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Ordered-current state of electrons in bilayer graphene
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Based on the four-band continuum model, we study the ordered-current state (OCS) for electrons in bilayer
graphene at the charge neutrality point. The present work resolves the puzzles that (a) the energy gap increases
significantly with increasing the magnetic field B, (b) the energy gap can be closed by the external electric field
of either polarization, and (c) the particle-hole spectrum is asymmetric in the presence of B, all these as observed
by the experiment. We also present the prediction of the hysteresis energy gap behavior with varying B, which
explains the existing experimental observation on the electric conductance at weak B. The large energy gap of the
OCS is shown to originate from the disappearance of Landau levels of n = 0 and 1 states in conduction/valence
band. By comparing with the existing models and the experiments, we conclude that the OCS is a possible ground
state of electrons in bilayer graphene.
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I. INTRODUCTION

The study of bilayer graphene (BLG) is a focused area in the
condensed-matter physics because of the potential application
of BLG to new electronic devices.1–4 One of the fundamental
subjects is to explore the physics of the ground state of elec-
trons in BLG. A number of experiments5–8 performed on high
quality suspended BLG samples have provided the evidence
that the ground state is gapped at the charge neutrality point
(CNP). In particular, a recent experiment by Velasco et al.7 has
observed that (i) the ground state is insulating in the absence of
external electric and magnetic fields, with a gap Egap ≈ 2 meV
that can be closed by a perpendicular electric field of either
polarization, (ii) the gap grows with increasing magnetic field
B as Egap = �0 +

√
a2B2 + �2

0 with �0 ≈ 1 meV and a ≈
5.5 meV T−1, and (iii) the state is particle-hole asymmetric.
On the other hand, theories have predicted various gapped
states, such as a ferroelectric-layer asymmetric state9–13 or
quantum valley Hall state (QVH),14 a layer-polarized anti-
ferromagnetic state (AF),15 a quantum anomalous Hall state
(QAH),12,16,17 a quantum spin Hall state (QSH),12,17 and a
superconducting state in coexistence with antiferromagnetism
(SAF).18 The ferroelectric-layer asymmetric and QAH and
QSH states all have been ruled out by the experiment.7

The SAF state is excluded because the real system is an
insulator. The AF state cannot reproduce the gap behavior with
varying the magnetic field. Recently, the loop-current state
has been studied by numerical diagonalization of an effective
mean-field Hamiltonian for a finite size lattice19 and by
analytically solving a two-band continuum model (2BCM).20

Whether the model of this state agrees with the experimental
observations on the electronic properties of BLG remains a
question.

In this work, using the four-band continuum model (4BCM)
for electrons with finite-range repulsive interactions in BLG,
we study the ordered-current state (OCS) at the CNP with
a rigorous formalism and compare the results with the
experimental observations. The importance of using the 4BCM
to describe quantitatively the many-body properties of the
electron liquid in the BLG has been stressed by the existing
works.21 We here investigate the gap behavior of the OCS with

varying the magnetic field B, and the particle-hole asymmetry
spectra at finite B, and the phase transitions in the electron
system in the presence of the electric and magnetic fields.
We will show that the puzzles (i)–(iii) of the experimental
observations can be resolved by the present model of the OCS.
With the same 4BCM, we also study the AF state and show
that the AF state is not able to reproduce the experimental
result for the gap as a function of the magnetic field.

II. FOUR-BAND CONTINUUM MODEL

The lattice structure of a BLG is shown in Fig. 1. The unit
cell of BLG contains four atoms denoted as a1 and b1 on top
layer, and a2 and b2 on bottom layer with interlayer distance
d ≈ 3.34 Å. The lattice constant defined as the distance
between the nearest-neighbor (NN) atoms of a sublattice is
a ≈ 2.4 Å. The energies of intralayer NN [between a1 (a2)
and b1 (b2)] and interlayer NN (between b1 and a2) electron
hoppings are t ≈ 2.8 eV and t1 ≈ 0.39 eV, respectively.

The first Brillouin zone and the two valleys K and
K ′ in the momentum space are depicted in Fig. 2. For
the carrier concentration close to the CNP, we need to
consider only the states with momenta close to the Dirac
points K = (4π/3,0) and K ′ = −K . We here define the op-
erator C

†
vkσ = (c†a1,v+k,σ ,c

†
b1,v+k,σ ,c

†
a2,v+k,σ ,c

†
b2,v+k,σ ), where

v = K or K ′, c
†
l,v+k,σ creates a spin-σ electron of mo-

mentum k in valley v of l sublattice, and k is mea-
sured from the Dirac point K (K ′) and confined to a
circle k � 1/a in K (K ′) valley. With the operator C

†
vkσ ,

the Hamiltonian describing the noninteracting electrons is
given by

H0 =
∑
vkσ

C
†
vkσH 0

vkCvkσ (1)

with

H 0
vk =

⎛
⎜⎜⎜⎝

0 evk 0 0

e∗
vk 0 −t1 0

0 −t1 0 evk

0 0 e∗
vk 0

⎞
⎟⎟⎟⎠, (2)
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FIG. 1. (Color online) (Left) Lattice structure of the bilayer
graphene. (Right) Top view of the bilayer graphene. Atoms a1 (a2)
and b1 (b2) are on the top (bottom) layer.

where evk = ε0(svkx + iky), sv = 1 (−1) for k in the valley
K (K ′), and ε0 = √

3t/2. We hereafter use the units of ε0 = 1
and a = 1.

The interaction Hamiltonian is

H ′ = U
∑
lj

δnlj↑δnlj↓ + 1

2

∑
li �=l′j

vli,l′j δnliδnl′j , (3)

where δnliσ is the number deviation of electrons with spin σ

from its average occupation at site i of sublattice l (hereafter
denoted as li for short), δnli = δnli↑ + δnli↓, U is the on-site
interaction, and vli,l′j is the interaction between electrons at
sites li and l′j . Within the mean-field approximation (MFA),
since the interaction vli,l′j appears in the exchange self-energy,
it can be considered as a finite-range interaction by taking
into account the screening effect due to the electronic charge
fluctuations.22 The total Hamiltonian H0 + H ′ satisfies the
particle-hole symmetry.22

III. ORDERED-CURRENT STATE

In the ordered-current state for which there is no antiferro-
magnetism, the effective interaction under the MFA is given
by

H ′ ≈
∑

li �=l′jσ

vli,l′j 〈cliσ c
†
l′jσ 〉c†liσ cl′jσ

=
∑
ll′kσ

�ll′(k)c†lkσ cl′kσ , (4)

K

y

K ′ x

FIG. 2. (Color online) The first Brillouin zone and the two valleys
K and K ′.

where the self-energy �ll′(k) is defined by

�ll′(k) =
∑
�d �=0

vli,l′j 〈cliσ c
†
l′jσ 〉 exp(i�k · �d)

≡
∑
�d �=0

vli,l′j [Rll′(d) + iIll′ ( �d)] exp(i�k · �d) (5)

and �d is the vector from the position li to l′j . First, we consider
the diagonal self-energy and denote vli,lj by v(d) for brevity.
Now, the function Rll(d) + iIll( �d) can be written as

Rll(d) + iIll( �d) = 〈cliσ c
†
ljσ 〉

= 1

2
(〈cliσ c

†
ljσ 〉 − 〈c†ljσ cliσ 〉)|i �=j

= 1

N

∑
k

(
1

2
− 〈c†lkσ clkσ 〉

)
exp(−i�k · �d),

(6)

where the k summation runs over the first Brillouin zone, and
N is the total number of unit cells on single-layer graphene.
Note that the function 1/2 − 〈c†lkσ clkσ 〉 in the integrand in
Eq. (6) is sizable only in areas close to the two Dirac
points. Figure 3 shows the typical behaviors of the two
functions

fK(K ′)(k) = 1
2 − 〈c†lK(K ′)+kσ clK(K ′)+kσ 〉|l=1 (7)

defined in the two valleys K and K ′ = −K , respectively.
The result in Fig. 3 is obtained by the self-consistent
solution to the OCS without external fields. The functions
are nonvanishing only within k � 0.05/a with a as the lattice
constant. Then, the k integration in Eq. (6) can be confined
to two valleys. Since the range of the exchange interaction
v(d) is finite due to the electronic charge-fluctuation
screening, the phase �k · �d in the factor exp(−i�k · �d)
can be safely approximated as �K( �K ′) · �d. Therefore we can
write the formulas for Rll(d) and Ill( �d) as

Rll(d) = 1

N

∑
k

′
(1 − 〈c†lK+kσ clK+kσ 〉

− 〈c†lK ′+kσ clK ′+kσ 〉) cos( �K · �d) ≡ rl cos( �K · �d),

(8)
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FIG. 3. (Color online) Behaviors of functions fK (k) (red circles)
and fK ′ (k) (green squares) defined by Eq. (7).
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Ill( �d) = 1

N

∑
k

′
(〈c†lK+kσ clK+kσ 〉

− 〈c†lK ′+kσ clK ′+kσ 〉) sin( �K · �d) ≡ −dl sin( �K · �d),

(9)

where the k summation is confined to a single valley and the
quantities rl and dl are defined by

rl = 1

N

∑
k

′
(1 − 〈c†lK+kσ clK+kσ 〉 − 〈c†lK ′+kσ clK ′+kσ 〉),

dl = 1

N

∑
k

′
(〈c†lK ′+kσ clK ′+kσ 〉 − 〈c†lK+kσ clK+kσ 〉).

The quantity rl can be written as rl = −δl/2 with δl as the
average electron doping concentration on sublattice l. For the
doping concentration close to the CNP, we need to consider
only the low-energy quasiparticles with momenta close to the
Dirac points. Then by expanding the self-energy with respect
to the momentum k in the two valleys and taking only the
leading terms, we get

�ll(±K) = rlvc ± dlvs (10)

with

vc =
∑
�d �=0

v(d) cos2( �K · �d),

(11)
vs =

∑
�d �=0

v(d) sin2( �K · �d).

Physically, the imaginary part Ill( �d) is proportional to a
bond current. All the bond currents in the lattice constitute to
the current loops. The existence of the bond currents breaks
the time-reversal symmetry. In Fig. 4, we draw out some
of the bond currents on the same sublattice connected to
a given site i. Clearly, the total current density at site i is
zero.

Next, we consider the quantity Ill′ ( �d) with l �= l′. For
example, consider the case for l = a1 and l′ = b1 on
the top layer. Suppose the quantity is not vanishing. As
shown in Fig. 5, the bond currents all with a fixed bond

FIG. 4. (Color online) Some of the bond currents connected to the
black site on a sublattice. The sign factor ± in Ill( �j − �i) ≡ ±Jl(| �j −
�i|) [as given by Eq. (9)] is + (−) for the electron motion from the
black site i to the red (white) site j . There are no currents between
the black site and the blue sites.

FIG. 5. (Color online) Two kinds of hexagon current loops on the
top layer. Each bond of the hexagons connects the a1 and b1 atoms.
The fluxes for the green, blue, and yellow hexagons are positive,
negative, and zero, respectively.

length d = |�i − �j | result in three kinds of hexagon current
loops with positive, negative, and zero fluxes [supposing the
flux is positive (negative) for counterclockwise (clockwise)
current loop], respectively. From the particle conservation
law, the current along the boundary between the positive
and the negative flux hexagons is two times of that along
the boundary between the zero and the positive/negative
flux ones. The hexagon current loops imply not only the
breaking of time-reversal symmetry but also the breaking
of translational invariance (homogeneity). The breaking of
translational invariance to a low symmetry state requires the
relevant interaction strong enough. Note that there is no a
common periodicity for the two kinds of hexagon current loops
with different side length d in the lattice. The coexistence of
the different hexagon current loops corresponds to completely
an inhomogeneous system and cannot be realized for the
electrons with finite-range interactions. The most favorable
case is that the smallest hexagon loops may exist when the
interaction between the NN a1 and b1 atoms is strong enough.
The argument applies to all Ill′ ( �d) with l �= l′. For weak to
medium interactions, we here assume all the currents between
the sites of different sublattices are negligible small. On the
other hand, the off-diagonal averages 〈cliσ c

†
l′jσ 〉 with l �= l′ can

be pure real quantities without breaking homogeneity of the
system. The real quantities describe the electron hopping and
renormalize the noninteracting Hamiltonian. We here assume
that such renormalization has already been included in H0,
we therefore do not take into account these hopping processes
more again. (In the presence of external electric or magnetic
field, even if the renormalization depends on the field, we will
neglect the field effect.)

We suppose da1vs = −db2vs ≡ −�1 and db1vs = −da2vs ≡
�2 that means the breaking of the layer inversion symmetry.
For the homogeneous system at the CNP, we have rl = 0. As
a result, the effective MFA Hamiltonian Hvk is obtained by
adding the diagonal matrix Diag(−sv�1,sv�2, − sv�2,sv�1)
to H 0

vk:

Hvk =

⎛
⎜⎜⎜⎝

−sv�1 ek 0 0

e∗
k sv�2 −t1 0

0 −t1 −sv�2 ek

0 0 e∗
k sv�1

⎞
⎟⎟⎟⎠. (12)
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Note that the matrices Hvk and H−vk are related by Hvk =
SH−v−kS, where S is a 4 × 4 matrix:

S =

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎞
⎟⎟⎟⎠.

If ψ
μ

k is an eigenfunction of Hvk with eigenvalue E
μ

k

(with μ = 1, 2, 3, 4), then Sψ
μ

−k is an eigenfunction of
H−vk with the same eigenvalue. Therefore the whole energy
spectra can be obtained from the eigenstates only in a single
valley.

A. The OCS at B = 0

Under the MFA and with the wave functions ψ
μ

k ’s, the order
parameters �1 and �2 are determined by

�1 =
√

3vs

2V

∑
kμ

′
f

(
E

μ

k

)(|ψ1μ

k |2 − |ψ4μ

k |2), (13)

�2 =
√

3vs

2V

∑
kμ

′
f

(
E

μ

k

)(|ψ3μ

k |2 − |ψ2μ

k |2), (14)

where f is the Fermi distribution function, ψ
νμ

k is the νth
component of the eigenfunction ψ

μ

k , and V = √
3N/2 is the

total area of one layer. From the 2BCM,20 we know that the
valence and conduction bands are connected to the electronic
motions in the a1 and b2 sublattices. Therefore the energy gap
between the valence and conduction bands is determined by
2�1. To reproduce the experimental data |�1| = 1 meV at the
CNP, vs needs to be 5.8ε0 = 14.06 eV. Supposing the effective
interaction

v(r) ≈ e2/εr[1 + (αr)2] (15)

(decaying as r−3, a typical behavior in the two-dimensional
electron liquid23) with ε ≈ 3 as the screening constant of high
frequency limit of BLG, we obtain the desired value vs =
5.8ε0 with α = 0.675. Another coupling constant is obtained
as vc ≈ 4.7ε0. Table I summarizes all the parameters for the
4BCM.

B. The OCS at finite B

In the presence of the magnetic field B applied perpen-
dicularly to the sample plane, we take the Landau gauge
for the vector potential, �A = (0,Bx). With this gauge, the
y component momentum ky is a good quantum number.
Replacing the variable x and the operator kx = −i∇x with
the raising and lowering operators a† and a, ky + Bx =√

B/2(a† + a) and kx = i
√

B/2(a† − a), we can rewrite the
effective Hamiltonian in real space. At the K valley, the

TABLE I. Parameters for the 4BCM.

t (eV) t1 (eV) a (Å) d (Å) α (a−1) ε

2.8 0.39 2.4 3.34 0.675 3

Hamiltonian is

HKx =

⎛
⎜⎜⎜⎜⎝

−�1 i
√

2Ba† 0 0

−i
√

2Ba �2 −t1 0

0 −t1 −�2 i
√

2Ba†

0 0 −i
√

2Ba �1

⎞
⎟⎟⎟⎟⎠.

Here, B is in the unit of B0 = h̄c/ea2 = 1.105 × 104T. The
K-valley eigenfunction ψ

μ

Kn is expressed as

ψ
μ

Kn = (
ix1μ

n φn,x
2μ
n φn−1,x

3μ
n φn−1, − ix4μ

n φn−2
)t

for n � 2, where φn is the nth level wave function of a harmonic
oscillator of frequency 2B and mass 1/2 centered at xc =
−ky/B, and the superscript t means the transpose of the vector.
The vector X

μ

Kn = (x1μ
n ,x

2μ
n ,x

3μ
n ,x

4μ
n )t and the eigenenergy

E
μ

Kn are determined by

HKnX
μ

Kn = E
μ

KnX
μ

Kn (16)

with

HKn =

⎛
⎜⎜⎜⎝

−�1

√
2Bn 0 0√

2Bn �2 −t1 0

0 −t1 −�2
√

2B(n − 1)

0 0
√

2B(n − 1) �1

⎞
⎟⎟⎟⎠.

The vector X
μ

Kn is normalized to unity. For each n � 2, the
four energy levels appear at the valence, conduction, and other
two bands about ±t1 far from the zero energy, respectively.
For n = 1, there are only three states with x

4μ

1 = 0 and the
other three components and eigenvalues are determined by the
upper left 3×3 matrix of HK1. For n = 0, we have only one
state X1t

K0 = (1,0,0,0) and E1
K0 = −�1.

At the K ′ valley, the Hamiltonian is

HK ′x =

⎛
⎜⎜⎜⎜⎝

�1 i
√

2Ba 0 0

−i
√

2Ba† −�2 −t1 0

0 −t1 �2 i
√

2Ba

0 0 −i
√

2Ba† −�1

⎞
⎟⎟⎟⎟⎠.

Since the Hamiltonian has the symmetry HK ′x =
SHKxS|i→−i , the eigenfunction ψ

μ

K ′n is therefore given as
Sψ

μ∗
Kn with the same eigenvalue E

μ

Kn.
In the presence of the magnetic field B, the formulas

determining the order parameters �1,2 are different from
Eqs. (13) and (14). The k summations in Eqs. (13) and (14) are
now replaced with the summations over ky and the Landau
index n. Correspondingly, the wave function ψ

νμ

k /
√

Lx is
replaced with ψ

νμ

Kn with Lx as the length of the BLG in
x direction. By denoting the length in y direction as Ly , we
have V = LxLy . The ky summation is performed as

1

Ly

∑
ky

∣∣ψνμ

Kn

∣∣2 = 1

2π

∫
dky

∣∣ψνμ

Kn

∣∣2

= B

2π

∫
dxc

∣∣ψνμ

Kn

∣∣2 = B

2π

∣∣xνμ
n

∣∣2
, (17)

where xc integral has been carried out using the normalization
condition for the wave functions of the harmonic oscillator.
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FIG. 6. (Color online) (a) Landau levels E
μ

Kn of the OCS in
the valence (squares) and conduction (circles) bands at B = 1 T.
The lines represent the continuum conduction (solid) and valence
(dashed) bands at B = 0 with momentum k as the abscissa. (b) The
gap Egap (diamonds) as function of B compared with the AF and the
experimental results (Exp, Ref. 7).

The equations for determining the order parameters are
obtained as

�1 =
√

3vsB

4π

∑
nμ

f
(
E

μ

Kn

)(∣∣x1μ
n

∣∣2 − ∣∣x4μ
n

∣∣2)
, (18)

�2 =
√

3vsB

4π

∑
nμ

f
(
E

μ

Kn

)(∣∣x3μ
n

∣∣2 − ∣∣x2μ
n

∣∣2)
. (19)

The solution to the Landau levels at B = 1 T is shown
in Fig. 6(a). Only the levels in the conduction and valence
bands are depicted. For n = 1, there is a level Ev

K1 slightly
above −�1(B) in the valence band. There is no state in the
conduction band for n = 0 and 1. Only when n � 2, the level
Ec

Kn in the conduction band appears. The energy gap is

Egap = Ec
K2 − Ev

K1. (20)

Clearly, the particle-hole symmetry is no longer valid at finite
B, in agreement with the experiment.7 Figure 6(b) shows Egap

of the OCS as function of B. The AF calculation of the same
4BCM (see Sec. IV) and experimental results for Egap are also
plotted for comparison. Here, the only fitting parameter is vs

for reproducing �1(0) = �0 at B = 0. The theoretical result
for Egap of the OCS as a function of B is in surprisingly good
agreement with the experiment.7

The above solution to the order parameters is only in the
branch of �1,2 > 0. At weak magnetic field B > 0, there is
another branch of �1,2 < 0. In this case, the two levels of n = 0
and 1 appear in the conduction band but not in the valence band,
and the energy gap is given by Egap = Ec

K1 − Ev
K2. In Fig. 7,

we show the hysteresis curves for the OCS order parameters
�1(B) and �2(B) and the gap Egap(B). For |B| � 0.18 T,
there are two branches for Egap. In the lower gap branch, the
gap decreases with increasing |B|. This behavior of Egap is
in qualitative agreement with the experimental observation
by Weitz et al.5 that indicates two peaks in the electric
conductance appearing at Bp ≈ ±0.04 T (where the real gap
reaches the minimum), respectively.

B (T)
-0.4 -0.2 0.0 0.2 0.4

Δ 1,
2(

B
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Δ 0
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B (T)
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E
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p(
B
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Δ 0
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1

2

3

Δ2(B)/Δ0

FIG. 7. (Color online) The hysteresis curves for �1(B), �2(B)
(left) and Egap(B) (right).

IV. THE AF STATE

In the AF state, the magnetization at site j is defined as

mj = 〈(nj↑ − nj↓)〉/2 = −〈δnj↓〉, (21)

where in the second equality we have used the facts that
〈δ(nj↑ + nj↓)〉 = 0 and the total number of up-spin electrons
coincides with that of down-spin electrons. The magneti-
zations in a unit cell are given by (ma1 ,mb1 ,ma2 ,mb2 ) ≡
(m1, − m2,m2, − m1). The order parameters are defined as
−U (ma1 ,mb1 ,ma2 ,mb2 ) ≡ (−�1,�2, − �2,�1).

Under the MFA, the interaction Hamiltonian reads

H ′ = U
∑
lj

(δnlj↑〈δnlj↓〉 + 〈δnlj↑〉δnlj↓)

+
∑

li �=l′jσ

vli,l′j 〈cliσ c
†
l′jσ 〉c†liσ cl′jσ . (22)

By supposing 〈cliσ c
†
l′jσ 〉 is real, the second term in right-

hand side of Eq. (22) then describes the electron hopping
and is a renormalization of the noninteracting Hamiltonian.
As aforementioned, we suppose such a renormalization has
already been included in the noninteracting Hamiltonian; we
will not take into account this exchange effect again.

With the MFA, we obtain an effective Hamiltonian as

Hkσ =

⎛
⎜⎜⎜⎝

−σ�1 ek 0 0

e∗
k σ�2 −t1 0

0 −t1 −σ�2 ek

0 0 e∗
k σ�1

⎞
⎟⎟⎟⎠, (23)

where σ = +1 (−1) for spin-up (down) electrons. Note the
matrices Hkσ and Hk−σ are related by

Hk−σ = SH ∗
kσ S.

If ψ
μ

k is an eigenfunction of Hk↑ with eigenvalue E
μ

k

(μ = 1,2,3,4), then Sψ
μ∗
k is an eigenfunction of Hk↓ with

the same eigenvalue. Therefore we need to find out only the
eigenstates of up-spin electrons.

A. The AF state at B = 0

Using the property of the wave functions, we can obtain the
equations for determining the order parameters. For �1, for
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example, we get

�1 = U

2N

∑
kμ

f
(
E

μ

k

)(∣∣ψ1μ

k

∣∣2 − ∣∣ψ4μ

k

∣∣2)

≈
√

3U

2V

∑
kμ

′
f

(
E

μ

k

)(∣∣ψ1μ

k

∣∣2 − ∣∣ψ4μ

k

∣∣2)
. (24)

Here, the k summation in the first line runs over the first
Brillouin zone, while it runs over a single valley in the
second line (because both valleys give the same contribution).
Similarly, we obtain for �2,

�2 ≈
√

3U

2V

∑
kμ

′
f

(
E

μ

k

)(∣∣ψ3μ

k

∣∣2 − ∣∣ψ2μ

k

∣∣2)
. (25)

Equations (24) and (25) for determining the AF order
parameters happen to be the same as Eqs. (13) and (14) for the
OCS order parameters by setting U = vs . Since the valence
and conduction bands are connected to the electronic motions
in the a1 and b2 sublattices, the energy gap between the valence
and conduction bands is determined by 2�1. To reproduce the
experimental data |�1| = 1 meV at the CNP, U needs to be
5.8ε0 ≈ 14.06 eV. This value of U is larger than 9.3 eV of
the recent ab initio calculation,24 which means the AF state of
U = 9.3 eV cannot reproduce the experimental data �0.

B. The AF state at finite B

We now consider the behavior of the order parameters in
the presence of the magnetic field B applied perpendicularly
to the BLG plane. Since the system under the magnetic field
is not homogeneous, the Hamiltonian cannot be written in
momentum space. For low energy electrons, however, their
overall momenta are close to the Dirac points K and K ′.
We here formulate the problem by a different way. From the
beginning, we write the electron operator cljσ as

cljσ = aK
ljσ ei �K· �j + aK ′

ljσ ei �K ′ · �j , (26)

where a
K(K ′)
ljσ is a fermion operator in valley K(K ′) separated

from the fast phase factor exp[i �K( �K ′) · �j ] and annihilates
electrons of valley K(K ′) and spin σ at site j of l sublattice.
The operator a

K(K ′)
ljσ weakly depends on coordinate j . For later

use, we here define the operator

A
†
vjσ = (

a
v†
a1jσ ,a

v†
b1jσ ,a

v†
a2jσ ,a

v†
b2jσ

)
, (27)

where v = K or K ′ is the valley index. In the presence of B, as
did in Sec. III, we take the Landau gauge for the vector potential
�A = (0,Bx) and use the raising and lowering operators a† and
a. We get the effective Hamiltonian for AF state as

Heff =
∑
vjσ

A
†
vjσHvjσ Avjσ

with

HKjσ =

⎛
⎜⎜⎜⎜⎝

−σ�1 i
√

2Ba† 0 0

−i
√

2Ba σ�2 −t1 0

0 −t1 −σ�2 i
√

2Ba†

0 0 −i
√

2Ba σ�1

⎞
⎟⎟⎟⎟⎠

for electrons at K valley and

HK ′jσ =

⎛
⎜⎜⎜⎜⎝

−σ�1 i
√

2Ba 0 0

−i
√

2Ba† σ�2 −t1 0

0 −t1 −σ�2 i
√

2Ba

0 0 −i
√

2Ba† σ�1

⎞
⎟⎟⎟⎟⎠

for electrons at K ′ valley. The Hamiltonian satisfies the
transformation HK ′j−σ = SHKjσ S|i→−i .

As mentioned above, we need to find out the eigenstates of
up-spin electrons,

Hvj↑ψμ
vn(j ) = Eμ

vnψ
μ
vn(j ) (28)

for μ = 1,2,3,4, and n = 0,1, . . . . For each index n, the four
energy levels (if they exist) appear at the valence, conduction,
and other two bands about ±t1 far from the zero energy,
respectively. At K valley, the eigenfunction is given by

ψ
μ

Kn(j ) =

⎛
⎜⎜⎜⎜⎝

ix
1μ

Knφn(j )

x
2μ

Knφn−1(j )

x
3μ

Knφn−1(j )

−ix
4μ

Knφn−2(j )

⎞
⎟⎟⎟⎟⎠ (29)

for n � 2. The vector X
μ

Kn = (x1μ

Kn,x
2μ

Kn,x
3μ

Kn,x
4μ

Kn)t and the
eigenenergy are determined by

HKnX
μ

Kn = E
μ

KnX
μ

Kn (30)

with

HKn =

⎛
⎜⎜⎜⎝

−�1

√
2Bn 0 0√

2Bn �2 −t1 0

0 −t1 −�2
√

2B(n − 1)

0 0
√

2B(n − 1) �1

⎞
⎟⎟⎟⎠.

The vector X
μ

Kn is normalized to unity. For n = 1, there are
only three states with x

4μ

K1 = 0 and the other three components
and eigenvalues are determined by the upper left 3×3 matrix
of HK1. For n = 0, we have only one state X1t

K0 = (1,0,0,0)
and E1

K0 = −�1. Note that this energy level is close to a level
of n = 1. On the other hand, at valley K ′, the eigenfunction is
given by

ψ
μ

K ′n = (
ix

1μ

K ′nφn−2,x
2μ

K ′nφn−1,x
3μ

K ′nφn−1, − ix
4μ

K ′nφn

)t

for n � 2. The eigenequation reads

HK ′nX
μ

K ′n = E
μ

K ′nX
μ

K ′n (31)

with

HK ′n =

⎛
⎜⎜⎜⎝

−�1
√

2B(n − 1) 0 0√
2B(n − 1) �2 −t1 0

0 −t1 −�2

√
2Bn

0 0
√

2Bn �1

⎞
⎟⎟⎟⎠.

For n = 1, we have three states with x
1μ

K ′1 = 0 and the other
three components and the eigenvalues are determined by the
lower right 3×3 matrix of HK ′1. For n = 0, we have only
X1t

K ′0 = (0,0,0,1) and E1
K ′0 = �1 (close to a level of n = 1).
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Δ2(B)/Δ0

Exp

FIG. 8. (Color online) The AF order parameters �1 and �2

as functions of the magnetic field B. The blue solid line is the
experimental result7 for Egap/2�0.

The order parameter �1 is determined by

�1 = U

2

∑
v

(〈
a

v†
1j↑av

1j↑
〉 − 〈

a
v†
1j↓av

1j↓
〉)

=
√

3U

4Ly

∑
kyvnμ

f
(
Eμ

vn

)(∣∣ψ1μ
vn (j )

∣∣2 − ∣∣ψ4μ
vn (j )

∣∣2)

=
√

3UB

8π

∑
vnμ

f
(
Eμ

vn

)(∣∣x1μ
vn

∣∣2 − ∣∣x4μ
vn

∣∣2)
, (32)

where the first line is the definition; the second line represents
the averages in terms of the wave functions with ψ

νμ
vn as the

νth component of ψ
μ
vn, Sψ

μ∗
vn has been used for spin down

electrons, and a factor
√

3/2, the area of the unit cell of
one layer graphene, comes from the fact that |ψνμ

vn (j )|2/Ly

is the probability density of electrons around site j and the
multiplication with

√
3/2 gives rise to the probability of

electrons in the cell at site j ; in the last line, the ky summation
is carried out according to Eq. (17). Analogously, the order
parameter �2 is determined by

�2 =
√

3UB

8π

∑
vnμ

f
(
Eμ

vn

)(∣∣x3μ
vn

∣∣2 − ∣∣x2μ
vn

∣∣2)
. (33)

At the CNP and zero temperature, the order parameters �1

and �2 are self-consistently determined by Eqs. (30)–(33). In
Fig. 8, we show the results for �1 and �2 at zero temperature
as functions of the magnetic field B and compare them with
the experimental data for Egap/2�0. Clearly, even though �1

and �2 grow with increasing B, their dependence of B is not
strong enough to match the experimental result.7 Therefore
we cannot expect the AF state as the candidate for the ground
state of electrons in BLG.

The Landau levels E
μ
vn of the AF state at B = 1 T are shown

in Fig. 9. In different from the OCS, the distributions of the
levels in the two valleys are now different. Especially, in the
K valley, there are no levels of n = 0 and 1 in the conduction
band (for positive �1,2), while they appear in the conduction
band but disappear in the valence band in the K ′ valley. The

(2nB/B0)
1/2

0.00 0.01 0.02 0.03 0.04

E
vn

 /Δ
0

-20

-15

-10

-5

0

5

10

15

20

B = 1 T

n = 0 n = 1

n = 2

K valley

K' valley

FIG. 9. (Color online) Landau levels Eμ
vn of the AF state in the

valence and conduction bands at B = 1 T. The circles and solid
circles represent the levels in the K and K ′ valleys, respectively. The
lines represent the continuum conduction (solid) and valence (dashed)
bands at B = 0 with momentum k as the abscissa.

energy gap is therefore the indirect gap Egap ≈ E1
K ′0 − E1

K0 =
2�1.

As known, there is a momentum cutoff kc ≈ a−1 for the
4BCM. The corresponding cutoff for the Landau levels is
given by nc ≈ B0/2B. At small B, nc is very large. For
accelerating the numerical computation, we have used the
super-high efficiency algorithm for sum of series.25 According
to the algorithm, one needs to compute only a number of
selected Landau levels.

V. THE OCS UNDER EXTERNAL ELECTRIC FIELD

When an external electric field E is applied perpendicularly
to the BLG plane, there is an effective potential differ-
ence 2u = Eed/ε between the two layers. The Hamiltonian
Hvk for the OCS now is obtained by adding the diag-
onal matrix Diag(u + r1vc − sv�1,u + r2vc + sv�2, − u −
r2vc − sv�2, − u − r1vc + sv�1) to H 0

vk . Here the terms rlvc

appear because of the electric polarization by E. Note that rl

has the same sign of u, and thereby Hvk(u) = SH−v−k(−u)S,
which means that the order parameters are even functions of
u. The model shows that if E closes the energy gap, then −E

does it either. For the sake of illustration, we here consider
the case of B � 0 and u > 0. The results for other cases can
be deduced by the symmetry of the Hamiltonian. For B � 0
and u > 0, we still have two cases: �1 > 0 and �1 < 0.
Here, we consider the case of �1 > 0. The discussion can
be extended to the case of �1 < 0. At B = 0, the effective
gap parameter is u + r1vc − �1 ≡ EK0. The positive voltage
u pushes this level from the valence band toward to the
conduction band. The critical potential u0 closing the effective
gap is obtained as u0 ≈ 0.253�0 ≈ 0.253 meV. The critical
field of the experimental data7 is E ≈ 1.25 mVÅ−1, which
corresponds to u0 ≈ 0.69 meV (using ε ≈ 3).

Since the system satisfies the particle-hole symmetry at
B = 0, we can take the chemical potential as zero for the
system at the CNP. Then, the level EK0 is occupied if it is
negative, otherwise it is empty. Therefore, with increasing u
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B (T)
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u 0 /
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0
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3
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(fK, fK') = (0,1)

(fK, fK') = (1,1)

B(T)

0.0 0.1

u 0 /
Δ 0

0.0

0.1

0.2

0.3

(0,1)
(0,0)

Δ1 < 0

FIG. 10. (Color online) Phase boundary u0(B) between the two
phases (fK,fK ′ ) = (0,1) and (1,1) (the red-solid line). The solid
points and the diamonds (connected by the dashed line) are converted
from the critical E of the experimental data (see Ref. 7) using ε ≈ 3.4
and 3, respectively. The inset shows the result for �1 < 0 in the range
0 < B < 0.15 T.

from 0, the system undergoes a phase transition at u = u0 from
the state with the level EK0 occupied to the state with the level
empty. Thus, to search the critical u0 where the gap closes at
finite B, we study the phase transition.

At finite B, a state at (B,u) can be obtained by continuously
changing the parameters B and u from the state at (0,ui). If
ui > u0(0), then the level EK0 is empty. Note that EK0 is the
only Landau level of n = 0 at finite B and there is another level
of n = 1 close to it similarly as the case of u = 0. So the two
levels of n = 0 and 1 in the K valley keep empty on the path
from (0,ui) to (B,u). On the other hand, if one starts from an
initial state with ui < u0(0), then the two levels of n = 0 and
1 keep filled. (We denote the filling number as fK = 0 and 1
for the two levels empty and filled, respectively.) We thus have
two states at (B,u). By comparing their energies, the ground
state at (B,u) is uniquely determined. At the critical potential
u0(B), the two states have the same ground-state energy. The
ground-state energy per unit cell, E0, is given by

E0 =
√

3B

4π

∑
vnμ

f
(
Eμ

vn

)[
2Eμ

vn − xμ†
vn �(v)xμ

vn

]
(34)

where �(v) is the self-energy matrix given by
�(v) = Diag(r1vc − sv�1,r2vc + sv�2, − r2vc − sv�2, −
r1vc + sv�1). The formula (34) can be derived according to
many-particle theory.26

Note that the energy levels of the OCS at finite u are not
degenerate for interchanging the indices of the two valleys.
Especially, the Landau levels Ec

K0 and Ec
K ′0 are given by u +

r1vc − �1 and −u − r1vc − �1, respectively. For positive u

and �1, the level Ec
K ′0 is always occupied.

In Fig. 10, we exhibit the result for u0(B) as function of B

and compare it with the experimental data.7 The experimental
data are obtained by converting the critical electric field E

to u0 according to u0 = Eed/2ε with the dielectric constant
ε ≈ 3.4 (solid points) and 3 (diamonds). As seen from Fig. 10,
the behavior of u0(B) by the theoretical calculation is in fairly
good agreement with the experiment7 with ε ≈ 3.4 in the
converting from E to u0(B).

As already seen, there is another solution of �1 < 0 in the
range 0 < B < 0.18 T. We show in the insert in Fig. 10 the
phase boundary for this case. We see that the state of �1 < 0
in B > 0.07 T is unstable with respect to a small E. The range
for the stable state of �1 < 0 is reduced to |B| < 0.07 T,
with |Bmax| = 0.07 T close toward to the experimental data5

|Bp| = 0.04 T.

VI. SUMMARY

With the MFA to the 4BCM, we have studied the OCS
and the AF state of the electrons with finite-range repulsive
interactions in BLG at the CNP. We have shown that the
result of AF state is not in agreement with the experimental
observation on the energy gap behavior that grows with
increasing the magnetic field B. However, for the OCS with
only one coupling constant vs fitting the experimental gap at
B = 0, the obtained energy gap at finite B is in surprisingly
good agreement with experimental data.7 The results for the
phase transition in the system in the presence of external
electric and magnetic fields, and the particle-hole asymmetry
spectra in the presence of B are in qualitative agreement with
the experimental observations.7 There is also the intermediate
experimental support5 to the prediction for the hysteresis
energy gap behavior with varying B. These facts show that the
OCS is a possible ground state of electrons in BLG. The model
explored here can be useful for understanding the physics of
the electrons in BLG, which is expected as a new generation
of semiconductors.
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