0.125(0.001)
π

6
−π

6 0 0 0 0 1 1 0 0 0 0 0.125(0.001)
0 0 π

3
−π

3 0 0 0 0 1.5 1.5 0 0 0.27(0.01)
0 0 0 0 π

3
−π

3 0 0 0 0 2 2 0.48(0.01)
π

3
−π

3
π

6
−π

6 0 0 1 1 1.5 1.5 0 0 0.39(0.01)
π

3
−π

3
π

6
−π

6 0 0 1 1 1.5 1.5 2 2 0.88(0.02)
π

3
−π

3
π

6
−π

6
π

4
−π

4 1 1 1.5 1.5 2 2 0.88(0.02)

A similar result has been already announced in Ref. 27 for
the mutual information of a periodic system with half of
the system as the subsystem for α = even. We numerically
checked the above result in Table II. It is worth mentioning
that the prefactors are independent of b(q) and qr ’s.

It is not difficult to show that the same formula is also valid
for the cases with boundary.

Finally, we should mention that the above argument works
perfectly also for I2. The results of the numerical calculations
are shown in Table III for the large system with the small
subsystem A.

D. Two dimensions: area law and logarithmic term
for polygonal region

In this section, we study the behavior of the Shannon mutual
information in two dimensions. Since I1 is nothing except
the n = 2 Rényi entanglement entropy, one just expects that
Eq. (57) be valid also for this case. In this section, we mostly
concentrate on I2. We first confirmed that the area law is valid
also in this case for different values of α = 2,1.5, and 1. Then
we checked the effect of sharp corner as we did in the case of
entanglement entropy. The best fit for the data is

I2(θ ) = b0 + b1L + b−1L
−1 + b−2L

−2 − i(θ,α) log L, (76)

where θ as before is the vertex angle. The coefficient of the
area term is a nonuniversal quantity and increases with α, see
Fig. 26. similar to what we had in the case of the entanglement
entropy, the coefficient of the logarithm is a universal function
and increases with α and decreases with θ , see Fig. 26. It is

FIG. 26. (Color online) i(θ,α) as a function of α for subsystems
with different vertex angles θ . (Inset) Nonuniversal coefficient of the
area term b1 with respect to different values of α.
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worth mentioning that we also calculated the same quantity
for I1 and we found that i(θ,α) is 1

4 of the result for I2.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we studied the quantum entanglement entropy
of coupled long-range harmonic oscillators. We showed that
the von Neumann and Rényi entanglement entropy of a
subsystem of an infinite system changes logarithmically with
the subsystem size, which has a prefactor dependent on the
fractional power of the interaction α. We also studied the
same quantities in the presence of different kinds of boundary
conditions and found that the entanglement entropy changes
logarithmically with the subsystem size but with a prefactor
that is different from the case without a boundary. The prefactor
is interestingly the same as the prefactor coming from the
massive case. Having the above results, we concluded that
there are just two universal prefactors in our system. Later,
we extended our results to the finite temperature case and
found a T

2
α dependence of the entanglement entropy on the

temperature. Our main result was studying the universality
of our results by changing the interactions. For example, we
considered long-range HO plus short-rang HO and found that
the short-range interaction does not have any effect as far as
α < 2. For α > 2, the result is the same as the short-range
interaction. We also showed that one can change some other
parameters in the interaction and get always the same results.
We generalized our findings by studying general singular
Toeplitz-like couplings, which in this case we showed that
one can calculate the entanglement entropy by just having the
results for the simple cases that we have studied. Although
in this case we were able to prove the result for the n = 2
Rényi case, proving it for the von Neumann entanglement
entropy is far from obvious. We also generalized our findings to
two-dimensional cases and showed that despite the long-range
nature of the couplings, the area law is valid in this case.
In addition, we showed that universal logarithmic terms will
appear if we consider regions with sharp corner in our system.
Finally, we also studied mutual Shannon entropy in our system.
We used two definitions; one coming from purely classical
considerations and the other comes from using the ground
state of the quantum system as the source of probabilities.
We showed that the latter case is actually equal to the n = 2
Rényi entanglement entropy and one can calculate many things
analytically by using the Fisher-Hartwig theorem for Toeplitz
matrices. We also provided many simple exact results by

using the same method. The generalization to the singular
Toeplitz matrices is immediate in these two cases and one
can prove that the decomposition mentioned in the case of
von Neumann entropy is valid also in this case. There are
many other directions that one can extend our work, among
the immediate ones, one can mention the study of our system
in the presence of the quantum quench, the other direction is
studying the entanglement entropy of excited states. Another
important study can be investigating the entanglement entropy
of long-range Ising model in the mean-field regime where one
can relate it to the field theory that we have studied in this
paper. We hope to be able to come back to some of these
questions in future.
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APPENDIX: FISHER-HARTWIG THEOREM

The Fisher-Hartwig conjecture, which was proved later by
Widom,43 is about the asymptotic behavior of the determinants
of a certain class of Toeplitz matrices. The singular Toeplitz
matrices have the following form:

Kl,m = −
∫ 2π

0

dq

2π
eiq(l−m)b(q)φ(q − qr ), (A1)

where b(q) : S1 → C is a smooth nonvanishing function with
zero winding number and

φ(q) =
R∏

r=1

u(αr,q)t(βr,q), (A2)

u(α,q) = (2 − 2 cos q)
α
2 , Reα > −1, (A3)

t(β,q) = exp[−iβ(π − q)], 0 < q < 2π. (A4)

Fisher and Hartwig conjectured that the determinant of the
matrix K follows

Dn[K] ∼ EGn(b)n
∑

r ( α2
r
4 −β2

r ), (A5)

where E is a constant and G(b) = exp( 1
2π

∫ 2π

0 log b(q)dq). In
our study, we took the cases with βr = 0, however, we believe
that generalizations to β 
= 0 are straightforward.
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