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Magneto-optical conductivity in a topological insulator
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Adding a small subdominant quadratic-in-momentum term to a dominant linear Dirac dispersion curve affects
conduction and valence band differently and leads to an hourglass-like structure for energy as a function of
momentum. This applies to the protected surface states in topological insulators. The energies of the conduction
and valence band Landau levels are also different and this leads to the splitting of optical absorption lines produced
by the magnetic field, which acquire a two-peak structure. It also changes the peaks in the imaginary part of
the Hall conductivity into two distinct contributions of opposite signs. The real part of the circularly polarized
optical conductivity, however, retains its single-peak structure but the peaks in right and left handedness cases are
shifted in energy with respect to each other in contrast to the pure Dirac case. The magnitude of the semiclassical
cyclotron frequency is significantly modified by the presence of a mass term, as is its variation with value of the
chemical potential μ. Its optical spectral weight is found to decrease with increasing μ rather than increase as it
does in the pure Dirac limit.
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I. INTRODUCTION

Topological insulators are insulating1–4 in their bulk but
have protected metallic surface states which support helical
Dirac fermions at the � point of the honeycomb lattice surface
Brillouin zone. The direction of the in-plane electron spin is
locked to be perpendicular to its momentum with opposite
spin winding in conduction and valence bands,5–7 as was
confirmed by spin polarized angular resolved photoemission
spectroscopy (ARPES). In contrast to the case of graphene
where the Dirac cones are nearly symmetric between conduc-
tion and valence bands, topological insulators rather exhibit
an hourglass shape5–10 with the valence band fanning out
and merging with the bulk valence band. To get the Fermi
level to lie in the surface states between the bottom of the
bulk conduction band and the top of the bulk valence band
requires care, but this can be done by doping. For example
one can dope with Sn in (Bi1−δSnδ)2Te3 (see Ref. 4) or Ca in
Bi2−δCaδSe3.5 The dynamics of charge carriers can be probed
by optics. The real part of the complex frequency-dependent
longitudinal optical conductivity σ (ω) gives the absorption
as a function of photon energy. When applied to graphene,
good agreement is found between theory and experiment.11–17

The technique has also been applied to get information on
the surface states of topological insulators9 and other single-
layered materials such as MoS2

18,19 and silicene.20 Additional
valuable information results when a magnetic field is applied.
This creates Landau levels (LL), and incident photons can
induce transition between these levels.21–25 Recently it has
been applied to the topological insulator Bi0.91Sb0.09.26 In this
paper we consider in detail the magneto-optical conductivity
of a topological insulator with particular emphasis on the
hourglass shape of the Dirac cones. This comes from a
quadratic-in-momentum27 piece in the electron dispersion, and
is additional to the usual Dirac part which gives a contribution
to the energy linear in momentum. It is well known that a
quadratic alone gives LL spacings proportional to the magnetic
field B while the linear piece alone gives spacings which are
drastically different, going instead as the square root of B. This

has important implications for the optical absorption when
both parts are present in the fermion dispersion curves as we
will find here.

In Sec. II we specify our Hamiltonian and provide solutions
for the energy eigenvalues and eigenfunctions under mag-
netic field. In Sec. III we introduce the formal expressions
needed to compute the magneto-conductivity and provide
numerical results. Section IV deals with the semiclassical
limit when the chemical potential is much larger than the
Landau level spacing. Conclusions and a summary are found
in Sec. V.

II. SOME FORMALISM

We begin with the Hamiltonian for fermions on the surface
of a topological insulator of the form

H0 = h̄2k2

2m
+ h̄vF (kxσy − kyσx), (1)

where the first term gives the kinetic energy of a fermion of
mass m with a dispersion curve that is quadratic (Schrödinger)
in momentum (k), and the second piece is a term which
describes relativistic Dirac fermions with velocity vF . In
Eq. (1) σx and σy are Pauli spin matrices. In a magnetic field
B oriented perpendicular to the plane of the fermion motion
the Hamiltonian becomes

H0 = h̄2| − i∇ + eA/h̄|2
2m

+α[(−i∂x + eAx/h̄)σy − (−i∂y + eAy/h̄)σx], (2)

where α = h̄vF and A is the vector potential. In the Landau
gauge A ≡ (0,Bx̂), and we get

H0 = h̄2[(−i∂x)2 + (−i∂y + eBx̂/h̄)2]

2m

+α[(−i∂x)σy − (−i∂y + eBx̂/h̄)σx]. (3)

045414-11098-0121/2013/88(4)/045414(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.045414


ZHOU LI AND J. P. CARBOTTE PHYSICAL REVIEW B 88, 045414 (2013)

Raising and lowering operators

a† = lB/
√

2
[−∂x + (x + x0)/l2

B

]
,

(4)
a = lB/

√
2
[
∂x + (x + x0)/l2

B

]
with the magnetic length lB = 1/

√
e|B|/h̄ and x0 = kyl

2
B can

be used to reduce Eq. (3) to the form

H0 = h̄2[a†a + 1/2]

ml2
B

−
√

2α/lB

[
0 a

a† 0

]
. (5)

If a Zeeman splitting term (�) is added, the Hamiltonian of
interest becomes

H0 =
[

h̄2[a†a + 1/2]/ml2
B + � (

√
2α/lB)a

(
√

2α/lB)a† h̄2[a†a + 1/2]/ml2
B − �

]

(6)

The eigenstates of Eq. (6) are a mixture of the spin-up
(N − 1)th Landau level (|N − 1〉↑) and spin-down N th
Landau level (|N〉↓), which we denote by

|N,s〉 =
[

C↑,N,s |N − 1〉↑
C↓,N,s |N〉↓

]

with s = +/− corresponding to positive/negative energy
states. The eigenenergies are

EN,s = h̄2N/
(
ml2

B

) + s

√[
h̄2/

(
2ml2

B

)]2 + 2Nα2/l2
B.

(7)

For N > 0 and for N = 0

EN=0 = h̄2/
(
2ml2

B

)
, (8)

where for simplicity we have set the Zeeman splitting to
zero. The corresponding eigenfunctions are obtained from the
solutions of the equation(−E0/2 − s

√
E2

0/4 + 2NE2
1

)
C↑,N,s +

√
2NE2

1C↓,N,s = 0,

(9)

where we have introduced the shorthand notation E0 =
h̄e|B|/(m) and E1 = α

lB
which refer respectively to the

kinetic energy part that originates from the quadratic part
(Schrödinger) and the linear (Dirac) part of the original
Hamiltonian [Eq. (1)]. We can introduce a measure of “Dirac-
ness” P as the ratio E2

1/E
2
0 . When P → ∞ the system is pure

Dirac, and as P decreases the system acquires more and more
of a Schrödinger character. For N > 0 the solution of Eq. (9) is

C↑,N,s =
√√

1/4 + 2NP − s/2

J
,

(10)

C↓,N,s = s
√√

1/4 + 2NP + s/2

J

with J =
√

2
√

1/4 + 2NP . For the special case N = 0,
C↑,0 = 0 and C↓,0 = 1 and only s = + need be considered. It
is interesting to make an estimate of P for specific topological
insulators. Following the work in Ref. 28 we obtain for Bi2Te3

mα2/2h̄2 = 0.048 eV and eBv2
Fh̄ = 1.2 × 10−4 (eV)2 for a

magnetic field of 1 T and for Bi2Se3 we get 0.115 eV and
1.6 × 10−4 (eV)2 respectively. In terms of the bare electron

mass me we have m/me = 0.09 and 0.16 for Bi2Te3 and Bi2Se3

respectively. For Bi2Te3 the “Diracness” parameter P = 74.2
for an external magnetic field of 1 T. The energy EN,s

∼=
E1{N/

√
P + s

√
2N} (N �= 0) with the first term represen-

tative of the leading contribution to the energy coming from
the quadratic piece of the Hamiltonian and the second term
comes from the Dirac piece. The Schrödinger piece provides
an 8% correction for N = 1 (s = 1) while this rises to 26% for
N = 10. Because P goes like the inverse of B, for B = 40 T
P = 1.86 and the correction to the N = 1 case becomes 52%.

The matrix Green’s function associated with our Hamilto-
nian is given by

Ĝ0(N,iωn) = 1

2

∑
s=±

(1 + sFk · σ )G0(N,s,iωn) (11)

with

Fk = (
√

2NE1,0, − E0/2)√
E2

0/4 + (
√

2NE1)2
(12)

and

G0(N,s,iωn → ω + iδ)

= 1

ω + μ − NE0 − s

√
E2

0/4 + (
√

2NE1)2 + iδ

(13)

from which we can compute the density of states D(ω) given
by

D(ω) = −1

π

1

2πl2
B

[ ∑
N=1,s=±

Im G0(N,s,ω)

+ Im G0(0, + ,ω)

]
. (14)

Without a magnetic field we would get

D(ω,B = 0) = −1

π

1

2π

∫ kcut

0
k dk

∑
s=±

Im G0(k,s,ω) (15)

with

G0(k,s,ω) = 1

ω + μ − h̄2k2/(2m) − sαk + iδ
, (16)

and μ in Eqs. (13) and (16) is the chemical potential where
the momentum cutoff is taken as kcut = αm

h̄2 . Figure 1 is a
schematic of the fermion dispersion relation in our model
displaying the two-dimensional (2D) Brillouin zone (BZ) of
the surface states and the hourglass structure with Dirac point
at the � point in the BZ. Figure 2 gives results for the density
of states D(ω) as a function of energy h̄ω in eV. The top
frame contains a quadratic contribution with m = 0.09me (our
estimate for Bi2Te3) while the bottom frame which is included
for comparison has m = ∞, i.e. represents the pure relativistic
Dirac limit. In both cases the magnetic field was set to 1 Tesla
in the red dotted curve which is to be compared with the
continuous black curve for B = 0. Comparing first the black
curves in top and bottom frame we see that including the
quadratic part in the Hamiltonian [Eq. (1)] has a drastic effect
on the density of states. For pure Dirac there is particle-hole
symmetry about the Dirac point at ω = 0, while this no longer
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FIG. 1. (Color online) Schematic of Dirac cone centered about
the � point of the honeycomb Brillouin zone of the surface states in a
topological insulator. The top cone is the conduction band while the
bottom cone which gives the figure a goblet or hourglass shape is for
the valence band.

is the case in the top frame. Both positive and negative energy
regions are changed, with the largest difference seen in the
negative energy region. This results directly from the hourglass
nature of the dispersion curves seen in the schematic of Fig. 1.
This change in geometry of the dispersion curves also has a
direct effect on the oscillations seen in the red dotted curves.
The difference between top and bottom frame are particularly
large at negative energies as the large peak around 0.05 eV in
the B = 0 density of states is sampled. But there are also very
significant changes at positive energies both in the position of
the peaks and in their amplitude. While in the lower frame
(pure Dirac) the red dotted curve around h̄ω = 0.08 eV has
nearly merged with the solid black curve for B = 0, this is not
the case in the upper curve where the amplitude of the Landau
level oscillations remains very significant.

FIG. 2. (Color online) The density of states as a function of
energy h̄ω in eV for a topological insulator with mass m = 0.09me

(top frame) and no mass term (m = ∞) (bottom frame) shown for
comparison. The magnetic field B = 1 T. The dotted red curves
include B while the solid black are the case of no magnetic field
(B = 0) included for comparison. The parameters are for Bi2Te3,
m = 0.09me and α/h̄ = 4.3 × 105 m/s.

III. MAGNETO-OPTICAL CONDUCTIVITY

The magneto-optical conductivity σαβ (ω) based on a system
of Landau levels in the clean limit is given by the standard
formula

σαβ(ω) = −i

2πl2
B

∑
N,N ′,s,s ′

fN,s − fN ′,s ′

EN,s − EN ′,s ′

〈N,s|jα|N ′,s ′〉〈N ′,s ′|jβ |N,s〉
ω − EN,s + EN ′,s ′ + i/(2τ )

, (17)

where the current operator jα is related to velocity vα and

vx = h̄kx

m
+ α

h̄
σy = i

h̄

m
(a† − a)/(

√
2lB) + α

h̄
σy,

(18)

vy = h̄(ky + eAy/h̄)

m
− α

h̄
σx = −α

h̄
σx + h̄

m
(a† + a)/(

√
2lB).

In Eq. (17) 1/(2τ ) is a small residual scattering rate. Working out the appropriate matrix elements gives for the longitudinal
dynamic conductivity

σxx(ω) = −ie2

2πl2
B

∑
s

f0 − f1,s

EN=0 − E1,s

Qx(0,1, + ,s)〈0|vx |1,s〉〈1,s|vx |0〉

+ −ie2

2πl2
B

∑
N=1,s,s ′

fN,s − fN+1,s ′

EN,s − EN+1,s ′
Qx(N,N + 1,s,s ′)〈N,s|vx |N + 1,s ′〉〈N + 1,s ′|vx |N,s〉 (19)

with fN,s the Fermi-Dirac distribution function given by 1/(eβ(ω−μ) + 1) with β the inverse temperature T and μ the chemical
potential. The transverse dynamic Hall conductivity

σxy(ω) = −e2

2πl2
B

∑
s

f0 − f1,s

EN=0 − E1,s

Qy(0,1, + ,s)〈0|vx |1,s〉〈1,s|vx |0〉

+ −e2

2πl2
B

∑
N=1,s,s ′

fN,s − fN+1,s ′

EN,s − EN+1,s ′
Qy(N,N + 1,s,s ′) × 〈N,s|vx |N + 1,s ′〉〈N + 1,s ′|vx |N,s〉, (20)
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where (
Qx(N,N ′,s,s ′)
Qy(N,N ′,s,s ′)

)
= 1

ω + EN,s − EN ′,s ′ + i/(2τ )
± 1

ω + EN ′,s ′ − EN,s + i/(2τ )
. (21)

Here we will be interested in the absorptive part of the conductivity, namely Re σxx and Im σxy , which can be written in the form(
Re σxx(ω)

Im σxy(ω)

)
= ∓ e2

2h̄

∑
s

f0 − f1,s

EN=0 − E1,s

F (0,s)

H (0,s)
E0[δ(h̄ω − E0H (0,s)) ± δ(h̄ω + E0H (0,s)]

∓ e2

2h̄

∑
N=1,s,s ′

(fN,s − fN+1,s ′ )
F (N,s,s ′)
H (N,s,s ′)

E0[δ(h̄ω − E0H (N,s,s ′)) ± δ(h̄ω + E0H (N,s,s ′)], (22)

where the delta function δ(x) conserves energy in the optical
absorption process and we have defined

H (N,s,s ′) = −1 + s
√

1/4 + 2NP − s ′√1/4 + 2(N + 1)P

(23)

and

F (N,s,s ′) =
(√

N√
2

C∗
↑,N+1,s ′C↑,N,s +

√
N + 1√

2
C∗

↓,N+1,s ′C↓,N,s

−
√

PC∗
↑,N+1,s ′C↓,N,s

)2

; (24)

for N �= 0 and for N = 0

H (0,s) = −1/2 − s
√

1/4 + 2P , (25)

F (0,s) =
(

1√
2
C↓,1,s −

√
PC↑,1,s

)2

. (26)

In Fig. 3 we show results for the Landau level energies obtained
from Eq. (7) for the specific case of Bi2Te3 with m/me = 0.09
as a function of magnetic field B in Tesla. The solid lines are
for positive N ’s as well as N = 0 while the dotted are for
negative N ’s. The energies of the positive branch levels are
not as strongly modified by the quadratic Schrödinger term
in Eq. (1) than are the energies of the negative branch. For
the pure Dirac case there would be mirror symmetry between
positive and negative levels and they would all scale as the
square root of the magnetic field B. Now the positive N levels
show small deviations from

√
B law while the negative N

levels begin to bend over upward as B increases, and can
even cross the E = 0 axis at 40 T for the larger values of N

shown. The solid black curve for N = 0 is linear in B and
goes to zero at B = 0. For pure Dirac this level would remain
at zero for all values of magnetic field. The lack of perfect
mirror symmetry between positive and negative branches of
the spectrum has important implications for the peaks seen
in both Re σxx(ω) and Im σxy(ω) as a function of ω. This is
illustrated in Fig. 4 which has four frames. The upper two are
for a value of chemical potential which falls between N = 0
and N = 1 Landau levels (LL), while in the two lower frames
the chemical potential μ falls between the N = 1 and N = 2
LL. In all cases � = 1/(2τ ) in Eqs. (19) and (20) was set to
15K and the magnetic field at 1 T. The frames come in pairs;
the top panel includes a finite mass for the quadratic term in the
Hamiltonian (1) m/me = 0.09 while the lower panel of each

pair is for comparison and has m/me = ∞ (the pure Dirac
limit). Also, the solid continuous black curve is for the real
part of the longitudinal conductivity Re σxx(ω) vs ω and the
dotted red curve for the imaginary part of the Hall conductivity
Im σxy(ω) vs ω. Starting with the upper two frames, we note
first that including the quadratic term in the dispersion relation
has split the peaks in the solid curves into two except for the
first one. This feature can be traced directly to the energy
level scheme of Fig. 3 and the lack of perfect symmetry
between positive and negative branches. The arrows in the
left hand lower frame connect energy levels for the allowed
optical transitions (the chemical potential μ = 50 K is shown
as the horizontal black dashed line which falls slightly above

FIG. 3. (Color online) The top panel gives the energies EN,s of
the Landau levels for various values of N (as labeled) as a function
of the magnetic field B. The conduction band levels are solid
curves and the valence band levels are dotted curves. Here the
quadratic mass term has m = 0.09me. The horizontal dashed line
is the chemical potential level μ = 50K . In the two lower panels
we show a few allowed optical transitions indicated by arrows with
chemical potential shown by the horizontal black dashed line. The
left panel is for B = 1 Tesla and the right for B = 40 T. Here
α/h̄ = 4.3 × 105 m/s, representative of Bi2Te3. For Bi2Se3 it is
instead 5 × 105 m/s.
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the solid black line associated with the N = 0 level). Note that
the zeroth Landau level is not quite at E = 0 because B is
finite (1 T). The optical selection rules allow N to change
by only 1. In addition one needs to go from occupied to
unoccupied states through the absorption of the photon. The
first peak in Re σxx(ω) and Im σxy(ω) come from the transition
indicated by the shortest arrow on the left from N = 0 to
N = 1. There is only one such arrow and consequently only
one peak in the conductivity. However, for the second peak
two arrows contribute, that from N = 1 (negative side) to
N = 2 (positive side) and from N = 2 (negative side) to N = 1
(positive side). For the pure Dirac case these two arrows would
have exactly the same length and there is only one peak in the
conductivity, as we see in the lower frame of Fig. 4 for μ

FIG. 4. (Color online) The real part of the longitudinal optical
conductivity σxx(ω) (solid black curve) compared with the imaginary
part of the transverse Hall conductivity σxy(ω) (dotted red curve) in
units of e2/h as a function of photon energy h̄ω in eV. The electron
mass term has m = 0.09me, the residual scattering rate is � = 15K ,
and the magnetic field B = 1 T. The top two frames are for chemical
potential falling between N = 0 and N = 1 Landau levels while in
the lower two frames it falls between N = 1 and N = 2. In each case
we show first results for finite m and below for m = ∞ (pure Dirac)
which is included for comparison. Here α/h̄ = 4.3 × 105 m/s.

between N = 0 and N = 1. But when there is a quadratic
term in Eq. (1) the symmetry between positive and negative
branches is no longer observed, and the two arrows in question
are of slightly different length. This line is split into two peaks
in the conductivity. The amount of splitting reflects directly
the difference in the absolute value of the energy between
positive and negative branches for the same N . Here we have
used m/me = 0.09 for Bi2Te3. For smaller values of m the
observed splitting would increase for fixed Dirac spectrum
(α). The consequences of this mismatch between energies of
positive and negative energy branches is even more striking
for the Hall than it is for the longitudinal conductivity. The
red dotted curve in the upper frame shows a first negative
oscillation and then a positive peak. For the pure Dirac case
these two peaks would have the same energy and hence cancel
out perfectly as we see in the second frame of Fig. 4. In that
case only the first peak remains in the Hall conductivity, all
higher peaks are missing due to the cancellation just described.
Turning next to the second set of two frames of Fig. 4 we see
a similar pattern but with significant differences that need to
be commented upon. In this case we have increased the value
of the chemical potential so that it falls between the positive
N = 1 and N = 2 Landau levels. Firstly note that the first
peak has shifted to lower energy while all others stay at the
same energies as in the upper two frames, but the intensity of
the second peak has been reduced by a factor of 2 for the pure
Dirac case. Secondly, in the mixed Schrödinger-Dirac case the
first negative oscillation in Hall conductivity is absent, as is
the lower split peak in the longitudinal conductivity. These
features are easily understood with the help of the energy
level diagram, left lower frame of Fig. 3. Moving the chemical
potential level (dashed line) to fall between N = 1 and N = 2
we see that the transition with the shortest arrow is no longer
allowed by the optical selection rule. The second arrow from
N = 1 (negative branch) to N = 2 (positive branch) remains
a possible optical transition while the transition from N = 2
(negative branch) to N = 1 (positive branch) is Pauli blocked
and is no longer possible. The final state is already occupied.
There is only one arrow that can contribute and half the line
is lost so the second peak is no longer split. This is one of our
important results.

So far we have described in relation to Fig. 4 only the
interband transitions between negative and positive branches.
But the optical selection rule also allows intraband transitions
between N and N + 1 of the same branch. To understand how
it is that the lowest peak in both Re σxx(ω) and Im σxy(ω) has
shifted to lower energies in the two lower frames of Fig. 4,
we need to include intraband transitions. Returning to the
level diagram of Fig. 3, lower left frame, we can see that
for μ between N = 1 and N = 2 levels an optical transition
from 1 (occupied) to 2 (unoccupied) is now possible, and this
gives the first peak (seen in our Fig. 4 two lower frames)
which is a intraband peak and replaces the first interband
peak (in the upper two frames) which is no longer possible.
These results are based on the simplest Hamiltonian (1) which
includes only a Schrodinger quadratic-in-momentum term and
a Dirac linear-in-k contribution. Recently Fu29 found that
to understand the ARPES data in Bi2Te3 a cubic hexagonal
correction needs to be added to the Hamiltonian. The role
of hexagonal warping played in optics was further discussed
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in Ref. 10. It was found to change the constant universal
background provided by the interband optical transitions to
a sloped background which increases with increasing photon
energy. The application of a magnetic field introduces Landau
level (LL) oscillations based on this background. Conse-
quently, as a first approximation, we expect that including
hexagonal warping with a magnetic field would lead to LL
oscillations which would average out at higher energies to a
sloped rather than a constant background.

The peak structure just described for Re σxx(ω) and
Im σxy(ω) has important implication for the behavior of the
conductivity for right and left handedness polarized light
defined as σ±(ω) ≡ σxx(ω) ± iσxy(ω). This is shown in Fig. 5
which has a direct correspondence to the data presented in
Fig. 4 and which also has four frames. The top two are for
μ between N = 0 and N = 1 LL and the lower two for μ

between N = 1 and N = 2 LL. The solid black curve is
Re σ+(ω) and the dotted red is Re σ−(ω). Note that there are no
split peaks in these quantities but striking differences between
the Schrödinger plus Dirac case and pure Dirac (lower frame of
each pair) remain. For pure Dirac, Re σ−(ω) (red dotted curve)
has a single peak corresponding to the lowest energy peak of
Fig. 4. This peak is missing in Re σ+(ω) which, however, has
all the other peaks seen in Fig. 4. For the mixed Schrödinger
plus Dirac case the situation is similar with one important
difference. The higher energy peaks remain in Re σxx(ω) (red
dotted curve) but they are displaced in energy with respect
to those in the solid black curve. These differences between
pure Dirac and the case with the existence of a subdominant
Schrödinger part to the Hamiltonian [Eq. (1)] could be used to
estimate the magnitude of this second contribution.

So far we have considered only the case of B = 1 T
and have found differences with the pure Dirac case. These
differences can be made much more dramatic by increasing
the magnitude of the external magnetic field, as we show in
Fig. 6 for magnetic field B = 40 T. As we see in the top
frame of Fig. 3 for the Landau level energies, the N = 0 level
has now moved to E0 � 0.025 eV. While for N = 1,2,3 the
valence band energies remain negative, they have moved to
positive values for N = 4 and above. In the right hand lower
frame of Fig. 3 we show these various levels as well as the
chemical potential (black dashed curve) which we take to fall
just above the N = 4 level of the negative branch (dotted cyan
lines). All other levels fall outside the energy range shown in
the figure. Because we are at finite temperature, the possible
optical transitions are shown as arrows from 4 to 5, from 3
to 4, and from 1 to 0. The first two are close in energy and
give a split peak in the top frame of Fig. 6 for Re σxx(ω)
with mass term included. The lower peak in the split pair,
which is due to the 3 to 4 transition, will disappear at zero
temperature as this transition is now Pauli blocked. The long
arrow gives the second single peak at about 0.07 eV in the
black curve. This transition also contributes to the imaginary
part of the Hall conductivity (dotted red) which shows a
negative peak. It also displays the same lower energy split
peak as does the longitudinal conductivity. Consequently the
left circular polarization conductivity Re σ−(ω) (red dotted)
shows a low energy split peak of twice the amplitude of its
value in Re σxx(ω) and no other peak, while the right circular
polarization conductivity Re σ+(ω) (black solid) shows a

FIG. 5. (Color online) The real part of right ( + ) and left handed
circularly polarized optical conductivity σ±(ω) in units of e2/h as
a function of photon energy h̄ω in eV. In all panels the residual
scattering rate � = 15K and the magnitude of the magnetic field is
set at B = 1 T. The top two panels are for a case when the chemical
potential falls between N = 0 and N = 1 Landau levels and for the
bottom two it falls between N = 1 and N = 2. In all cases solid black
is for right hand polarization and the dotted red for left polarization.
The panels come in pairs; in the top frame the quadratic term in
the Hamiltonian has mass m = 0.09me, while m = ∞ (pure Dirac)
for the bottom frame of each pair,for comparison. Here α/h̄ = 4.3 ×
105 m/s.

single positive peak at about 0.07 eV. This is to be contrasted
with the pure Dirac case shown in the lower frame of each pair
of diagrams. In that case there is a single line in the energy
range shown. It is present in Re σxx(ω) (black solid) and in
Im σxy(ω) (dotted red) with the same amplitude as well as in
Re σ−(ω) (dotted red) with twice the amplitude. It does not
appear in Re σ+(ω).

IV. SEMICLASSICAL LIMIT

The semiclassical limit of the magneto-conductivity is
obtained when the chemical potential μ is much larger than
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FIG. 6. (Color online) The top pair of frames give the real part
(imaginary part) of the longitudinal [transverse Hall] conductivity
Re σxx(ω), solid black [Im σxy(ω), red dotted] in units of e2/h as
a function of photon energy h̄ω in eV. The top panel has a finite
quadratic piece in its dispersion curve with mass m = 0.09me while
the bottom panel has m = ∞. In both cases the residual scattering
rate � = 15K the chemical potential μ = 50K , the temperature T =
10 K, and the magnetic field is set at B = 40 T. The bottom two
frames are for the same parameter set and the notation is the same.
What is plotted, however, is the right σ+ solid black and left σ− dotted
red circularly polarized conductivity. Here α/h̄ = 4.3 × 105 m/s.

the magnetic energy. In this case for μ > 0 only intraband
transitions are involved, as we are interested in the cyclotron
resonance energy range which is much less than μ. This
involves large values of N . Let μ fall between the N th and
(N + 1)th Landau levels. So

μ = NE0 +
√

2NE2
1 + (E0/2)2 � NE0 +

√
2NE1, (27)

and the energy of the optical transition from N to N + 1 is
given by

h̄ωc � EN+1 − EN, (28)

which is the semiclassical cyclotron frequency. We can solve
Eq. (27) to get N in terms of μ and obtain

√
N = E1√

2E0

[√
1 + 2μE0/E

2
1 − 1

]
(29)

and so

h̄ωc = h̄eBv2
F

μ

√
1 + 2μh̄2/mα2[

√
1 + 2μh̄2/mα2 + 1]

2
.

(30)

For m → ∞ we have the well known results for the pure Dirac
case

h̄ωc = eBv2
Fh̄

μ
. (31)

The first correction for m large but not infinite is

h̄ωc = eBv2
Fh̄

μ

[
1 + 3

2
μ/

(
mv2

F

) − 1

4
μ2/

(
mv2

F

)2
]

. (32)

The pure Schrödinger case is obtained as α → 0 which gives

h̄ωc = h̄eB

m
, (33)

FIG. 7. (Color online) The semiclassical limit of the real part of
the longitudinal conductivity Re σxx(ω) in units of e2/h as a function
of photon energy h̄ω in eV. The top and bottom frames give results
when m = 0.09me and m = ∞ (no quadratic mass term) respectively.
Also identified are the optical transition between Landau levels that
are involved (see lower right panel of Fig. 3) and the corresponding
values of chemical potential μ. The three cases considered are color
coded. Note that for m = ∞ (lower panel) the amplitude of the
conductivity at the cyclotron frequency increases monotonically as
the chemical potential increases, while instead it decreases when
m = 0.09me. Here α/h̄ = 4.3 × 105 m/s.
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FIG. 8. (Color online) The top panel gives the semiclassical
cyclotron frequency as a function of chemical potential μ and the
bottom panel gives the optical spectral weight under the N th line for
m = 0.09me (open square) compared with its value for pure Dirac
(open circle). Here α/h̄ = 4.3 × 105 m/s.

and the lowest order correction for α small but not zero is

h̄ωc = h̄eB

m
[1 +

√
mα2/2μh̄2 + mα2/2μh̄2]. (34)

For Bi2Te3 we estimate mα2/(2h̄2) = 0.048 eV and eBv2
Fh̄ =

1.2 × 10−4 (eV)2 and for Bi2Se3 we have 0.115 eV and
1.6 × 10−4 (eV)2 respectively. For the first case we show in
the upper frame of Fig. 8 the cyclotron energy as a function of
chemical potential (red dashed curve) which we compare with
pure Dirac (black solid curve). Both show similar variation
with μ (inverse μ law) but the two curves are significantly
displaced from each other for the case m/me = 0.09. For
smaller values of the mass m the effect of a subdominant
Schrödinger contribution to the cyclotron frequency will be
even larger.

The real part of the longitudinal conductivity Re σxx(ω) vs
ω in units of e2/h̄ in the semiclassical regime is shown in Fig. 7.
The top frame is for the parameters that we have associated
with Bi2Te3 with m/me = 0.09, while the bottom frame results
when the Schrödinger piece of the energy [Eq. (1)] is dropped,
for comparison. The values of chemical potential used and the
optical transitions involved are labeled and color coded in the
figure. Not only is the value of the central frequency (ωc) giving
the peak in these line-shapes different when m/me is finite as

compared with its value when m/me is infinite, but also the
line-shapes themselves are quite different. As ωc increases the
optical spectral weight [area under the curve for Re σxx(ω)]
decreases in the m = ∞ case while it increases for m/me =
0.09. This is illustrated further in the lower frame of Fig. 8
where we plot the spectral weight as a function of N with (open
squares) and without (open circles) a mass term. Note that this
quantity is related to the ratio F (N, + ,+)E0/H (N, + ,+)
which appears in Eq. (22) with H and F given by Eqs. (23)
and (24) respectively. We see that including a small mass term
has a profound effect on this spectral weight, which is another
important result of this analysis.

V. SUMMARY AND CONCLUSIONS

We have studied how adding a small subdominant
quadratic-in-momentum term to a dominant Dirac dispersion
modifies the magneto-conductivity when Landau levels are
formed in a topological insulator by application of a magnetic
field B. In such a case the energies of the Landau levels in
conduction and valence band no longer mirror each other.
This means that interband optical transitions from level N in
the valence band to N + 1 in the conduction band no longer
have the same energy as those from N + 1 to N , and this
splits the corresponding absorption line for the real part of the
longitudinal conductivity into two, each carrying the identical
optical spectral weight. The energy of the splitting is related
to the mismatch in energy levels between conduction and
valence bands. A similar splitting is found for the imaginary
part of the Hall conductivity. However, for the absorption of
circularly polarized light, single-peak structures are recovered
but in this case there is a shift in the energy position of
the lines between right and left polarization in contrast to
what is found when the mass term in the electron dispersion
curves is zero for pure Dirac. The semiclassical limit is also
affected by the presence of a subdominant quadratic term.
This significantly shifts the value of the cyclotron frequency
away from its pure Dirac value of eBv2

Fh̄/μ and introduces a
more complicated dependence on chemical potential given
in Eq. (30). The lineshape associated with the cyclotron
resonance is significantly changed. The optical spectral weight
under these curves is found to decrease with increasing value
of the chemical potential rather than increase as would be the
case in a pure relativistic Dirac system.
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